[image: Balisage logo]Balisage: The Markup Conference

Decision making in XSL-FO formatting
Tony Graham
Consultant
Mentea

<tgraham@mentea.net>

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Copyright © 2013 Mentea

How to cite this paper
Graham, Tony. "Decision making in XSL-FO formatting." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Graham01.

Abstract
XSL-FO has a very linear processing model that has served it well, but very often it is necessary to make decisions on what will be in the formatted output based on the sizes of the formatted output, and XSL 1.1 as defined does not let you do that. This paper looks at what's needed to be done to get that sort of decision making into XSL-FO processing today and at some possible future developments.

Balisage: The Markup Conference

 Decision making in XSL-FO formatting

 Table of Contents

 	Title Page

 	XSL 1.1 Processing Model
 	Effect on decision making

 	Case Study - PLOS ONE Journal
 	XSL 1.1 capabilities

 	Graphics handling

 	Table handling

 	Extensible Stylesheet Language (XSL) Requirements Version 2.0

 	Print and Page Layout Community Group
 	Emphasis on feedback

 	Adapt Saxon-CE event model to XSL-FO?

 	Conclusion

 	About the Author

 Decision making in XSL-FO formatting

XSL 1.1 Processing Model
Extensible Stylesheet Language (XSL) 1.1 [XSL11] is defined to cover
both transformation and formatting. The transformation part was
broken out as XSLT long before XSL 1.1 became a Recommendation, so the XSLT spec, bar a few paragaphs about XSLT, is concerned with formatting the result of a XSLT transformation, where:
Formatting is enabled by including formatting semantics in the result tree. Formatting semantics are expressed in terms of a catalog of classes of formatting objects. The nodes of the result tree are formatting objects. The classes of formatting objects denote typographic abstractions such as page, paragraph, table, and so forth. Finer control over the presentation of these abstractions is provided by a set of formatting properties, such as those controlling indents, word- and letter spacing, and widow, orphan, and hyphenation control. In XSL, the classes of formatting objects and formatting properties provide the vocabulary for expressing presentation intent.

Figure 1 is the detailed conceptual model diagram from XSL 1.1. It shows a linear process from XML source to the result of the XSLT stage to the formatted output.
Figure 1: XSL 1.1 processing model
[image:]

The process of turning XML in the FO vocabulary into formatted, and more than likely paginated, output is itself defined in multiple stages. Figure 2, also from XSL 1.1, shows how the XML representation of the formatting objects is turned into actual objects (as 'actual' as bits and bytes in computer memory can be), expressions in property values are resolved, and the formatter then makes areas. The formatted areas could be written out to a graphical or document format (such as PDF, PostScript, or RTF) or, in some cases, could be written out as an XML representation of the area tree for later processing.
Figure 2: Summary of the process
[image:]

The XSL spec itself notes that its design follows that of DSSSL [DSSSL]:
XSL builds on the prior work on Cascading Style Sheets [CSS2] and the Document Style Semantics and Specification Language [DSSSL].

and the linear processing model with transformation and formatting stages follows that of DSSSL:
Figure 3: DSSSL processing model
[image:]

Figure 4: DSSSL formatting
[image:]

DSSSL goes one step further - or XSL took one step back from DSSSL - since DSSSL states:
DSSSL is independent of the type of formatter,
formatting system, or other transformation processor.

and James Clark's Jade DSSSL procssor [JADE] came with RTF, TeX, and MIF backends for formatted output.
This separation of concerns between a style engine and a backend is not explicit in either the original XSL Requirements Summary [XSLReq] or the XSL spec, but the linear processing model did allow XSL processing to be implemented on top of existing formatters, and of the six formatters for which test results [XSLCRTest] were provided so the XSL 1.0 specification could progress from Candidate Recommendation to Proposed Recommendation, two - Arbortext and PassiveTeX - used existing formatters to make the pages.
Effect on decision making
To take a simplistic view of decision making - that it's just that: making decisions - then there's obviously a lot of decision making going on in the XSL processing model:
	The stylesheet writer decides how to style the class of the source documents

	The XSLT processor, by selecting template rules based on the structure of the source document (and possibly on other factors) and by evaluating conditional expressions, decides what goes in the result tree

	The XSL formatter decides where pages, lines, etc., should break, decides what should change when one area intrudes on another, and decides (based on values of properties such as 'overflow', etc.) what to do when an area or a graphic is too large for the available space

yet these are all decisions taken in isolation at different points in the processing.

Case Study - PLOS ONE Journal

PLOS ONE [PONE] is an international, peer-reviewed, open-access, online publication published by PLOS (Public Library of Science) [PLOS], a nonprofit publisher and advocacy organization headquartered in San Francisco, California, USA.
The author was selected to implement a XSL-FO-based system for producing PDFs of PLOS ONE articles. The PDFs had to replicate PLOS ONE's existing house style.
PLOS ONE receives manuscripts in Word, LaTeX, or RTF formats, then converts these to XML conforming to the NLM Journal Publishing DTD v3.0 prior to publication.
PLOS ONE articles are formatted in two-column pages. Figures may be either column-wide or page-wide, and tables may be column-wide, page-wide, or rotated so their width is page-high, but there is no size information for either figures or tables in the source XML. Figures and graphics may also float to either the top or bottom of the page or column.
XSL 1.1 capabilities
XSL 1.1 defines a 'before-float-reference-area' on a page, but does not define an area for content floated to the 'after' end of the page, and the 'before-float-reference-area', when instantiated, takes the full width of the fo:region-body of the page.
PLOS therefore had to choose a XSL formatter based on the availability of vendor extensions to support more ways to float than defined by XSL 1.1.

