[image: Balisage logo]Balisage: The Markup Conference

The Case for Authoring and Producing Books in (X)HTML5
Sanders Kleinfeld

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Copyright © 2013 Sanders Kleinfeld. All rights reserved.

How to cite this paper
Kleinfeld, Sanders. "The Case for Authoring and Producing Books in (X)HTML5." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Kleinfeld01.

Abstract
In this paper, I argue that HTML5 offers unique advantages to
 authors and publishers in comparison to both traditional word processing
 and desktop publishing tools like Microsoft Word and Adobe InDesign, as
 well as other markup vocabularies like DocBook and AsciiDoc. I also
 consider the drawbacks currently inherent in the HTML5 standard with
 respect to representing long-form, structured text content, and the
 challenges faced in adopting HTML5 as the source format for book
 authoring and publishing workflows. Finally, I discuss the development
 of HTMLBook, a new open, HTML5-based XML standard expressly designed to
 surmount these challenges and facilitate the use of HTML5 for the
 authoring and production of both print and digital book content.

Balisage: The Markup Conference

 The Case for Authoring and Producing Books in (X)HTML5

 Table of Contents

 	Title Page

 	Introduction

 	Why HTML?
 	New and Improved Semantics!

 	No Conversions Necessary!
 	HTML5: Both Source Format and Output Format

 	We Don’t Need Your Validator!

 	Digital-First Content Development!

 	Web-Based, WYSIWYG Authoring

 	Where HTML5 Falls Flat
 	New-and-Improved Semantics?

 	No Conversions Necessary?

 	We Don’t Need Your Validator?

 	Bridging the Gap
 	EPUB 3 and the Structural Semantics Vocabulary

 	HTMLBook: A New HTML5 Authoring Standard

 	Conclusion

 	About the Author

 The Case for Authoring and Producing Books in (X)HTML5

Introduction
For the past seven years, DocBook XML has been the cornerstone of
 tech publisher O’Reilly Media’s book authoring and publishing toolchain.
 As a richly semantic markup language, DocBook provides a single
 maintainable source format for book content that can be readily
 transformed and output to a variety of formats, allowing the construction
 of a highly automated production infrastracture. However, as the digital
 book has continued to rise in importance, so has the need to architect
 faster, more efficient, and more lightweight workflows for book creation.
 O’Reilly found that there was another markup format even better suited to
 this paradigm: (X)HTML5.
In this paper, I argue that HTML5 offers unique advantages to
 authors and publishers in comparison to both traditional word processing
 and desktop publishing tools like Microsoft Word and Adobe InDesign, as
 well as other markup vocabularies like DocBook and AsciiDoc. I also
 consider the drawbacks currently inherent in the HTML5 standard with
 respect to representing long-form, structured text content, and the
 challenges O’Reilly has faced in adopting the standard as the new source
 format for its toolchain. Finally, I discuss how O’Reilly has surmounted
 these challenges by developing HTMLBook, a
 new open, HTML5-based XML standard expressly designed for the authoring
 and production of both print and digital book content.

Why HTML?
As the primary markup language for both the Web and two ebook
 formats (EPUB and Mobi), HTML offers several key advantages over both
 standard book source document formats (e.g., Word
 .doc and InDesign .indd) as well
 as other XML vocabularies. Authoring and producing books in HTML5 offers
 the potential of standardized semantics, a streamlined workflow for
 generating print and digital outputs, the ability to think “digital-first”
 when developing content, and the opportunity for Web-based, WYSIWYG
 authoring. In the following sections, I discuss the advances afforded by
 HTML5 in greater depth.
New and Improved Semantics!
Prior to HTML5, structural semantics were largely absent from the
 HTML vocabulary, and rich tagging of content entailed liberal use of two
 all-purpose elements: the <div> and
 . Compared to markup languages like DocBook,
 which standardized elements for both high-level book components
 (chapter, appendix, glossary) and lower-level blocks (section, sidebar,
 footnote), as shown below:
<article>
 <title>Rich semantics in DocBook</title>
 <sect1>
 <title>Mathematical elements</title>
 <para>The "mathphrase" element<footnote><para>Introduced in DocBook 4.5</para></footnote> is used to tag mathematical expressions
 that are readily representable in plaintext.</para>
 </sect1>
</article>
HTML’s vocabulary was severely lacking, and forced reliance on
 nonstandardized class attributes to inject the missing
 semantic context:
<div class="article">
 <h1>Rich semantics in DocBook</h1>
 <div class="top_level_section">
 <h1>Mathematical elements</h1>
 <p>The "mathphrase" elementIntroduced in DocBook 4.5 is used to tag mathematical expressions
 that are readily representable in plaintext.</p>
 </div>
</div>
HTML5 adds a whole new category of elements used for “sectioning
 content”[h13], which can be used to
 mark divisions of books, journals, and other long-form content:
 <article> for complete, self-contained articles;
 <section> for subsections of a larger book or article
 (both chapters/appendices, and their subsections);
 <aside> for tangential remarks (e.g., sidebars or
 footnotes), and <nav> for navigational components
 (such as a table of contents or an index).
Also new to HTML5 are elements for representing formal (titled)
 images (<figure> and
 <figcaption>), as well as headers/footers (the aptly
 named <header> and
 <footer>)
With the addition of these elements, the previous example can now
 be written as:
<article>
 <h1>Rich semantics in DocBook</h1>
 <section>
 <h1>Mathematical elements</h1>
 <p>The "mathphrase" element<aside>Introduced in DocBook 4.5</aside> is used to tag mathematical expressions
 that are readily representable in plaintext.</p>
 </section>
</article>
These new structural elements greatly enhance the
 ability to semantically mark up an entire book manuscript in
 HTML5.

