[image: Balisage logo]Balisage: The Markup Conference

A Simple API for XCONCUR
Processing concurrent markup using an event-centric API
Oliver Schonefeld
University of Tübingen

<oliver.schonefeld (AT) uni-tuebingen (DOT) de>

Balisage: The Markup Conference 2008
August 12 - 15, 2008

Copyright © 2008 Oliver Schonefeld

How to cite this paper
Schonefeld, Oliver. "A Simple API for XCONCUR." Presented at: Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15, 2008. In Proceedings of Balisage: The Markup Conference 2008.
 Balisage Series on Markup Technologies vol. 1 (2008). https://doi.org/10.4242/BalisageVol1.Schonefeld01.

Abstract

 Programmers can basically choose from two different types APIs
 when working with XML documents. On provides an event-centric
 view (SAX) on the document, while the offers an object-centric
 view (DOM). This contribution introduces an event-centric
 programming interface to work with XCONCUR documents which is
 inspired by the XML's SAX-API. It provides a very easy to use
 API for parsing XCONCUR documents.

Balisage: The Markup Conference

 A Simple API for XCONCUR

 Processing concurrent markup using an event-centric API

 Table of Contents

 	Title Page

 	Introduction

 	XCONCUR

 	An event-centric application programming interface

 	Conclusion

 	Appendix A. API interfaces

 	About the Author

 A Simple API for XCONCUR
Processing concurrent markup using an event-centric API

Introduction

 To process XML documents using a programming language, one can
 basically choose from two different application programming
 interfaces (APIs). The Simple API for XML
 processing (SAX) is an event-centric interface, while the
 Document Object Model (DOM) provides
 a sophisticated object structure to work with XML
 documents.
 This contribution introduces an event-centric API to work
 with XCONCUR documents, which is inspired by the XML's SAX-API.

 Section 2 gives a brief overview of
 the XCONCUR document syntax, in section 3 an event-centric XCONCUR API is described
 and in section 4 contains an
 outlook on further work.

XCONCUR

 XCONCUR is an extension to XML with major goal to
 provide an convenient method for expressing concurrent
 hierarchies. An XCONCUR document may contain an arbitrary number
 of annotation layers. Each layer can be transformed to a
 well-formed XML document by a simple filtering
 process. Therefore, an XCONCUR document can be seen as set of
 inter-woven XML documents. Figure 1
 shows an XCONCUR example document with two annotation
 layers. Each tag is prefixed by an annotation layer id and thus
 assigned to a layer. The XCONCUR schema declarations
 allow to assign an annotation schema to each layer. The
 annotation schema may be written in any of the current XML
 schema languages, e.g. DTD, XML Schema or RELAX NG. If an
 annotation schema has been assigned to an annotation layer, the
 layer is validated using this schema. While the use of
 annotation schemas is optional, an XCONCUR document is required
 to be well-formed: each XCONCUR document can be decomposed in a
 set of XML documents, by selecting one layer and removing the
 tags from other annotation layers and the annotation layer
 prefixes. The resulting XML documents are required to be
 well-formed. Additionally, an XCONCUR constraint declaration can
 optionally be used to associate an XCONCUR-CL constraint set to
 the document, which allows cross-tree validation. For details
 see Schonefeld (2007) and Witt at al. (2007).

1: XCONCUR example
<?xconcur version="1.1" encoding="iso-8859-1"?>
<?xconcur-schema layer="l1" root="div" system="teispok2.dtd"?>
<?xconcur-schema layer="l2" root="text" system="teiana2.dtd"?>
<?xconcur-constraint system="peterandpaul.xcs" xconcur:l1="L1" xconcur:l2="L2"?>
<(l1)div type="dialog" org="uniform">
 <(l2)text>
 <(l1)u who="Peter">
 <(l2)s>Hey Paul!</(l2)s>
 <(l2)s>Would you give me
 </(l1)u>
 <(l1)u who="Paul">
 the hammer?</(l2)s>
 </(l1)u>
 </(l2)text>
</(l1)div>

An event-centric application programming interface

 The event-centric API for processing XCONCUR documents is
 heavily inspired by XML's SAX API (see Megginson et al. (2002)). It provides a very low-level approach for
 working with XCONCUR documents. While processing a document, the
 parser emits a series of events. An application may receive
 those events and perform custom actions, e.g. build an in-memory
 representation of the document. Since the application ultimately
 decides which events to accept and how to handle them, the
 parser only has to build up a very minimal in-memory
 representation to perform it's work. This streaming approach is
 therefore quite memory-efficient.