Graphics handling
Graphics at least have an intrinsic size and, in formats such as TIFF, have an intrinsic resolution as well.
The process for determining whether graphics are column-wide or page-wide is:
	Download copies of TIFF images from PLOS ONE article web page
In production, PLOS will have the graphics available on their servers, so this is only ncessary while developing the stylesheet.

	Run ImageMagick 'identify' on each graphic to get its width, height, horizontal resolution, and vertical resolution and write the information to a '.identify' file for each graphic

	In the XSLT stylesheet, when processing a graphic, get the contents of the corresponding '.identify' file using 'unparsed-text()', tokenize the returned string to get the four values, then calculate the graphic's width by dividing the width in pixels by the horizontal resolution. When the calculateed width is less than or equal to the width of a column, it is made column-wide, otherwise it is made page-wide.

The PLOS ONE authoring guidelines allow graphics sized up to the height of the page body, but figures may have captions of up to 300 characters, as well as having a label, title, and DOI that also appear in the formatted output. XSL doesn't allow floated FOs to break across a page, so imilarly to as described below for tables, the processing system 'preformats' the figure captions at both widths and writes out the area tree to be used as input by the main stylesheeet so the stylesheet reduces the allowed maximum height of the graphic so the graphic won't push its following caption into the footer area.

Table handling
Tables, as noted above, are presented one of three ways -- column-wide, page-wide, or page-high -- depending on which best fits the content of the table. Deciding which to do is entirely up to the processing system since the source XML, converted from other sources as it was, does not include even the few presentation-oriented attributes defined by the DTD.
The NLM/JATS DTDs support [TableWrap] specifying the orientation of a combined table and caption but do not provide a way to indicate the width of a table. The NISO JATS table model does allow a 'style' attribute on 'table' and 'caption', but not on the 'table-wrap' that contains them both.
The sample files provided at the start of the project included TIFF images of each of the tables in the samples as well as TIFF files for the graphics, and it wasn't until the project was underway that it was made clear that the images of the tables were artifacts of the existing processing system and, not only were they not going to be available for new documents, the new system was expected to produce those as well.
The implemented approach makes a temporary 'sizer' formatted document containing each table at each width, saves the area tree from that document, and provides the area tree as a parameter to the stylesheet that produces the FO for the final formatted output.
The 'sizer' document comprises three pages that each have a different fixed width and a large height (since the formatter doesn't support '<fo:root media-usage="bounded-in-one-dimension">'). Every table in the source XML has an ID, so the tables on each page are given a unique ID in their FO document by prefixing a page-specific prefix to the tables original ID. The following figure shows tables from an article formatted at page-wide, column-wide, and page-high widths. The first two tables fit within a column, but the third overflows a column.
Figure 5: 'sizer' document
[image:]

The stylesheet that produces the 'sizer' document is very simple. A template matching the document node does all the work, and the stylesheet imports the 'main' stylesheet so the tables are formatted exactly as they would be in the final output. Since there are only three pages, the stylesheet does not even define any page-sequence masters, so each fo:page-sequence refers directly to a fo:simple-page-master.

 <fo:root>
 <fo:layout-master-set>
 <xsl:call-template name="define-sizer-simple-page-masters"/>
 </fo:layout-master-set>
 <fo:page-sequence master-reference="page-wide">
 <fo:flow flow-name="body" xsl:use-attribute-sets="fo:flow">
 <xsl:apply-templates select="//table-wrap">
 <xsl:with-param name="prefix" select="'page-wide-'" as="xs:string" tunnel="yes" />
 </xsl:apply-templates>
 </fo:flow>
 </fo:page-sequence>
 <fo:page-sequence master-reference="column-wide">
 <fo:flow flow-name="body" xsl:use-attribute-sets="fo:flow">
 <xsl:apply-templates select="//table-wrap">
 <xsl:with-param name="prefix" select="'column-wide-'" as="xs:string" tunnel="yes" />
 </xsl:apply-templates>
 </fo:flow>
 </fo:page-sequence>
 <fo:page-sequence master-reference="page-high">
 <fo:flow flow-name="body" xsl:use-attribute-sets="fo:flow">
 <xsl:apply-templates select="//table-wrap">
 <xsl:with-param name="prefix" select="'page-high-'" as="xs:string" tunnel="yes" />
 </xsl:apply-templates>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>
</xsl:template>
The only template that has so far been needed to override the default processing just stops bibliographic cross-references or references to supplemantary material generating a fo:basic-link so there's no longer warnings from the XSL formatter about unresolved cross-references:
<xsl:template match="xref[@ref-type = ('bibr', 'supplementary-material')]">
 <xsl:apply-templates />
</xsl:template>
The main stylesheet declares variables for the page width, margins, etc., so the same values are used in the main stylesheet to produce the final output and to work out whether graphics should be page-wide or column-wide and used in the 'sizer' stylesheet to set the pages' dimensions.
As stated previously, the area tree for the 'sizer' document is saved as XML, and the filename of the area tree XML passed to the main stylesheet, when run separately, as a parameter value. When the stylesheet comes to process a 'table-wrap', it looks up the dimensions of the table variants in the 'sizer' area tree and, based on the dimensions, decides which format of the table to use. The following figure shows two of the tables from the 'sizer' document in the final formatted output.
Figure 6: Formatted pages
[image:]