No Conversions Necessary!
Books don’t remain manuscripts forever. The goal—which hopefully
 is achieved—is to publish[1] them. Thus, the purpose of manuscript authoring tools is
 not only to facilitate writing and formatting of text, but to do so in a
 fashion in which it can be output as a final print and/or digital
 product.
Traditional word processing applications like Microsoft Word are
 actually far from ideally suited to this last output stage, the actual
 production of a manuscript. Because they are not
 primarily designed as compositing tools for generating printer-ready
 PDFs, word processors don’t offer as robust a suite of layout and
 prepress features as provided by desktop publishing applications like
 Adobe InDesign. So while it’s trivial to export a Word or Pages document
 to PDF, it’s not quite as trivial to export a PDF that would be
 considered “print-ready.” As a result, it’s common for workflows for
 producing manuscripts for print to entail first converting binary
 word-processor documents (e.g., Word .doc files) to
 binary desktop-publishing documents (InDesign .indd
 files), and then outputting the final print-ready PDF from the second
 set of files. In other words, the manuscript transitions through three
 distinct file formats: one for writing/editing, one for compositing, and
 one for distribution.[2] The paradigm is similar for digital production to output
 ebook formats of a manuscript. The two main digital formats in which
 ebooks are sold, EPUB and
 Kindle
 Mobi KF8,[3] are both reflowable formats, where
 content does not have fixed pagination like a print book but instead
 spreads to fill the dimensions of the ereader screen. Here, compositing
 is much less of a concern, but there’s still a conversion step that must
 be navigated to produce the ebook output. Exporting to EPUB/Mobi from a
 format like Word or InDesign is not typically a process that produces
 high-quality results out of the box without extensive configuration,
 troubleshooting, and possibly even post-conversion cleanup, as is
 evidenced by a burgeoning industry of third-party
 firms offering ebook conversion and consulting services.
An alternative to the Word-to-InDesign-to-(e)book shuffle is to
 design a single-source workflow, where there is
 just one set of document files used both for writing/editing the book
 manuscript and for completing the necessary production work for
 generating both print and electronic outputs. Here is where an XML
 format like DocBook shines, as its rich semantic vocabulary makes it
 highly transformable to a variety of output formats. The DocBook Project’s open
 source XSL stylesheets were developed to facilitate this very
 task, and provide transformations from DocBook to a variety of key
 document formats, including PDF (via FO), HTML (both XHTML1.1 and
 XHTML5), and EPUB (versions 2 and 3). This is the workflow that O’Reilly Media has used for the
 past seven years, which Andrew Savikas describes in his essay
 “Distribution Everywhere”:
That large ecosystem of tools and users meant that there was
 already a very mature and robust set of open-source
 stylesheets intended to do exactly what we wanted: to take a
 set of DocBook source files and create multiple outputs, each with its
 own formatting rules. We could even create multiple versions of the
 same output format; for example, a PDF intended for printing (with
 crop marks and high-resolution images) and a PDF designed for viewing
 digitally (with color images and hyperlinks). By customizing the
 stylesheets with our branding, we could deliver three different
 “final” outputs (print PDF, web PDF, and Safari) from the same source
 file at the same time, while retaining the flexibility to modify the
 presentation formatting independently of the content.
When EPUB emerged
 as the standard for the growing ebook market, we partnered with Adobe
 to contribute changes to those open source stylesheets to support
 output as EPUB (and with some additional processing, in
 Kindle-compatible Mobi format as well). That meant that as long as our
 production workflow resulted in a high-quality DocBook XML version of
 a book, we could deliver multiple print and digital versions at the
 same time from the same source.[s11]

The conversions in this type of workflow are optimal: all operate
 on a single, highly and consistently structured source format, and are
 wholly automated—ensuring fast, accurate results. But no matter how
 efficient the production infrastructure, every conversion built into
 one’s processses still incurs a cost. If conversions are outsourced to
 another vendor, the cost is in both dollars and time. If conversions are
 automated in-house, the cost comes in the form of the human resources on
 staff required to maintain the codebase. As such, the ultimate goal in
 creating streamlined publishing workflows isn’t solely to lower the
 costs of conversions whenever possible; the aim should also be to
 eliminate the need for conversions whenever
 possible.
HTML5: Both Source Format and Output Format
A huge asset that HTML5 offers as a book authoring format is
 that unlike Microsoft Word or DocBook, it is not just an authoring
 format: it is a hugely popular output format. Aside from the fact that
 HTML is inarguably the dominant markup for content published on the
 Web, it is also at the core of both the EPUB and Mobi ebook
 formats.[4]As a result, if HTML5 is used as the source manuscript
 format, the task of producing ebook outputs is reduced to one of
 styling the content (with CSS) and packaging it as appropriate for
 distribution. In the case of EPUB, creating a valid file entails
 creating a ZIP archive of book assets (HTML, CSS, images, script
 documents) with an embedded mimetype, config settings (e.g., DRM),
 and Package
 Document that contains a full manifest and metadata about the
 ebook. In the case of Mobi, packaging entails processing either an
 EPUB file or an HTML document with Amazon’s KindleGen
 tool.
And what about producing print books? It may be
 counterintuitive, but HTML5 is actually an excellent source format for
 producing paginated content, as the CSS3 Paged Media Module
 can be utilized to design the eqiuivalent of a standard book
 template for print. Features supported in CSS3 Paged Media include
 page headers, footers, folios, crop marks, font selection,
 distinct master pages for verso/recto/chapter-opener pages, and even a
 good deal of control over pagebreaking via both explicit instructions
 and widow/orphan controls. The process for writing the CSS for these
 elements is well documented in “Building Books with CSS3” by Nellie
 McKesson[m12].
While the Paged Media Module is still in W3C Working Draft
 status, two major commercial tools already support its feature set for
 generating PDF documents: Antenna House
 Formatter and Prince. It’s now
 possible to take an HTML5 manuscript and a CSS3 stylesheet including
 paged-media rules, and run it through either tool to get a
 high-quality, print-ready PDF file. Figure 1 shows a side-by-side comparison of a PDF
 page excerpted from the O’Reilly Media title Interactive
 Data Visualization for the Web (2013), generated
 from a single HTML5 file using two different CSS3 stylesheets.
Figure 1: The same HTML5 file used to generate PDF content in two
 different templates using distinct CSS stylesheets; note the
 differences in styling of headers, footers, and figure images in the
 PDF at left versus the PDF at right.
[image:]

It’s worth noting that while at first glance, a DocBook-source
 and HTML5-source production toolchain seem quite similar―a single
 input format from which multiple output formats are automatically
 generated―there’s a key difference between the two models. As
 previously stated, in an HTML5 workflow, the source format and the
 ready-to-package output format are identical, which means that
 both the toolchain and the people creating books with it only need to
 concern themselves with one markup language, not two. In a
 DocBook-based workflow, there are two problems to solve:
	How do we convert DocBook markup into a corresponding HTML
 representation that is faithful to the original semantics?

