
Markup and the Canadian

National Model Building Codes

Balisage 2013, Montréal

Brent Nordin

Introductory Comments

 Canadian National Model Building Codes:
◦ Building

◦ Fire

◦ Plumbing

◦ Energy Code for Buildings

◦ Farm Buildings

 Developed by a secretariat at Canada’s National
Research Council

 Talk will cover markup aspects of the Codes
documents:
◦ XML content lifecycle

◦ Publishing chains

The XML Library

 Codes content converted from
proprietary format to SGML for the 1995
printing

 Data model expressed as a DTD

 Converted to XML for 2005 printing

 One library for all Codes documents

 Content stored as XML fragments
 A single sentence or table of the normative material

 A larger self-contained chunk for non-normative
material

XML Library Structure

 A single tree of XML fragments

 Leaves contain the bulk of the Codes text

(sentences, tables, appendix notes, intent

analysis)

 Higher levels in the tree contain

structural information fragments

 Tables, appendix notes, and intent analysis

fragments are referenced from sentence

fragments

Leaf node

 Sentence, table, appendix note, objective

analysis

 Rich structure

 Leaf nodes related to a single building

Code sentence (provision).

 Tied together through REFIDs or

Xlink:HREF

Non-leaf nodes

(structural fragments)
 Articles

◦ Include a title

◦ References to sentences and tables

 Parts

◦ Include part/section/subsection

◦ Include titles for each level

 Book

◦ Include references to parts

XML Fragment Maintenance

 Formal workflow
◦ Acceptance for review

◦ Technical committee work

◦ Governance review

◦ Stakeholder review

◦ Public review

◦ Editing

◦ Translation

◦ Publication

 Workflow now mediated by a CMS
◦ Electronic form for each proposed change

◦ XML fragments attached to form as separate documents

System Architecture

CMS

(web server, CGI)

Change form
(browser, HTML, Javascript)

XML Server
(web server, Python)

NoSQL

DB
(XML)

XML Library
(filesystem, R/O)

REST

API

NoSQL Database

 One per Codes document

 Structural representation of each

document

 Includes some publishing artifacts like

sequence numbers

 Queries are parameterized XSLT

transforms

XML Server

 XML web server adds Codes-specific XML
functionality to the CMS

 RESTful API

 Implemented in Python (on top of CherryPy
framework)

 Interactions with the NoSQL DB and any
generated XML documents based on XSLT
or Xpath
◦ No horrible DOM coding

◦ No data model mismatches between XML and
programming language

Composite Fragments

 Attached to the Codes change form

 Built up in stages

◦ 1st stage from NoSQL DB

◦ 2nd stage adds referenced files

◦ 3rd stage looks for appendix note references,
builds link templates

◦ 4th stage adds appendix notes, resolves link
templates

 Creates a complete work package for the
technical committees

Fragment Bursting

 Edited composite fragments must be
returned to XML library

 Editing governed by DTD (in Arbortext) so
content is structurally sound

 Bursting process does limited semantic
checking

◦ ID, IDREF syntax

◦ ID, IDREF links

 Recreates structural and leaf node XML
fragments

Publishing Chains

 XML to HTML

◦ for preview and online viewing

 HTML to PDF

◦ for print

 HTML to HTML

◦ For side by side output

 XML to XML to HTML

◦ for consolidated print

XML to HTML

 Main publishing chain

 Multi-stage rendering chain

◦ CMS server-side job setup

◦ 2 preprocessing steps

◦ Main rendering step

◦ Post-filtering

◦ HTML Tidy

Side by Side Rendering

 Merge HTML versions of rendered

French and English Codes change forms

 Relies on class information in HTML for

synchronization

Consolidated Print

 Merges all open proposed changes with

reference content

 Designed to show what a Codes

document would look like:

◦ Relative to the previously published version

◦ Including overlapping proposed changes

◦ With new sequencing to allow for discussions

Summary

 A semantically rich data model enables
unforeseen capabilities

 A clear distinction between content and
metadata has been critical

 The Canadian Building Codes will outlive
both me and any markup technologies

◦ SGML was good

◦ XML is good

◦ A markup technology yet to be invented will
be good

Thank you

Brent Nordin

anglebrackets@outlook.com