Current capabilities include automatic sizing of tables to be column-wide, page-wide, or page-high (either column-width or page-width), with manual overrides available to force a table to be page-wide or page high, plus automatic breaking of tables that are too high (or, for page-high tables, too wide) for the available space. When tables are broken into multiple subtables, each subtable gets its column widths from the 'sizer' table both so the subtables use the same widths and to avoid the automatic table algorithm optimising eacch subtable and leaving space at the bottom of a page.
It hasn't yet been necessary to produce TIFF images of each table, but if it were required, the main stylesheet would output a separate FO document with individually-sized page dimensions for each table. Those FO documents would then be formatted to PDF or PostScript and then converted to TIFF using ImageMagick.

Extensible Stylesheet Language (XSL) Requirements Version 2.0
The "Extensible Stylesheet Language (XSL) Requirements Version 2.0" Working Draft [XSLFO20-Req], published two years after XSL 1.1, includes among its requirements several that require or allow more decision making within the XSL formatter or that break the linear sequence of the XSL 1.1 processing model, including:
	Section 2.3, Feedback from pagination stage
This calls for "the ability to use information from the pagination step of one formatting episode in determining layout of the following formatting episode" and "making changes to the pages, reordering pages, merging multiple flows and do many other post processing tasks." This is what was done in the PLOS ONE example above, but if it could be realised in a XSL-FO 2.0 specification and in a XSL-FO 2.0 formatter, then it may be easier to use compared to the current bespoke solution that is stitched together using Apache Ant.

	Section 3.1, Including information from formatting time
This calls for the XSL-FO expression language "to allow expressions that include information that’s only available at formatting time." If implemented, it wouldn't necessarily put more decision making in the XSL formatter, but would let the output change the output in a way that isn't possible at present.

	Section 3.2, Pagination information
The ability "to compute expressions that are based on information that is only available after the pagination stage" would be another twist to the linear processing model.

	Section 2.1.4, Copyfitting
Copyfitting, in XSL-FO 2.0 terms, would be the ability to "shrink or grow content (change properties of text, line-spacing, ...) to make it constrain to a certain area." The requirements also anticipate that "multiple instances of alternative content can be provided to determine best fit" and that copyfitting would act "across a given number of pages, regions, columns etc, for example to constrain the number of pages to 5 pages."
Again, this would put more decision making within the XSL formatter but, once specified in the input FO document, it would be beyond the direct control of the XSLT stylesheet and of the stylesheet writer.

Print and Page Layout Community Group
The charter of the W3C XML Print and Page Layout Working Group, which was developing XSL-FO 2.0 and produced a series of working drafts, expired in early 2013. However, following the inception of Business and Community Groups at the W3C, the Print and Page Layout Community Group [PPL] has been operating since early 2012. It has no charter and no support from the W3C other than that provided to all Community Groups, but after a period of relative inactivity, it is now producing new ideas and trying out new solutions for XSL-FO processing.
Emphasis on feedback
Following a post by Patrick Gundlach of Speedata on the eve of his XML Prague 2013 talk [Sppedata], the CG turned its attention to feedback, or the lack of it, in XSL-FO processing. The CG produced a short list of examples where feedback, as the basis for decision making, would be useful [CustReq]. Some of them have direct equivalents in the XSL-FO 2.0 requirements document, but others do not.
It was quite easy for several on the public-ppl@w3.org mailing list to agree on the usefulness of more feedback in XSL-FO processing (while others are happy with XSL 1.1 as it is today [Hahn]), but the difficulty was in doing anything about it given the limited resources of the CG. In response to comments on the mailing list, Arved Sandstrom of MagicLamp Software produced a proof-of-concept extension function [FOPRunXSLTExt] for both the Saxon and Xerces XSLT processors that, mid-transform, runs the Apache FOP XSL formatter [FOP] on a provided FO document and returns (a reference to) the area tree XML for the formatted result.
Several examples of the extension function in action are provided on the PPL wiki. The example below demonstrates a solution to requirement #9, "Ability to modify label field width in a single list when labels are large", from [CustReq].
The example's source XML includes two lists that, when transformed with the default stylesheet and formatted, are cleverly contrived to have list item label widths that are either too wide or too narrow for the labels in the lists.
Figure 7: Wrong list item label widths
[image:]