	How do we style the HTML representation with CSS to achieve
 the desired formatting and aesthetics?

Such a system thus has two points of failure[5] that can result in problems in the final EPUB, Mobi, or
 PDF output: there can be issues with the transformation engine
 (XSL-based or otherwise) that converts DocBook to HTML, or there can
 be a problem with the CSS stylesheets applied to the HTML.
 Troubleshooting problems in the former category requires a high level
 of expertise,[6] as one needs to have extensive knowledge of both source
 and output markup languages just to determine how best to rectify the
 problem. This usually entails either modifying the transformation
 logic used to convert from source to output, or recommending
 alterations to the source format to achieve the desired output with
 the existing transformations.
When HTML5 is used as both source and output format, this first
 point of failure is completely removed from the production system. If
 you review the output and find that it contains an unordered list
 where you were expecting an ordered list, you simply crack open the
 HTML file and change the element to an
 element; you don’t need to audit the
 transformation logic used for conversion of DocBook
 <itemizedlist> and <orderedlist>
 elements. The only thing you have to worry about is the CSS. Such a
 system is much simpler and easier to maintain.

We Don’t Need Your Validator!
When you’re in the process of drafting your manuscript, you want
 to focus on expressing your thoughts in writing; you don’t want to worry
 about having to regularly validate your document to ensure that it
 conforms to a preset template or schema. There are few things more
 irritating than having the writing rhythm be interrupted to troubleshoot
 a template error (e.g., Figure 2), or a
 DTD error like the following:
ch01.xml:4: element chapter: validity error : Element chapter content does not follow the DTD, expecting (beginpage? , chapterinfo? ,
(title , subtitle? , titleabbrev?) , (toc | lot | index | glossary | bibliography)* , tocchap? , (((calloutlist | glosslist | bibliolist |
itemizedlist | orderedlist | segmentedlist | simplelist | variablelist | caution | important | note | tip | warning | literallayout |
programlisting | programlistingco | screen | screenco | screenshot | synopsis | cmdsynopsis | funcsynopsis | classsynopsis | fieldsynopsis |
constructorsynopsis | destructorsynopsis | methodsynopsis | formalpara | para | simpara | address | blockquote | graphic | graphicco |
mediaobject | mediaobjectco | informalequation | informalexample | informalfigure | informaltable | equation | example | figure | table |
msgset | procedure | sidebar | qandaset | task | anchor | bridgehead | remark | highlights | abstract | authorblurb | epigraph | indexterm | beginpage)+ ,
(sect1* | refentry* | simplesect* | section*)) | sect1+ | refentry+ | simplesect+ | section+) , (toc | lot | index | glossary | bibliography)*),
got (title para sect1 figure para sect1 sect1 sect1)
Document book.xml does not validate

Figure 2: Why does Word hate me?
[image:]

Document validity should not be considered to be inherently
 valuable: validation is a means toward an end. We validate to confirm
 that necessary constraints are met to achieve a specific goal. In the
 case of book production, that goal is producing a PDF to be printed
 and/or an ebook to be distributed digitally.
When a book-production workflow is conversion-heavy, robust
 validation is crucial, as it’s a key mechanism to prevent formatting
 mistakes in source documents from propagating to output documents, or
 from causing the conversion process to fail entirely. If a Word
 manuscript document isn’t properly tagged with its template’s paragraph
 styles, it likely won’t convert to InDesign cleanly, which means extra
 QA and cleanup work for the compositor. Similarly, if a DocBook document
 doesn’t meet the requirements specified in the DocBook DTD, the XSL transformations in the
 toolchain may not properly convert it to HTML or FO, which again
 means more troubleshooting. When offered a choice between placing effort
 on validation or on ex post facto damage control, validation is rightly
 seen as the lesser of two evils.
But the balance of the tradeoff between validation and cleanup
 shifts dramatically when conversions are eliminated from the production
 workflow. As discussed
 previously, when HTML5 is used as both source and output format,
 there’s one less failure point in the process, which means fewer
 opportunities for something to go wrong. That doesn’t mean that all
 problems will disappear. Books are written by humans,[7]and humans make mistakes. What changes when conversions are
 eliminated from the workflow is a decrease in the difficulty of
 troubleshooting and rectifying these mistakes. When the output format is
 identical to the source format, there’s no longer a need to retrace
 one’s steps to identify the source of a problem. If there’s a problem
 with the markup in your EPUB, you find the
 and fix it; you don’t need to backtrack to the
 corresponding numbered list in Word or <orderedlist>
 in DocBook and attempt to figure out why your numeration settings
 weren’t converted to the proper start
 attribute.
Even better, HTML5 rendering systems are generally reasonably
 fault-tolerant. As Liza Daly, VP of Engineering at Safari Books
 Online, notes in her article “The unXMLing of digital books,”
 it’s not necessary to have perfect, XHTML-compliant syntax to get your
 HTML5 to render as expected in a Web browser:
I can throw just about anything even resembling an EPUB book at
 our reading system — even if it’s completely invalid with HTML tag
 soup — and it’ll load. We have very little preprocessing necessary;
 XSLT, which is hard to learn and harder to master, is almost absent
 from our workflow.[d13]

As an example, if a book manuscript did contain poorly formed HTML
 with poor semantics like the following:
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <h1>Basic formatting</h1>
 <p>Here’s a paragraph with the last word in bold.

 Here’s another paragraph with <i>some italics.</i>
 </body>
</html>
Instead of well-formed, more semantic XHTML syntax like
 this:
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <section class="chapter" title="Basic formatting">
 <h1>Basic formatting</h1>
 <p>Here’s a paragraph with the last word in bold.</p>
 <p>Here’s another paragraph with some italics.</p>
 </section>
 </body>
</html>
The HTML will still render largely the same in most modern Web
 browsers. AntennaHouse Formatter will also render identical PDF output
 from both syntaxes.[8]
That’s not to say that every instance of sloppy HTML tagging will
 be so benign as to have no perceptible side effects on rendering. The
 point is that there is a fair amount of leeway, which can potentially be
 augmented by well-crafted CSS that accounts for potential variation in
 expected markup.
If your markup is relatively flexible, doesn’t need to be
 converted/transformed into another format, and problems are easy to
 correct, do you really need to focus on validation?