 The API basically defines a number of start events, which
 signal the beginning of an entity in the parsed document (e.g. a
 start tag) and their corresponding counterparts. The event signaling
 character data is an exception, since only a sole character data
 event exists without any start or end event. The following list
 contains the events, which are defined by the API. All events
 marked with an asterisk are unique the XCONCUR API, all others
 have been adapted to cope with more than one annotation
 layer.
 	Start Document ()
	
 The beginning of the document has been detected. This event
 is sent after the XCONCUR declaration has been read.

	End Document ()
	
 The end of the document has been detected. This
 event is sent, when the document has been processed completely.

	Start Layer (layer)*
	
 A new annotation layer has been detected. This is event is
 sent, either if an XCONCUR layer declaration has been
 processed or if the root tag of a new annotation layer has
 been found. The name of the annotation layer prefix is
 provided.

	End Layer (layer)*
	
 The end of an annotation layer has been detected, This
 event is send after the matching end tag for the
 annotation layer's root element has been processed. The
 name of the annotation layer prefix is provided.

	Start Primary Data ()*
	
 This events signals the beginning of the character data of
 the document. It is sent, after the root element for all
 annotation layers in the document have been processed.

	End Primary Data ()*
	
 This events signals the end of the actual character data
 of the document. It is sent, right before the first end
 tag of a root element for any annotation has been
 processed.

	Start Prefix Mapping (layer, prefix, uri)
	
 This event signals the beginning of the scope of a
 namespace prefix mapping on a layer. It is sent
 just before start tag event of the element, which declares
 the prefix mapping, is emitted. The event carries
 information about the annotation layer, the namespace
 prefix and the namespace URI is provided. If an element
 defines more than one prefix mapping, the start prefix
 mapping events may occur in any order.

	End Prefix Mapping (layer, prefix, uri)
	
 This event signals the end of the scope of a
 namespace prefix mapping on a layer. It is sent just after
 the end element event for the element, which declared the
 mapping, was emitted. The event carries information about
 the annotaion layer, the namespace prefix and the
 namespace URI is provided. If an element defined more than
 one prefix mapping, the end prefix mapping events may
 occur in any order.

	Characters (characters)
	
 This event signals the character data. More then one
 character data events my be emitted for one chunk of
 character data in the document.

	Start Element (layer, uri, localname,
 qname, attributes)
	
 A start tag has been detected. The event carries the
 annotation layer prefix, the namespace URI, the local
 name and the qualified name of the tag. Furthermore, a list of
 attributes is available. This list is either empty, if the
 element has no attributes or contains the namespace URI,
 local name, qualified name and value for each attribute.

	End Element (layer, uri, localname, qname)
	
 A end tag has been detected. The event carries the
 annotation layer prefix, the namespace URI, the local
 name and the qualified name of the tag.

 The major difference to XML's SAX-API is that all events, except
 the characters event, have been modified to also carry the
 annotation layer id, so an application can also take this
 information into account. Furthermore, the start/end layer and
 start/end primary data events have been added. The start/end layer
 events provide an easy mechanism for the application to determine
 which annotation layers exist in an XCONCUR document and perform
 actions, e.g. allocating memory for each layer. Strictly speaking,
 one could derive this information from other events
 (e.g. checking, if the just received start element event carries
 an yet unknown annotation layer id), but by providing the
 start/end layer events, the API eases writing the application,
 since the programmer can rely upon these events. The same hold for
 the start/end primary data events. They signal the start and end
 of the actual character data for a document.

 The XCONCUR SAX-API provides various classes and interfaces. The
 most important entities of the XCONCUR SAX-API are the
 XConcurReader and ContentHandler
 classes. The XConcurReader class encapsulates the
 underlying parser[1]. The ContentHandler defines
 an interface, which needs to be implemented by user's program and
 acts as the message sink for the events generated by the
 parser. The whole API consists of various other auxiliary classes,
 e.g. provide abstract input sources for reading XCONCUR documents
 or error reporting classes.

 Figure 2 shows an excerpt of a class
 implementing the ContentHandler interface. Given this
 class, a typical sequence for parsing an XCONCUR document is shown
 in Figure 3.