When the same XML is transformed with a stylesheet that uses the extension function and then formatted, the list item label widths are set based on the actual maximum formatted width of the labels in each list. The stylesheet constructs a test document containing just the list item label texts, uses the extension function to format that and get the area tree, and decides the maximum widths from the area tree. The document that is formatted mid-transform is, therefore, a different document to the one used to produce the final output.
Figure 8: Right list item label widths
[image:]

<xsl:template name="main">
 <!-- Make a test document containing only the list labels. Re-use
 example markup rather than creating FOs directly just because
 it's convenient. -->
 <xsl:variable name="test-doc">
 <example>
 <xsl:for-each select="key('lists', true())">
 <box id="{@id}" width="3in" height="3in">
 <xsl:for-each select="item/@label">
 <paragraph>
 <xsl:value-of select="."/>
 </paragraph>
 </xsl:for-each>
 </box>
 </xsl:for-each>
 </example>
 </xsl:variable>
 <!-- Save the FO tree from $test-doc in a variable. -->
 <xsl:variable name="fo_tree">
 <xsl:apply-templates select="$test-doc" />
 </xsl:variable>

 <xsl:variable name="area_tree_file"
		select="concat($dest_dir, '/', $area_tree_filename)" />

 <xsl:message>Area tree filename = <xsl:value-of select="$area_tree_file" /></xsl:message>

 <xsl:variable
 name="url"
 select="runfop:area-tree-url($fo_tree, $area_tree_file)"
 as="xs:string" />

 <xsl:variable
 name="area-tree"
 select="document($url)"
 as="document-node()?" />

 <xsl:variable name="overrides">
 <overrides>
 <!-- Find the maximum label width for each list and convert to pt. -->
 <xsl:for-each select="key('lists', true())">
	<xsl:variable name="id" select="@id" as="xs:string" />
	<xsl:variable name="block"
		 select="key('blocks', $id, $area-tree)[1]" />
	<override id="{$id}" label-width="{max($block//text/@ipd) div 1000}pt" />
 </xsl:for-each>
 </overrides>
 </xsl:variable>

 <xsl:apply-templates select="/">
 <xsl:with-param name="overrides" select="$overrides" as="document-node()" tunnel="yes" />
 </xsl:apply-templates>
</xsl:template>
The examples so far haven't demonstrated anything that couldn't be done using two stylesheets in the manner of the PLOS ONE table handling. The following example impements the oft-stated requirement for adjusting font size until text just fits a certain area. Since that's an iterative process, it's more convenient to do that within on transformation rather than having to use shell scripts or Ant to run an XSLT processor on a preliminary stylesheet multiple times and examine the result each time.
Figure 9: 'font-size' adjusted so text fills box
[image:]

<!-- Initial template -->
<xsl:template name="main">
 <xsl:call-template name="do-box">
 <xsl:with-param name="font-size" select="$font-size" as="xs:double" />
 <xsl:with-param
 name="font-size.minimum" select="$font-size" as="xs:double" tunnel="yes" />
 <xsl:with-param
 name="font-size.maximum" select="$font-size * 10" as="xs:double" tunnel="yes" />
 <xsl:with-param name="iteration" select="1" as="xs:integer" />
 <xsl:with-param name="iteration-max" select="30" as="xs:integer" tunnel="yes" />
 <xsl:with-param name="tolerance" select="$tolerance" as="xs:double" tunnel="yes" />
 </xsl:call-template>
</xsl:template>

<xsl:template name="do-box">
 <xsl:param name="font-size" as="xs:double" />
 <xsl:param name="font-size.minimum" as="xs:double" tunnel="yes" />
 <xsl:param name="font-size.maximum" as="xs:double" tunnel="yes" />
 <xsl:param name="iteration" select="1" as="xs:integer" />
 <xsl:param name="iteration-max" select="5" as="xs:integer" tunnel="yes" />
 <xsl:param name="tolerance" select="$tolerance" as="xs:double" tunnel="yes" />

 <xsl:variable name="area_tree_filename_basename"
 select="replace($area_tree_filename, '\.[^.]+$', '')"
 as="xs:string" />
 <xsl:variable name="area_tree_filename_suffix"
 select="tokenize($area_tree_filename, '\.')[last()]"
 as="xs:string" />
 <xsl:variable name="area_tree_file"
		select="concat($dest_dir,
 '/',
 $area_tree_filename_basename,
 '-',
 $iteration,
 '.',
 $area_tree_filename_suffix)"
 as="xs:string" />

 <xsl:message>iteration = <xsl:value-of select="$iteration" /></xsl:message>
 <xsl:message>font-size = <xsl:value-of select="$font-size" /></xsl:message>
 <xsl:message>font-size.minimum = <xsl:value-of select="$font-size.minimum" /></xsl:message>
 <xsl:message>font-size.maximum = <xsl:value-of select="$font-size.maximum" /></xsl:message>
 <xsl:message>Area tree filename = <xsl:value-of select="$area_tree_file" /></xsl:message>

 <xsl:variable name="overrides">
 <overrides>
 <!-- Set the font size. -->
 <xsl:for-each select="key('boxes', true())">
	<xsl:variable name="id" select="@id" as="xs:string" />
	<override id="{$id}" font-size="{$font-size}" />
 </xsl:for-each>
 </overrides>
 </xsl:variable>