Digital-First Content Development!
When crafting a book that will be released in both print and ebook
 formats, there’s an opportunity to think “digital first,” and develop
 content that takes advantage of the features offered by a digital
 medium, such as audio/video, adaptive quizzes, games, etc.
If you opt to use traditional word-processing and
 desktop-publishing tools to author a book with special digital features,
 you’ll be faced with questions like, “How do I embed a Canvas in my Word
 doc?”, “How do I change all those image placeholders into video files
 for the ebook version?”, and so on. The answer: more scripting or manual
 markup rework, either as part of the conversion or as a postprocessing
 step.
Rich semantic markup languages like DocBook XML and AsciiDoc are a
 bit better suited to the goals of representing and converting multimedia
 content. DocBook in particular contains elements designated for
 representing audio and video media: <audiodata> and
 <videodata>, respectively. Similarly, the HTML5
 backend toolchain for AsciiDoc comes with a configuration file with
 audio:: and video:: macros you can use to
 embed audio/video references into your documents. But there’s still no
 out of the box analog to the <canvas> element, so
 some custom modeling and handling may still be in order for interactive
 features.
In contrast, HTML5 was expressly designed for the purpose of
 marking up digital media, and the ebooks you produce will use HTML5 to
 render it. Choosing to author the entire book in HTML5 just makes sense,
 because it will then be trivial to integrate these digital-first
 elements directly into the manuscript.

Web-Based, WYSIWYG Authoring
Two increasingly important features for authoring tools in the age
 of ebooks and self-publishing are having a Web-based platform and a
 WYSIWYG editing interface.
It’s not much of an overstatement to say that in recent years,
 cloud computing has revolutionized the whole realm of document
 production (not just books, but also articles, spreadsheets, and
 correspondence). The two key advances a platform like Google Docs offers over
 desktop word processors are “access everywhere” and live, versioned
 collaboration.[9] Documents stored in the cloud can be retrieved from any
 Internet enabled device—desktop, laptop, tablet, smartphone—which
 completely obviates the need to traffic and sync files among machines
 via email or FTP. Cloud storage platforms like Dropbox also offer that
 functionality, but what they don’t provide is the ability to collaborate
 on documents in real-time and track the history of changes made by
 different users. If more than one person is going to be accessing the
 book manuscript as it’s being developed (co-authors, editors,
 copyeditors, reviewers), a Web-based platform with cloud storage is a
 huge boon in facilitating the logistics so that all parties can focus at
 the task at hand, instead of worrying about file management.[10] A Web app also greatly reduces the risks of hiccups being
 introduced into the process when collaborators are working on machines
 running different operating systems and/or different versions of desktop
 apps—no more “Could you resave as .doc instead of
 .docx” or “Your template doesn’t work in Word 2008
 for Mac.”[11]
Equally valuable to a lightweight authoring model (e.g.,
 self-publishing) is the ability to instantly get feedback while writing
 as to how the content renders. By WYSIWYG authoring, I not only mean
 that when content is tagged to be rendered in italics, the content
 onscreen actually appears in italics (as opposed to
 being displayed as _in italics_ or <emphasis>in
 italics</emphasis>). WYSIWYG should mean that the onscreen
 display mirrors as closely as possible what the final product will
 actually look like. In a model where a book manuscript is written in
 Microsoft Word and then composited in Adobe InDesign, this is rarely the
 case. At best, the onscreen display in Word is usually a rough
 approximation of how the content will end up
 looking when the real template is applied in
 InDesign. That’s not a great model when you’re looking to quickly
 iterate on both content development and typesetting.
HTML5 offers an elegant path forward toward constructing both a
 Web-based and WYSIWYG authoring environment. If you need to construct an
 authoring frontend in HTML5, CSS, and JavaScript to get it on the Web,
 why not just accept the manuscript files in HTML5, CSS, and JavaScript
 as well? That means no additional interpreters are needed to render the
 source content in the editor for WYSIWYG display.
The cornerstone of the WYSIWYG HTML5 editor is the contenteditable
 attribute, which, when set on any element in a HTML5 document,
 allows the interior content of that element to be dynamically edited in
 real time by the end user who loads that document in her Web browser.
 With the help of some JavaScript to allow manipulation of
 contenteditable elements via a GUI interface (formatting
 buttons, etc.), and CSS to provide the appropriate styling of the added
 content, it is possible to create the analog of an InDesign template
 right in the Web browser, where the user can write and composite a
 manuscript without having to manually modify the HTML source or CSS
 stylesheets.
A plethora of open
 source, contenteditable-based
 GUI HTML5 web editors
 have been created in this fashion. Figure 3 shows a screenshot of Mercury Editor’s
 contenteditable interface in action.
Figure 3: The open source Mercury Editor has a GUI contenteditable
 interface that can be used to dynamicallly update Web content
[image:]

The fact that so many contenteditable editors are available right
 now is strong evidence that it is relatively easy to code this type of
 interface into an HTML5 app. But the fact that so many contenteditable
 editors are available right now is also strong evidence that no one’s
 really completely nailed the right feature set yet for this kind of app.
 The WYSIWYG part is there, but many of the features folks have grown
 accustomed to expect from suites like Google Docs aren’t baked in yet:
 collaborative editing, versioning, spellcheck, and so on. But it’s just
 a matter of time before that happens, as Web-based self-publishing
 platforms like PressBooks and Inkling Habitat have already embraced HTML as
 source format and have built their own Web editing interfaces.