2: An example implementation of ContentHandler
 interface
class MyContentHandler : public ContentHandler {
public:
 virtual void StartElement(const char* const layer,
 const char* const uri,
 const char* const localname,
 const char* const qname,
 const Attributes &attrs) {
 if (strcmp(layer, "l1")) {
 // do something for start element events on layer "l1"
 }
 }

 virtual void EndElement(const char* const layer,
 const char* const uri,
 const char* const localname,
 const char* const qname) {
 if (strcmp(layer, "l1")) {
 // do something for end elements events on layer "l1"
 }
 }

 // ...
}; // class MyContentHandler

3: Typical sequence to invoke the parser
try {
 // create reader instance
 XConcurReader *reader = XConcurReaderFactory::CreateReader();

 // class 'MyContentHandler' extends the ContentHandler interface
 MyContentHandler handler;

 // register content handler with reader
 reader->SetContentHandler(handler);

 // create input source
 // NOTE: 'input' is an InputStream object which points to an XCONCUR file
 InputSource source(input);

 // parse document
 reader->parse(&source);
} catch (XConcurException &e) {
 // handle exception
}

 The C++ reference implementation of the XCONCUR SAX-API contains a
 program called xconcurlint. It uses the API to read
 an XCONCUR document and prints the events, which are emitted by
 the parser. Figure 4 shows a
 transcript of the parse of the XCONCUR document from figure 1. The event types are printed in curly
 brackets. Other event specific information, like annotation layer
 prefix or element name are also printed.

4: Output created by the xconcurlint utility
{START LAYER} l1
{START ELEMENT} l1, div
 type = dialog
 org = uniform
{START LAYER} l2
{START ELEMENT} l2, text
{START PRIMARY DATA}
{CHARACTERS} "\n "
{START ELEMENT} l1, u
 who = Peter
{CHARACTERS} "\n "
{START ELEMENT} l2, s
{CHARACTERS} "Hey Paul!"
{END ELEMENT} l2, s
{CHARACTERS} "\n "
{START ELEMENT} l2, s
{CHARACTERS} "Would you give me\n "
{END ELEMENT} l1, u
{CHARACTERS} "\n "
{START ELEMENT} l1, u
 who = Paul
{CHARACTERS} "\n "
{CHARACTERS} "the hammer?"
{END ELEMENT} l2, s
{CHARACTERS} "\n "
{END ELEMENT} l1, u
{CHARACTERS} "\n "
{END PRIMARY DATA}
{END ELEMENT} l2, text
{END LAYER} l2
{END ELEMENT} l1, div
{END LAYER} l1

Conclusion

 The XCONCUR SAX-API provides a very low-level, yet powerful,
 interface for processing XCONCUR documents. It is a relatively
 simple and easy interface to work with XCONCUR
 documents. Programmers, who are familiar with XML's SAX-API,
 should feel at ease with XCONCUR API really quickly. The API
 makes very few assumptions about the underlying parser and
 provides a uniform interface for using parser implementations
 from different vendors. Furthermore, the API can easily be
 ported to different programming languages. A C++ and a Java
 reference implementation is available[2]. For the Java language bindings, the
 API is implemented in plain Java, while parser uses the C++
 implementation of the parser.

 Future work involves creating a object based API similar to
 XML's DOM-API. Conceptional work for this is currently underway
 and the XCONCUR-DOM parser will be built upon the XCONCUR-SAX
 parser. Furthermore, the Mascarpone XCONCUR editor needs to be
 overhauled to use the new APIs.

Appendix A. API interfaces

 This appendix lists the most fundamental interfaces of the
 XCONCUR SAX-API. The full API contains a few more interfaces and
 classes.

Figure 5: XConcurReader interface
class XConcurReader {
public:
 virtual ContentHandler* GetContentHandler() const = 0;

 virtual void SetContentHandler(ContentHandler *handler) = 0;

 virtual ErrorHandler* GetErrorHandler() const = 0;

 virtual void SetErrorHandler(ErrorHandler *handler) = 0;

 virtual void Parse(InputSource *source) = 0;

 virtual void SetFeature(const char* const name, const bool value) = 0;

 virtual bool GetFeature(const char* const name) = 0;

 virtual ~XConcurReader();
}; // class XConcurReader

Figure 6: ContentHandler interface
class ContentHandler {
public:
 virtual ~ContentHandler();

 virtual void StartDocument() = 0;

 virtual void EndDocument() = 0;

 virtual void StartLayer(const char* const prefix) = 0;

 virtual void EndLayer(const char* const prefix) = 0;

 virtual void StartPrimaryData() = 0;

 virtual void EndPrimaryData() = 0;

 virtual void StartPrefixMapping(const char* const layer,
 const char* const prefix,
 const char* const uri) = 0;

 virtual void EndPrefixMapping(const char* const layer,
 const char* const prefix) = 0;

 virtual void Characters(const char* const chars,
 const size_t offset,
 const size_t len) = 0;

 virtual void StartElement(const char* const layer,
 const char* const uri,
 const char* const localname,
 const char* const qname,
 const Attributes &attrs) = 0;

 virtual void EndElement(const char* const layer,
 const char* const uri,
 const char* const localname,
 const char* const qname) = 0;
}; // interface ContentHandler