 <!-- Save the FO tree in a variable. -->
 <xsl:variable name="fo_tree">
 <xsl:apply-templates select="/">
 <xsl:with-param name="overrides" select="$overrides" as="document-node()" tunnel="yes" />
 </xsl:apply-templates>
 </xsl:variable>

 <xsl:variable
 name="url"
 select="runfop:area-tree-url($fo_tree, $area_tree_file)"
 as="xs:string" />

 <xsl:variable
 name="area-tree"
 select="document($url)"
 as="document-node()?" />

 <xsl:variable
 name="bpd"
 select="key('blocks', key('boxes', true())[1]/@id, $area-tree)[1]/block/@bpd"
 as="xs:integer" />

 <xsl:variable
 name="target-height"
 select="xs:double(substring-before(key('boxes', true())[1]/@height, 'pt'))"
 as="xs:double" />

 <xsl:choose>
 <xsl:when test="$iteration eq $iteration-max">
 <xsl:message>Maximum iterations.</xsl:message>
 <xsl:apply-templates select="/">
 <xsl:with-param
 name="overrides"
 select="$overrides"
 as="document-node()"
 tunnel="yes" />
 </xsl:apply-templates>
 </xsl:when>
 <xsl:when test="$bpd div 1000 > $target-height">
 <xsl:call-template name="do-box">
 <xsl:with-param
 name="font-size"
 select="($font-size + $font-size.minimum) div 2"
 as="xs:double" />
 <xsl:with-param
 name="font-size.maximum"
 select="$font-size"
 as="xs:double"
 tunnel="yes" />
 <xsl:with-param name="iteration" select="$iteration + 1" as="xs:integer" />
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="$target-height - ($bpd div 1000) <
 $target-height * $tolerance div $target-height">
 <xsl:message>It fits.</xsl:message>
 <xsl:apply-templates select="/">
 <xsl:with-param
 name="overrides"
 select="$overrides"
 as="document-node()"
 tunnel="yes" />
 </xsl:apply-templates>
 </xsl:when>
 <xsl:otherwise>
 <xsl:call-template name="do-box">
 <xsl:with-param
 name="font-size"
 select="($font-size + $font-size.maximum) div 2"
 as="xs:double" />
 <xsl:with-param
 name="font-size.mimimum"
 select="$font-size"
 as="xs:double"
 tunnel="yes" />
 <xsl:with-param name="iteration" select="$iteration + 1" as="xs:integer" />
 </xsl:call-template>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>
The difficulty with the proof-of-concept extension function is that it's only a proof-of-concept -- getting the area tree back from the extension function is more complicated than it needs to be, and getting values from the area tree requires some comprehension of the FOP area tree XML. If it is to be generally usable and usable with different XSL formatters, there should be a common area tree XML format into which vendor's area trees can be transformed and/or library functions for common area tree access operations.

Adapt Saxon-CE event model to XSL-FO?
Using the proof-of-concept extension function, an
XSLT stylesheet can now make decisions about what to put in the result
based on the trial formatted size of areas, but as it's only a
proof-of-concept, it doesn't aim as high as getting feedback from or
modifying in-situ the area tree for the final, formatted document.
Once people have tried a few things with getting feedback from the XSL
formatter and start asking their vendors for the same or better, they'll
also be wanting an interoperable way to express what to do with that
feedback. For simple feedback of static area trees, which is all that is
possible with the current proof-of-concept, the most interoperability that
you could manage would be a common representation of area trees (with
flexibility for vendor extensions) and, possibly, a library of XSLT
functions to make it easier to navigate the area trees, but for "live"
feedback, something more would be required.
The PPL CG has recently been looking at how Saxon-CE [SaxonCE] handles user input, and considering whether the same sort of pattern could be adapted to handling
feedback from the XSL formatter. Saxon-CE does it through template
rules that match the element that receives the event and are in a mode
that reflects the type of event, and similarly an XSL formatter could
trigger on exceptional events such as overflow occurring or even on
mundane events such as completion of a page sequence, and the templates in
the corresponding modes could match on either FOs in the FO tree or areas
in the area tree.
The following template from the "Knight's Tour" sample Saxon-CE
application is the event handler for when the user clicks the 'Reset'
button. It simply writes a NO-BREAK SPACE to each square on the Knight's
chess board
<xsl:template match="button[@id='reset']" mode="ixsl:onclick">
 <xsl:for-each select="//div[starts-with(@id, 'square')]">
 <xsl:result-document href="#{@id}" method="replace-content">
 <xsl:text>&#xa0;</xsl:text>
 </xsl:result-document>
 </xsl:for-each>
</xsl:template>
The key feature of the event handler for the purposes of this discussion
is that it's written in plain old XSLT. The advantage of the XSLT event
handler for Saxon-CE users is interactivity "without dropping down into
JavaScript" (as the Saxon-CE documentation so delicately puts it),
but the advantage for XSL-FO users would simply be that they don't need to
learn a new language (declarative, functional, or otherwise) to handle
feedback. (And the advantage for those trying to define or
implement feedback is that they don't need to invent a whole new language to
handle it.)
Applying the Saxon-CE approach to XSL-FO, the following conceptual FO
event handler would handle a figure overflowing its available space by
reducing its size to 80% of the current.
<xsl:template match="BlockArea[key('fig', @id, $src-doc)]"
 mode="ppl:overflow">
 <xsl:result-document href="#{@id}/area:external-graphic"
 method="replace-content">
 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 <xsl:attribute name="width"
 select="ppl:scale(area:external-graphic/@width,
 0.8)"/>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:result-document>
</xsl:template>