Where HTML5 Falls Flat
Between the potential benefits available in terms of streamlining
 production workflows to eliminate costly conversions, mitigate the
 overhead of validation, and construct a truly WYSIWYG Web authoring
 platform, O’Reilly Media has aggressively been pursuing a switch from a
 single-source workflow based on DocBook XML to one based on HTML5. But
 effecting this shift has not been without its challenges, and ironically,
 some of the issues we’ve faced in attempting to implement authoring and
 production in HTML5 are directly related to the markup format’s key
 strengths.
New-and-Improved Semantics?
Yes, as discussed previously, HTML5 introduces a collection of
 semantic sectioning elements that greatly facilitate one’s ability to
 structure long-form textual content. However, HTML5’s sectioning
 vocabulary still pales in comparison to that of an XML vocabulary like
 DocBook, which was specificallly designed to support semantic tagging of
 book content. So, while HTML5 now offers <article>,
 <aside>, <nav>, and
 <section> for blocking off book subsections, some key
 omissions include analogs to the following DocBook elements:
 <appendix>, <bibliography>,
 <chapter>, <glossary>,
 <index>, and <part>. Without
 standardized semantics for these book components, it’s left to
 individuals to improvise their own custom semantics within the
 constraints of the HTML5 specification. But when the tagging for a book
 chapter can fairly accurately be represented as:
<div class="chapter">
Or:
<section class="chapter">
Or maybe:
<section data-book-division="chapter">
Or if you’re not a native English speaker, perhaps:
<section class="chapitre">
Then the vocabulary really isn’t precise enough to serve the
 intended purpose. Just as many HTML 4.01 Web developers felt that
 <div> was insufficient to meet their needs, many
 HTML5 book authors will likely feel the same way about the relatively
 small set of sectioning elements available.

No Conversions Necessary?
It’s true that when HTML5 is used as both source format and output
 format that no mappings are needed between markup types, but that
 doesn’t necessarily mean that no document transformations are needed. In
 a DocBook single-source workflow, the conversion of book files to the
 desired output format typically serves two functions. One purpose is
 indeed the markup translation, but the other is the autogeneration of
 book content that is implicit in the structure of the source files: the
 Table of Contents, the Index (if present), and intrabook
 cross-references. These elements are generally not hardcoded into the
 document because doing so is both tedious and redundant.
A standard Table of Contents simply lists chronologically the
 titles of each major division of the book (chapters, subsections, etc.)
 with hyperlinks and/or page numbers that reference the corresponding
 content in the body of the book. It makes little sense to manually mark
 up the Table of Contents by hand when the process can be automated,
 which is faster and less error-prone. The DocBook XSL
 stylesheets contain logic to handle TOC generation, as do
 Microsoft Word and Adobe InDesign.
Similarly, it’s desirable to have an Index that is autogenerated
 based on tags embedded in proper context in body text, rather than one
 hardcoded at the end of the book that is alphabetized by hand. A manual
 indexing process is typically so labor-intensive and not amenable to
 ongoing maintenance that it’s left to the very end of the production
 process to ensure that it won’t need to be repeated if text is added,
 deleted, or shuffled about). And for the same maintenance reasons,
 albeit on a smaller scale, “softcoded” cross references are preferable
 to their hardcoded counterparts. Hardcoding text in the manuscript like
 “See Chapter 7 for more details” opens the door to mistakes if at a
 later point in the writing/editing process, a decision is made to
 flip-flop Chapters 7 and 8 in the book. Much better to mark up the
 reference by linking to an anchor, as in the DocBook syntax “See
 <xref linkend="chapter_about_xml"/> for more
 details”, and leave the work of generating the proper chapter number in
 the output to a script.
Any robust, agile production workflow based on HTML5 is going to
 need to have the capability to autogenerate tables of contents, indices,
 and cross-reference text when appropriate[12]—whether via XSL, JavaScript, or another set of tools. So
 while it’s a good thing that no formal conversions
 are needed in this model, HTML5-to-HTML5 document transformations are
 still very much on the table. Unfortunately, it’s not especially
 realistic to presume that it will be possible to just apply some CSS to
 the HTML manuscript and call it a day.

We Don’t Need Your Validator?
Once transformations are back in the mix, the scale starts tilting
 back in favor of validation again. At minimum, most XML parsers are
 going to require well-formed markup, which means you don’t just need
 HTML5; you need XHTML5. Additionally, if automated Table of Contents,
 Index, or cross-reference generation are part of the toolchain, you may
 also want to validate against some additional requirements such as the
 following:
	All major book divisions must have titles (e.g., every chapter
 must have a corresponding nonempty <h1>)

	Book-division nesting and headings must follow a sensible
 hierarchy (e.g., no <h1> elements lower in the
 hierarchy than <h2> elements)

	All softcoded cross-references must reference ids that are
 present in the markup (e.g., an anchor like must point to a corresponding element
 with id="chapter_2")

The effort expended in catching these sorts of issues up front may
 pay dividends in terms of less cleanup required when producing the final
 product.

Bridging the Gap
To make HTML5 a truly viable markup format for authoring and
 producing long-form text content, it needs to be augmented with a semantic
 vocabulary for book-specific components. Once that’s in place, validation
 rules can be formulated to ensure conformance, and code can be written to
 script generation of navigation elements (table of contents, index, etc.).
 While it’s certainly possible for individual authors and publishers to
 create their own custom schemas and toolsets for HTML5 to fill this void,
 there are standard, universal semantics for book sectioning (e.g.,
 chapter, glossary, afterword), which means there’s a clear opportunity and
 need for an open HTML5-based standard geared toward book authoring so that
 there’s not a constant reinventing of the wheel by each entrant into the
 HTML5-based publishing space. When O’Reilly Media started exploring the
 options for HTML5-based book markup, the first standard we looked at was
 the EPUB ebook format, which added a new semantic vocabulary for book
 components in version 3.0 of the specification.
EPUB 3 and the Structural Semantics Vocabulary
The International
 Digital Publishing Forum (IDPF), the organization that developed
 and maintains the EPUB standard, recognized the need for richer
 semantics in HTML-based ebook content. In version 3.0 of the EPUB
 standard, they added a new EPUB-specific attribute to the format’s
 supported HTML5 markup called epub:type[e11]. The epub:type attribute can be
 applied to any element in any content document,[13]and its supported values include any terms defined in the
 “EPUB 3 Structural Semantics Vocabulary”[e11_2]. Also drafted by the IDPF, the Structural
 Semantics Vocabulary is a companion spec that standardarizes a set of
 semantics for book components. It encompasses a broad lexicon with which
 most in the publishing industry should be familiar, including terms such
 as “chapter”, “appendix”, “part”, “copyright-page”, “errata”,
 “pagebreak”, and “sidebar”.[14]
Using epub:type, content creators can inflect
 existing HTML5 elements with the additional proper book semantics. For
 example, the following markup:
<section epub:type="chapter">
Indicates a section of the document that corresponds to a book
 chapter.
While epub:type in conjunction with the Structural
 Semantics Vocabulary does provide a standard mechanism for tagging book
 components, it was not intended to serve the needs of content authoring
 and production; it was designed for consumption by ereader software. Per
 the
 EPUB 3 specification, epub:type “provides a
 controlled way for Reading Systems and other User Agents to learn more
 about the structure and content of a document, providing them the
 opportunity to enhance the reading experience for Users.” As such, there
 are a couple key shortcomings that arise when using
 epub:type as a semantic authoring solutions:
	It’s EPUB-specific
	The epub:type attribute is not a formal part of
 the HTML5 specification at this time; it’s an add-on that’s
 specific to the EPUB 3 specification and that is a part of the
 EPUB namespace (http://www.idpf.org/2007/ops). Using
 epub:type in your source documents implicitly
 associates them with a specific output format (EPUB) and may
 necessitate additional postprocessing for other formats. For
 example, if the same HTML source content is to be published on the
 Web, you’ll probably want to transform epub:type into
 an attribute supported by the HTML5 spec (e.g., class
 or a custom data attribute), which might also
 necessitate some corresponding CSS tweaks.
Having semantics that were valid against the HTML5 spec and
 thus output-format-agnostic would be a cleaner, more elegant
 solution for content creators.