Figure 7: Attributes interface
class Attributes {
public:

 virtual int GetLength() const = 0;

 virtual int GetIndex(const char* const qname) const = 0;

 virtual int GetIndex(const char* const uri,
 const char* const localname) const = 0;

 virtual const char* const GetQName(const int idx) const = 0;

 virtual const char* const GetURI(const int idx) const = 0;

 virtual const char* const GetLocalName(const int idx) const = 0;

 virtual const char* const GetType(const char* const qname) const = 0;

 virtual const char* const GetType(const char* const uri,
 const char* const localname) const = 0;

 virtual const char* const GetType(const int idx) const = 0;

 virtual const char* const GetValue(const char* const qname) const = 0;

 virtual const char* const GetValue(const char* const uri,
 const char* const localname) const = 0;

 virtual const char* const GetValue(const int idx) const = 0;

 virtual bool IsDeclared(const char* const qname) const = 0;

 virtual bool IsDeclared(const char* const uri,
 const char* const localname) const = 0;

 virtual bool IsDeclared(const int idx) const = 0;

 virtual bool IsSpecified(const char* const qname) const = 0;

 virtual bool IsSpecified(const char* const uri,
 const char* const localname) const = 0;

 virtual bool IsSpecified(const int idx) const = 0;

protected:
 virtual ~Attributes();
}; // interface Attributes

References[3]
[Megginson et al. (2002)]
 David Megginson, “Simple API for XML
 processing”. Available online at
 http://www.saxproject.org/quickstart.html

[Le Hors et al. (2004)]
 Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol,
 Jonathan Robie, Mike Champion, Steve Byrne: “Document Object Model (DOM) Level 3 Core
 Specification”. World Wide Web Consortium,
 2006. Available online at
 http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/

[Schonefeld (2007)]
 Oliver Schonefeld: “XCONCUR and
 XCONCUR-CL: A constraint-based approach for the validation of
 concurrent markup”. In: Datenstrukturen für
 linguistische Ressourcen und ihre Anwendungen / Data structures
 for linguistic resources and applications: Proceedings of the
 Biennial GLDV Conference 2007, Georg Rehm, Andreas Witt, Lothar
 Lemnitzer (eds), Tübingen Verlag, Germany, 2007. Pp. 347–356.

[Witt at al. (2007)]
 Andreas Witt, Oliver Schonefeld, Georg Rehm, Jonathan Khoo,
 Kilian Evang: “On the Lossless
 Transformation of Single-File, Multi-Layer Annotations into
 Multi-Rooted Trees”. In: Proceedings of Extreme
 Markup Languages 2007, Montréal, Canada, 2007. Available online
 at
 http://www.idealliance.org/papers/extreme/proceedings/html/2007/Witt01/EML2007Witt01.xml

[Bray et al. (2006)]
 Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
 Francois Yergeau, John Cowan: “Extensible Markup Language (XML)
 1.1”. World Wide Web Consortium, 2006, 2nd
 edition. Available online at http://www.w3.org/TR/2006/REC-xml11-20060816/

[1] The parser
 implementation is not part if the API. Different vendors could
 supply their own implementation. The reference implementation of
 the XCONCUR SAX-API currently provides a non-validating
 parser.
[2] The author provides the software for
 evaluation and academic purposes upon
 request.
[3] All online resources have last been
 checked on 2008/08/31.

Balisage: The Markup Conference

A Simple API for XCONCUR
Processing concurrent markup using an event-centric API
Oliver Schonefeld
University of Tübingen

<oliver.schonefeld (AT) uni-tuebingen (DOT) de>

	 Oliver Schonefeld works in University of Tübingen's
 collaborative research centre Linguistic Data Structures in
 a project that develops the foundations for sustainable
 linguistic resources. He studied computer science at
 University of Bielefeld until 2005. This contribution
 deals with aspects of his forthcoming PhD thesis.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