An extra wrinkle for XSL-FO is the question of whether event handlers
should be specified to (a) match on, and (b) modify the FO tree or the
area tree or both. There are some existing requirements that can only be
satisfied by modifying the area tree, e.g., Section 3.3, Output result of
expression:
Allow users to output the result of expressions on area tree,
 traits, markers or text content. For example to calculate the
 subtotal of a certain page (as opposed to a running total that
 is already supported in XSL 1.1 with table markers)

On the other hand, it will often be simpler (from the user's perspective)
to modify an FO rather than all the areas that it generates, since a
single FO may generate multiple areas across several columns or pages (and
footnote areas), and its content may be reused in markers on multiple
pages. If, for example, the response to a page sequence taking too many
pages is to reduce the font size in one of the multiple flows appearing on
the page, it would be at once simple to adjust the 'font-size' property on
the appropriate FOs in the FO tree and inaccurate to directly modify font
sizes in the line areas in the area tree. If the XSL formatter did the
work based on modified FOs, it would reflow the line areas based on their
reduced font size and make the pages again and the resulting modified
block areas would break across pages in different places because of the
smaller font size. If the XSLT stylesheet did the work by modifying the
area tree, it would have to do the same recalculating of text sizes and
the same merging or splitting of line areas and of block areas, and all
(probably) without the benefit of font metrics. It might work, just, in a
simple case with only monospace fonts, but would still be a lot of work to
do in XSLT.
Adapting the Saxon-CE event model to XSL-FO is, therefore, an interesting
possible solution to handling feedback from the XSL formatter, but there
are still many FO-specific details that would have to be worked out.

Conclusion
The linear processing model of XSL 1.1 has served it will -- and, in the XSL 1.0 timeframe, helped it towards becoming a Recommendation -- but real world use cases have forced users into doing multi-pass processing and other tricks so they can make decisions on what to put in the formatted output based on sizes in the formatted output. The XSL-FO 2.0 requirements document recognised some of these requirements, but the XPPL WG's charter expired without XSL-FO 2.0 being completed. Since then, the Print and Page Layout Community Group at the W3C has been producing innovative ideas and solutions to help satisfy the user requirements for more decision making in XSL-FO processing.

Bibliography
[CustReq] Frequently and less frequently stated requirements by print customers, http://www.w3.org/community/ppl/wiki/CustomerRequirements
[DSSSL] ISO/IEC 10179:1996 Information technology - Processing languages - Document Style Semantics and Specification Language (DSSSL),
http://xml.coverpages.org/dsssl96-ps.zip (from http://xml.coverpages.org/dsssl.html)
[FOP] Apache™ FOP, http://xmlgraphics.apache.org/fop/
[FOPRunXSLTExt] http://www.w3.org/community/ppl/wiki/FOPRunXSLTExt
[Hahn] Re: Customer requirement, a critque, http://lists.w3.org/Archives/Public/public-ppl/2013Feb/0078.html
[JADE] Jade - James' DSSSL Engine,
http://jclark.com/jade/
[PLOS] What is PLOS?,
http://www.plos.org/about/what-is-plos/
[PONE] PLOS ONE,
http://www.plosone.org/
[PONEManuscript] PLOS ONE Manuscript Guidelines,
http://www.plosone.org/static/guidelines
[PPL] Print and Page Layout Community Group,
http://www.w3.org/community/ppl/
[SaxonCE] http://www.saxonica.com/ce/user-doc/1.1/index.html
[Speedata] Fully automatic database publishing with the speedata Publisher,
http://www.xmlprague.cz/sessions/#speedata
[TableWrap] table-wrap, Journal Archiving and Interchange Tag Library NISO JATS version 1.0, http://jats.nlm.nih.gov/archiving/tag-library/1.0/index.html?elem=table-wrap
[XSL11] Extensible Stylesheet Language (XSL) Version 1.1,
http://www.w3.org/TR/xsl11/
[XSLCRTest] XSL CR Test Suite -- Test Coverage,
http://www.w3.org/Style/XSL/TestSuite/coverage/testcoverage.html
[XSLFO20-Req] Extensible Stylesheet Language (XSL) Requirements Version 2.0,
http://www.w3.org/TR/xslfo20-req/
[XSLReq] XSL Requirements Summary,
http://www.w3.org/TR/1998/WD-XSLReq-19980511.html

Balisage: The Markup Conference

Decision making in XSL-FO formatting
Tony Graham
Consultant
Mentea

<tgraham@mentea.net>
Tony Graham is the chair of the Print and Page Layout Community Group at the W3C.