	It doesn’t specify any content model restrictions
	Having proper semantics for HTML elements is likely not
 enough to support more robust validation of the type described in
 section “We Don’t Need Your Validator?”. In EPUB 3, the
 following markup for a chapter and subsection:
<section epub:type="chapter">
 <h2>This is the chapter heading</h2>
 <p>I am now going to include a subsection here:</p>
 <section>
 <p>It would be odd to put a body-text paragraph before the main section heading</p>
 <h1>Book Markup Best Practices</h1>
 </section>
</section>
Is as equally acceptable as this markup:
<section epub:type="chapter">
 <h1>This is the chapter heading</h1>
 <p>I am now going to include a subsection here:</p>
 <section>
 <h2>Book Markup Best Practices</h2>
 <p>It would be odd to put a body-text paragraph before the main section heading</p>
 </section>
</section>
However, it’s hard not to argue that the latter markup is
 far superior to the former markup in terms of clean, sensible
 representation of hierarchical book components, as it conforms to
 two rules: a formal section begins with a heading, and subheadings
 should be of lesser importance than their parent headings[15] (i.e., it’s bad practice to nest a
 <h1> under an <h2>).
I’m not arguing that EPUB 3 should be enforcing these kinds
 of restrictions; as an output format meant for HTML rendering, I
 think it’s an asset that any valid XHTML is acceptable. But as an
 authoring format, these additional restrictions are valuable, as
 consistent, high-quality source markup ensures high-quality
 output.

It’s not the EPUB specification’s mission to address either of
 these content-authoring concerns, and as such, I feel it’s misguided to
 consider EPUB 3 to be an appropriate HTML authoring format.

HTMLBook: A New HTML5 Authoring Standard
If EPUB 3 isn’t a good fit as an HTML5 authoring format, what
 should be used instead? Since we weren’t aware of another existing open
 standard for authoring in HTML5, my colleagues and I at O’Reilly
 developed our own: HTMLBook. The first Working Draft of the HTMLBook
 specification was released
 publicly in April 2013, along with an XML Schema that can be used
 for validation.
Unlike EPUB 3, the HTMLBook specification does not include any
 custom add-on elements or attributes that cannot be found in standard
 HTML5. Instead, HTMLBook subsets the content model defined in the HTML5
 specification to add additional requirements and restrictions that apply
 specifically to book components such as chapters, figures, and sidebars.
 This means that documents that are valid HTMLBook documents are also
 valid against the standard HTML5 specification[16] and can be used as is in all HTML5-based output
 formats.
The key supplemental requirements imposed by HTMLBook are semantic
 inflections on all structural book elements, as well as some additional
 restrictions in the content models of these elements.
Whenever possible, the values for semantic inflections were drawn
 from those available in the EPUB 3 Structural Semantics Vocabulary, but
 when appropriate terms did not exist in this corpus, values were drawn
 from the DocBook XML vocabulary. In contrast to EPUB 3, the
 data-type attribute is used for semantic inflection instead of epub:type, which
 serves to maintain conformity with the HTML5 spec.
In a standard HTMLBook document, the <body>
 element is the root element for book content, and requires a
 data-type value of book (any book-related
 metadata―such as ISBN or price—can be captured in
 <meta> elements in the document
 <head>). Nested in the <body> must
 be one or more <section>, <nav>,
 and/or <div> elements that represent standard book
 divisions and that must be inflected accordingly. Here is an example of
 a standard HTMLBook skeleton for a book that has a titlepage, table of
 contents, preface, several chapters, and an appendix:
<html xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/1999/xhtml ../htmlbook.xsd"
 xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>This is the book title</title>
 </head>
 <body data-type="book">
 <section data-type="titlepage">
 <!-- Titlepage content here -->
 </section>
 <nav data-type="toc">
 <!-- Table of Contents content here -->
 </nav>
 <section data-type="preface">
 <!-- Preface content here -->
 </section>
 <section data-type="chapter">
 <!-- Chapter 1 content here -->
 </section>
 <section data-type="chapter">
 <!-- Chapter 2 content here -->
 </section>
 <section data-type="chapter">
 <!-- Chapter 3 content here -->
 </section>
 <section data-type="appendix">
 <!-- Appendix content here -->
 </section>
 </body>
</html>
Each of these main book divisions can have subdivisions of their
 own, which are <section> elements inflected with a
 data-type value of sect1, sect2,
 sect3, or sect4[17], the appropriate value enforced based on position in the
 overall hierarchy. Additional requirements imposed on book divisions
 that are both direct children of <body> and
 lower-level descendants:
	Each division’s first child must be a heading using a heading
 element (<h1>–<h6>) that is
 appropriate to the hierarchy level.

	Each division can only contain children that belong to a
 predefined set of Block elements (no raw text nodes). HTMLBook’s
 classification of Block elements is largely consistent with the
 HTML5 specification’s classification of Flow
 Content, minus elements that can also be found in the HTML5
 categories of Heading
 Content, Phrasing
 Content, and Sectioning
 Content.

	The Table of Contents content in a <nav>
 element must contain markup that is
 consistent with the requirements for the Navigation
 Document specified in the EPUB 3 standard.

