[image: Balisage logo]Balisage: The Markup Conference

Multilevel Versioning
Ari Nordström

Balisage: The Markup Conference 2014
August 5 - 8, 2014

Ari Nordström © 2014

How to cite this paper
Nordström, Ari. "Multilevel Versioning." Presented at: Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup Conference 2014.
 Balisage Series on Markup Technologies vol. 13 (2014). https://doi.org/10.4242/BalisageVol13.Nordstrom01.

Abstract

 Straight versioning systems for XML documents that produce a new
 version for every save, such as eXist DB's versioning extension, aren't as useful as
 they could be. They produce far too many versions, of which far too few are
 significant, and so each significant version is very hard to find or use. An old
 version, for example, cannot be easily located or reliably referenced. Adding
 check-out and check-in functionality would help alleviate some of the problems but
 not solve them.
In this paper, I propose adding a multilevel, XML-based versioning abstraction on
 top of this straight versioning system, where any new versions are
 placed on different levels or stages, based on check-out and check-in operations
 that move the resources up or down in the versioning structure.
The multilevel versioning is achieved using several different areas within the
 system, each of which in themselves is version handled using the system's
 straight versioning extension and where each save produces a
 system address to a specific (straight) version in that area. These addresses are
 kept track of and mapped to the multilevel versions in an XML-based version mapping
 file when a resource is checked in or out, as defined by the business rules for the
 abstraction.

Balisage: The Markup Conference

 Multilevel Versioning

 Table of Contents

 	Title Page

 	Intro
 	Modularised XML Example

 	The Versioning Module in eXist

 	The Use Latest Problem

 	Better Version Management for eXist
 	Save, Check-in and Check-out

 	Version Abstraction

 	Version Mapping XML

 	Translations
 	Translations As Renditions

 	Version Mapping With Translations

 	Multiple Level Versioning
 	Adding a Second Stage

 	Save, Check-in and Check-out Revised

 	Adding to the Abstraction

 	Version Map Additions

 	Metadata

 	Scope and Additional Stages
 	Projects

 	Use Latest Revisited

 	Linking
 	Using URNs in Links

 	The Case for XLink and Linkbases

 	Implementation Notes
 	URN Generation and Parsing

 	Check-in, Check-out and Updating the Version Map

 	Locking

 	Business Rules and Linking

 	Permissions

 	Handling eXist Versions

 	The eXist User Interface

 	The Editor

 	Afterword
 	A Few Notes
 	Disclaimer

 	git and Other VCSs

 	Notations for Related Content

 	Terminology

 	Future Work

 	About the Author

 Multilevel Versioning

Intro
Modularised XML Example
Let's say we have a modularised XML document. It consists of a number of linked
 resources, XML or otherwise:
Figure 1: Document Tree
[image:]

Each resource is version handled
 separately, and every significant change to a resource will result in a new version
 of that resource[1]. Many of the resources are reused in other documents as well. For
 example, the three warnings are used in many documents and might be edited by a
 separate legal team.
Furthermore, each link includes not only the resource's name but also its exact
 version. This means that while the document pictured above may use version 12 of
 Warning 3, another document may have linked to a later
 version of that same warning, say version 18. This means that, in a version handling
 system, any modularised document such as the one above can be precisely recreated
 later, using the right versions of each participating resource, as every link
 includes both name and version.

The Versioning Module in eXist
I've implemented the above modularisation and version handling in a document
 management system based on an XML editor coupled with a SQL database and a document
 management layer, but I'd very much like to implement something like that in an
 XML-based database. Something like eXist.
I love eXist. It's extremely powerful: it supports handling and storing XML as XML
 using XML technologies from XSLT to XQuery, XProc to XForms, and more, which means
 that geeks such as yours truly who are markup-centric rather than code-centric[2] can do a lot of cool stuff in eXist using those technologies and nothing
 else.
There is a simple versioning module available for eXist. It allows you to version
 handle your stored resources, basically adding a new version whenever you hit Save.
 It works quite well for what it is intended, well but there are problems:
	You get a lot of versions, most of which are irrelevant.