Balisage: The Markup Conference

content/images/Graham01-003.png
seoLor
other

output
Tormat

Sour Transtormation Result Formatiing outputor
Bocumont Process Document Process. Formater

content/images/Graham01-002.png
Element

fo:block

Formatting
Object

fo:block

objectify refinement
—

Trats

startindent="40pt’
font-size=20pt"

Properties
startindent="zem’
font-size="20pt"

start ndent="2em
Jont-size=20p"

area generation

Traits

startindent='40pt’
font-size=20p"

content/images/Graham01-001.png
XSL Transfori XSL Formatter-
—_— —

Result Tree 3

Source Tree (element and attribute nodes) ﬁ

Result XML tree is the result of XSLT

content/images/Graham01-007.png
The Print and Page Layout Community Group is:
1.1 the "virtual water cooler”
1.45678 where you can hang out

The Print and Page Layout Community Group is:
1.1 the "virtual water cooler"
1.456where you can hang out

content/images/Graham01-006.png
D) Extrscton rom Somsdcs! Lterstrs D) Extrscton rom Somsdcsl Lterstrs

o N — — — — — — — —

LNk P, Avlcinshoud oo b mmisarsdconcomkasty i srikacin,cralracs, ‘Table 3. Performance of our approach in comparison wih other approaches.

72 Aleohol ncreasesbioavslabity by 50%), Gmetdine, s iprostes o e
Ry £y
cuppron 2
e =
rcatpy £
sy =
swape =
N s s i

Sz w
e P e Ao S T T e e

2. Acetazolamide mayprevent e inary ansseptic ffec of methramine.
R

4. Amiodarone may suppress certan CYPAS0enzyns,incing CYPIAR CYP2CS,
S AT 3300 oS

(@) False positves

NI Thre s e f anydiniclly sgrficantinteraction b Acarbos snd
mettormin

e and
priverton

2 There were transent icres i et ALT 3nd ASTwher CANCIDAS

crlosporine wersco-dminstere.

2 Drugs i
apordt e

5 Nectmors

3. Basd ontota ertpenem cncentetions, probenacidncessed the AUC by
25%andireduce the pasma and reral oarances by 20% and 35, respectely.

N4 Patients taking warfai o othercouarin-dehative snticosglatsshouidbe

e moniored reguarly for changs s prothrombi time of I,

S Becaus there o o dat o the conpatiiey ofHovoLog and eysalin tine
Insul preparations, NovoLog $ould notba mised withthese preparsuons

() False negatives
10157t e a1 %

e 3 3 s e 8
& | Table 2. Efectiveness of parameterf.

.,

[P 6 om0
s =2 oms w2 o s
e P e e 5 SR 7S T S G 0
s 0 AL s i, AR

10557t i1 922

can be seen that we many preserved he syvacic shucures
N e, R, S

Stucturs of “However,there has bean ons regort of proonga
protrombin tms" in hoth the dependency subgraph and fnear
subgraph. Wihout pruring, 3ll he syntacto stuctures of e
sentence wil inistely partcpste in dscidng the candidste
DDI. Therefoe, the pruring metrod prunes apparently rosy
information a5 wall 35 emphasizes e relevant syntacto.
information. For xample, winout oruning, altvough e
Syntactc svucture of “Howsver, thars..orathromin e
contsins itte valusble mformtion. #t sl paricastes in
predictng the candcated DDL. Instead. sfier pruming, te
Slassifer can concentrats on the syniactic structure of ‘when

PLOS ONE | wpiosers ora

oarste features when two or more nteractons exist in 3
"

[usz' In adifon, the pruning method can sfectuely

o Extraction
1< o e et ey, e i« o oy
B o reste euth o o e g rereerin T
o e s o et e D24 1 o
’?mem e 54 e o o preess o
o reresinston 1 s < s . o e e
reseied by nes forms T, we can S e of e
encene iy o T s oo ¢ Soown e
f Secanty. we camted e it e s o
e o e cpendency s and e Ssvgemn
e 50 Rosraes vow . csesme e nam el of e
e atenio e v o . wes TEOEA i oy
sttt e o ormation of e node. However
e e o R e e
ovsaioss swere riemation & et Fermemon
opreagteragi ot vi g
epeseisions o Sy we sty Sompa e
vl s, e S < e o o Ty we
e e s wegh 1o o1 sdise o .
ereseiaton ans commied e ey o o o
ereseiatons virg .
T eevenc. e N3P rap keme can map e ceperdercy
e s e S o sugaen par fesire
o P B o g concs o st