The goal of HTMLBook is not to overlay a panoply of burdensome
 supplemental requirements on top of the HTML5 standard; rather, it’s to
 add the minimum requirements necessary to support
 consistant, semantic tagging of book content to facilitate templating
 and styling with CSS3—as well as auto-generation of
 navigation content and any requisite postprocessing via XSL or
 other scripting language—to produce high-quality outputs in multiple
 formats (both print and digital). Within this general framework, users
 of HTMLBook can employ whatever HTML5 markup they wish, including MathML
 and SVG content.
Along with the formal specification and Schema document, the
 HTMLBook project contains some sample CSS stylesheets, which authors can
 either use wholesale as design templates for their ebook outputs, or
 adapt to create their own custom styling. It also contains a set of XSL
 stylesheets that can be used to autogenerate Table of Contents, Indices,
 and cross-references for HTMLBook content, as well as assist in
 packaging it as PDF, EPUB, and Mobi.[18] We are currently in the early phases of developing this
 toolchain, but we hope over the coming months to continue to extend and
 refine this open source software to support the growing community of
 authors and publishers who are looking toward HTML5 and Web technologies
 for developing and producing book content.

Conclusion
HTML5 is better suited than any other document format to the unique
 demands of next-generation book authoring workflows, where creating both
 print and digital products is the aim, and the value lies in having a
 lightweight, low-cost, efficient toolset. While we’re still in the early
 stages of book authoring platforms and ebook tooling for HTML5-as-source,
 I expect that in a few years, drafting a book manuscript in HTML5 will be
 as commonplace as drafting a manuscript in Microsoft Word is today, and
 that the tools available for both editing and producing books in HTML5
 will continue to grow and evolve.

Bibliography/References
[d13] Daly, Liza. “The unXMLing of digital
 books,” February 1, 2013, http://techblog.safaribooksonline.com/2013/02/01/the-unxmling-of-digital-books/
[e11] “EPUB Content Documents 3.0,” IDPF, http://www.idpf.org/epub/30/spec/epub30-contentdocs.html
[e11_2] “EPUB 3 Structural Semantics
 Vocabulary,” IDPF, http://www.idpf.org/epub/vocab/structure/

[m12] McKesson, Nellie. “Building Books with
 CSS3,” June 12, 2012, http://alistapart.com/article/building-books-with-css3
[s11] Savikas, Andrew. “Distribution
 Everywhere,” Book: A Futurist’s Manifesto: O’Reilly
 Media, Inc, pp 21-34
[h13] “Sectioning content,” HTML 5.1 Nightly, A
 vocabulary and associated APIs for HTML and XHTML, Editor’s Draft 8 April
 2013, http://www.w3.org/html/wg/drafts/html/master/dom.html#sectioning-content-0
[w13] Wischenbart, Rüdiger, Carlo Carrerho,
 Veronika Licher, and Vinutha Mallya. “The Global eBook Market: Current
 Conditions & Future Projections”: O’Reilly Media, Inc.,
 2013.

[1] Traditionally, “publishing” a manuscript has meant reifying
 its textual content through the act of printing its words in ink on
 reams of paper that are sliced and bound to create a physical book.
 In the digital age, the distintiction between a “manuscript” and
 “published book” is more nebulous, given that both typically refer
 to an electronic document. As such, I’m defining “publish” here to
 mean the act of packaging manuscript content (either physically or
 digitally) such that it is suitable for distribution to and
 consumption by readers.
[2] Historically, dividing the book lifecycle into distinct phases
 that employed specialized software applications made perfect sense,
 because there was just one desired output format (a print product)
 and two actors needed to bring it to fruition: the author who did
 the writing and the publisher who did the production. The rise of
 digital publishing and self-publishing has effectively detonated the
 assumptions undergirding ths model, as contemporary publishing
 rewards a much more lightweight, flexible workflow, which can
 produce multiple output formats quickly.
[3] The largest U.S. ebook sales channels (per O’Reilly’s “Global
 eBook Market” report[w13], Amazon, Barnes
 & Noble, and the Apple iBookstore) all sell ebook content in
 either EPUB or Mobi format. However, many other digital channels
 (such as Scribd) sell ebook
 content in PDF format, either exclusively or in addition to other
 formats. Producing PDF for digital consumption entails generally the
 same process as preparing a PDF for print, with the exception that
 more effort can and should be paid to providing rich intradocument
 navigation (e.g., a hyperlinked Table of Contents and Index,
 bookmarks for key sections, and clickable cross-references between
 chapters).
[4] The latest versions of EPUB (3.0) and Mobi (KF8) both
 support HTML5 as a core content-document format. The EPUB 3
 specification largely supports the full HTML5
 document model (provided XHTML syntax is used), with just a
 handful of minor
 exceptions. KF8 currently supports only a subset
 of elements new to HTML5, but this subset encompasses the
 majority of new semantic elements, including
 <section>, <aside>, and
 <figure>.
[5] It’s certainly possible to have a single-source workflow
 that has more than two points of failure, if the toolchain permits
 intermediate formats used between source and output.
 For example, if authors write their manuscript in a lightweight
 markup language that exports to DocBook (e.g., AsciiDoc),
 then there are two transformations built into the system—AsciiDoc
 to DocBook, and DocBook to HTML—which means two opportunities for
 problems to be introduced before the markup is even styled.
[6] It’s true that the open source DocBook XSL stylesheets
 available in the DocBook project
 are quite mature and robust, as they have been refined over the
 course of the past eleven years, but that does not eliminate the
 need for expert-level knowledge to both maintain the toolchain as
 additional requirements arise (e.g., add support for new EPUB 3
 features in HTML5 output) or customize the DocBook-to-HTML
 mappings to meet publisher-specific style conventions. Performing
 translations between two markup languages is not all that
 different from translating between two spoken languages: to do it
 well, you need to be fluent in both vocabularies and be able to
 effectively map and pattern words to meet the specific syntax
 demands of each. Even for the most knowledgeable and capable
 engineers, that level of complexity is likely to slow down the
 software development process.
[7] Still true in 2013, although artificial intelligence is
 clearly already making inroads into the field of
 journalism.
[8] The EPUB format, however, requires that content be well-formed
 XHTML, and many EPUB ereaders (including iBooks, Adobe Digital
 Editions, and Kobo) will not be able to properly render HTML that is
 not well-formed XML (e.g., no
 instead of