Novermber 2012 Volums 7 Issus 11| a45801

10157 1 93

susgrsphs in the dapendency subgrapn or in the inear
subgraph formed 3 subgraph pair featre. For instance, e
nodes “DRUGT" and “regimenien” in .. of the dependency
Subgraph formed 3 faatura ‘DRUGTragmeri For . each
<usgraph contsingd one cental node and s direct nagnbor
nodes. (T-neighoors). In ofher words, sach subgraph can
represant th topolagy information and syntsctic inormaton of
the ragron witr 3 radus of . W compared he festurs space
of the HSP kermel with the rae kerne! and s7ing kemel On tre
‘one hand,th festures exracted from ths nsar subgrash were
Similar 10 the features extracted by he sitng kemel. On e
other hand, the fastures extacted from e cependancy
subgraph were more complex than the festures exracied by
the tree ke, Trerefore, compared with the ree kemel and
sting kernel, he HSP kernalcan map the graph repraseniaton
into both simple festures and complex synisctc festres.
Morover,the subgraph it feature can raprasent the reiaton
betwsen any two comslex syt stuctrss n te
dependency subgrash or lnear suograph. Obviously. the
subgraph pair feature of . contained much more valuable
information han the festirs of .. Howsver. wih te
enlargement of the subgrapn, the large-scals subgraph paic
feature Wil cause the system to classy instance in a stict
marner. which wil generally Iead o overfitng proems.
Trus, we shoud control the upper bound parameter o
Dalarcs the perfomance of the HS keme!for diferent tasks

Experimental Setting

We evaluates our method using DI Extacton Challenge
12011 corpora 5] whih is the st publiy avallabie corpora for
DDl extraoton tasks. The siststics of e ODI sorpora sre
listzc in Tabl 1. whch contans 578 documents and 30852
candicate DDIs' pais. These documen's were. randomiy
seiected from the DrugBank datahase, whih wers splt o
raining sefs and test sefs. I addion, il senfences in the
documsnts undsrwent parsing wih the Chamisk and Lease
parser (24, and he synfacto informaton was acded simiar o
the exampie shown in Figurs 1. The implement o our method

PLOS ONE | wpiosers org

s

To keep our evaluaion metrios e same as the ODI
Extrscton Challnge. 2011 tssk [E], we opimized te
parameters of our approach for DDIs exacton asks by
Gonductng 10-0kd cross valdation on the raming dtaset.
206 then tested e tes catasets. This guarantesd the marimal
s of e svaisie cata and sllowsd 3 comparison wih e
ofner approsches. We implemented the HSP kerel wih tre
user defmed kemsl merscs of | SVAMgnt (ripil
Sumightjosehms org). Smiar to previous swcies [15.21] we
‘empicaly estimated the raguiarizaton parameters of SV (C-
Vs on baining datssets.

The majory of DDI extraction system evaluations use the
balanoed Fiscore measur for quaniiying e performance of
the systems, which = defned 55 Facore = (2PRVF+R)
Where P deriotes precision and R danotes recall. In acditon,
we reportad the AUC measure [30] and MCC measure [37]
‘which have been recommendsd for perormance svaluaton
115212330

Results and Discussion

Performance on Training Datasets

Eisty. we sst the paramater - in (2). which i ths upper
bound for e numoer of herarchy. In gereral an increase In
the hisrarchy of hash Iabals wil cause e HSP kemel o
compute more large-scale subgraph pais and the system
Gassifies sxch mstsnos i 8 et and cetsisd manner.
Thersfors, when the valus of. i too large, over-fting protiems
wil generaly occur pariculary for biomedial reiaton
‘exraction tasks. Afier preliminary experiments, we set . in our
experiment

‘Secondly. we invesigated the afect of deoay factor . in (3)
for DDl extracton tasks, which can balsnce the degree of
contrbtion of subgraph paits Wit Gfferent sizes in the HSP.
kernel computation. Table 2 shows he evaluaton resufs o0
the raining dstasets and he valus i boid s he ighest valie
of each oolumn. 1t 1 obvious that parameter . infusnced the
‘overa performance of DDl irsction. The gap bewaen the
best and worst Fscore was 22%. In paricular, our aporoach

Novermoer 20121 Volums 7 lssus 11| 45301

N o o ——

content/images/Graham01-005.png
‘Table 1. Statstios of the DDI corpora

“Table 1. Statitics of the DD sorpars, s

Conse 09150 . £ e Table 2. E¥actveness of parameter.

Table 2. Efectvensss of parameter, 3

Beis 2 =3 =2 B =7 . stonaars """"." e e e Table 3. Performance of our approach in comparison with other approaches.
o 5 S o o o e
— — — — —— — — —— Table 3 Peformnceofur spprasc P
I ‘Table 3. Performance of our approach in comparison with other approaches. - ‘comparisan with other approaches. Surmeren
== = | e o
I e ™ B T ™ S T R ST BT B M ::"’“ L i snevELGE
8| oo S E e ome m mr e we | U e s o e e e e
I el T S B O TSESS a = -
u| e e me ae | s e soms o
| e .
. J
N — — — — — — — — e

Page-wide Column-wide Page-high

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Graham01-004.png

content/images/Graham01-009.png
Print and Page Layout Community Group

The Print and
Page Layout
Community Group
is the "virtual
water cooler"
where you can
hang out.

content/images/Graham01-008.png
The Print and Page Layout Community Group is:
1.1 the "virtual water cooler"
1.45678 where you can hang out

The Print and Page Layout Community Group is:
1.1 the "virtual water cooler"
1.456 where you can hang out