 or
</br>).
 Additionally, even if these readers did render EPUBs with non-XHTML
 content properly, these files would still not conform to the EPUB
 specification and would fail epubcheck,
 the official EPUB validation tool. However, given that non-XHTML
 HTML5 content is good enough for the Web, and modern browsers can
 handle “tag soup” just fine, I tend to agree with Daly’s argument in
 “The unXMLing of digital books”[d13] that
 it’s excessively restrictive to impose higher standards on EPUB
 content documents.
[9] Google is really doubling down on its stake on the cloud being
 the future of business computing with Chrome OS
 and its line of Chromebooks,
 which effectively turn the computer’s entire OS into a web
 app.
[10] Whenever the virtues of a Web-based authoring tool are touted,
 there’s always one objection that is raised: online editing
 environments are no good because you can’t use them if you lack
 internet connectivity. Obviously that’s true, but you could equally
 well make the argument that computer-based authoring tools are also
 no good because they’re dependent on electricity or battery power.
 The utility of any given tool is context-dependent, and given that
 our modern infrastructure continues to come closer and closer to
 delivering on the promise of constant, ubiquitous internet access,
 it seems prudent to take full advantage of this connectivity when
 developing modern collaboration tools—with fallback offline functionality
 added as feasible.
[11] Of course, there’s still the risk of “Your webapp won’t run in
 IE6,” but in general, these sorts of issues are much easier to deal
 with. It’s much easier to say “Download another free Web browser”
 than it is to say “Please buy the latest version of this expensive
 software suite” or “Please stop using Windows.”
[12] If you’re also aiming to produce ebook outputs like EPUB and
 Mobi, some additional transformations may be desirable for these
 output formats to account for the vagaries of HTML rendering on
 different ereader devices. O’Reilly maintains a set of XSL
 stylesheets that preprocess HTML targeted for the Kindle before
 generating Mobi output to achieve better rendering results on
 devices that are not compatible with the KF8 format.
[13] This includes any HTML5 element, but also any SVG or MathML
 elements embedded in the document, as these vocabularies are also
 supported in EPUB 3 content documents.
[14] If needed, the default value set offered by the Structural
 Semantics Vocabulary can be extended with terms from other
 vocabularies by using prefixes and the prefix
 attribute. See http://www.idpf.org/epub/30/spec/epub30-publications.html#sec-metadata-assoc
 for more details.
[15] THe HTML5 specification does formally
 encourage this practice: “Sections may contain headings
 of any rank,
 and authors are strongly encouraged to use headings of the
 appropriate rank
 for the section’s nesting level.” But it’s not a requirement,
 and the EPUB 3 epubcheck
 validator doesn’t enforce it.
[16] However, the converse is not necessarily true. Just as not all
 rectangles are squares, not all HTML5 documents will meet the
 additional requirements of HTMLBook.
[17] Borrowed from DocBook XML
[18] These stylesheets are modeled after the docbook-xsl
 stylesheets, but with a focus placed solely on postprocessing
 and packaging HTML5 content, not on translating it.

Balisage: The Markup Conference

The Case for Authoring and Producing Books in (X)HTML5
Sanders Kleinfeld
Sanders Kleinfeld has been employed at O’Reilly Media since 2004
 and has held a variety of positions, including roles on O’Reilly’s
 Production, Editorial, and Tools teams. Currently, he works as
 Publishing Technology Engineer, maintaining O’Reilly’s toolchain for
 generating digital formats of both frontlist and backlist titles. He
 also helps coordinate O’Reilly’s digital distribution efforts to
 electronic sales channels, and is currently assisting in R&D
 efforts surrounding HTML5 and EPUB 3, helping to develop
 next-generation workflows and ebook content for O’Reilly and its
 publishing partners. Sanders is the author of HTML5
 for Publishers (O’Reilly, 2011).

Balisage: The Markup Conference

content/images/Kleinfeld01-001.png
CHAPTER9
Updates, Transitions, and Motion

‘ol this point, we have usod only statc datases. But reakworld dat amost bvays
changss overtime And you mightwart your vieualzatior to rflect hose charges.

In D3 toms,thosechanges are hardled by updates. The visual adustmerts are made
proty with transitions, which can employ mofion for prceptual beneft

W start by generating a visualizator with one dataset, and then changie the data
compltdy.

Modernizing the Bar Chart

Lets revisit ourtrusty ol baschast i Figure -1

Figure 1. The barchar, s see st

you exarmine the codetn 01_bar_chart b, you'l e that we used ths satc daaset
Vi dtaset = 5, 30, 13, 19, 21, 5, 2 15, 3, 1,
118, %, 28, 8, 17, 6 B, 221
Since then, weveleamed how t writemore leviblecode, soour chart demerts resize
toaccor modatedifferert sz datasets (meaning shorterorlonge areays) and Aiffr-
entdata values (smallr or lnger rumbers). W accomplishe that lezbility g D
Scale, s T ke to tart by bingin our bar chartup o speed.

Ready? Okay.ust giveme a e

Updates, Transitions,
and Motion

‘Unilthis oo, we have e oy e dtsets. Butsebowerkd data st by
changes ovr . And you mightwant yourisualzaton o reflect those changes.
InD3terms, those changes arehandlied b updores Thevisualadustments axe
‘made prety with ransiions, which can employ mason for perczprual benel.
We'l start b generatng a visualizaton with one dataset, and then changing
e data completly.

Modernizing the Bar Chart
Leve revistour sy ol bar chartin i o

L ——

you cxaminethecode1ncx_bor.chars o, you'lscethat we used this st
duzr.

var dataset = 15, 1, 13, 9, 21, 5, 2, 18, 35, 13,
Er e R N

Sincethn, weve esened s toweie more fleble code, 0 our chastlneats
reize 0 accommodate diffrent sied datasets (meaning shrte o onger aays)
and diferent data vilues (smaller o Lasge nurmbrs). We accomplished thatflax-
iy using Dy scales o 1d e tosart by bringing our bar chartup o speed.

Ready? Okay, ust ave e asc..

Assasand, done! Thanks o waiting.

content/images/Kleinfeld01-003.png
; My Book

| wrote this manuscript right in my Web browser.

content/images/Kleinfeld01-002.png
L]

Word cannot open this document template.
w (ORAdon)

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