	It is therefore difficult to identify the relevant versions.

	There's no concept of a workflow beyond that save operation, no check-outs
 or check-ins.

	Addressing the stored versions is somewhat difficult.

	The version number itself is just an integer number, with a single counter
 for everything version handled.

A more code-centric markup geek would probably write a better versioning module
 using Java or some such language, adding basic functionality for check-outs and
 check-ins, metadata for versions, etc. I'm not one of them, unfortunately, so I need
 to make do with what I have, which is XML and the XML-based technologies available
 to me in eXist.

The Use Latest Problem
There are problems when updating a modularised document such as the one
 above:
Let's say, for example, that the link to Warning 3 needs to
 be updated from the old version 12 to the latest version, 18. It should be a simple
 matter of checking out Chapter 2, updating the link, and
 checking in the updated chapter again.
But this means that the root document's (Root doc's) link to
 Chapter 2 needs to be updated as well, which entails
 checking out the root, updating the link, and checking in the root again.
This causes several potential problems:
	Since Chapter 2might have been used elsewhere, what
 if it had been edited elsewhere? What if that edit was
 more recent, meaning that Chapter 2 had been updated
 after our example document was first put together, with Warning
 3 in version 12 inserted into Chapter 2?
 This would mean that Chapter 2 might contain
 incompatible changes.

	The problem is the same for any ancestor module, of course. They might
 have been edited and updated since the document at hand was published and
 could therefore include incompatible content.

	That later version of Chapter 2 might, of course, now
 also include new links in addition to in-module content.

	It would then not be possible to update Chapter 2 to
 include a new version of the Warning 3 link without
 immediately creating a problem for the other documents using
 Chapter 2 once someone needed to update
 them.

So, with all this in mind, what if one always wanted to use the latest versions of
 some of the resources but not others?
Leaf nodes such as images are an obvious choice; it's perfectly reasonable to,
 say, always require the latest approved versions of warnings. In our example, the
 warnings are authored by a separate legal team, so it makes sense that the latest
 version approved is always the one to be used. It would then also make sense to
 automate the handling of links, automatically updating such a link to the latest
 version when editing the rest of the document.
Which means that we'll run into the problems outlined above, that is, how to
 (automatically) update the ancestor's link versions, considering that their contents
 (links) have potentially been updated with incompatible content. A change in
 contents means that a new version must result.
The problem here is, in the words of Eliot Kimber, bad configurations
 management
 [3]. The document link tree is allowed to be updated freely and
 uncontrollably, creating a situation that is next to impossible to handle. More
 specifically, the idea of always using the latest version does not play well with
 the version management; every resource is updated separately and independently.
From a configuration management point of view, all of the resource versions above
 are equal; no single version is more important than another. There are no workflow
 statuses (editing, reviewing, approved,
 etc) for the participating resources. Nothing indicates what
 version, if any, is approved. In other words, is updating from version 12 to version
 18 OK in the first place? There is no scope, so always wanting the latest warning
 (or image or some other resource) is a matter of safeguarding against change.
You want version handling so you can recreate the exact version of your
 modularised document later, but at the same time, you want to be able to easily
 update links to certain leaf nodes without the hassle of updating every parent link,
 all the way up to the root. Preferably, you want the system to do the updating for
 you, automatically, but the stupid version handling that handles
 every resource separately gets in the way, because the
 resources are reused everywhere.
This, basically, is what I call the use latest problem.

Better Version Management for eXist
To introduce version handling that is a bit more advanced than the versioning module
 in eXist, I propose the following:
Split the versioning of resources into different areas[4], where a stable area will only ever contain approved versions
 of documents, that is, the resources that make up a modularised document. This area I
 rather appropriately call Stable. When a stable document is
 updated, it is first copied, or checked out, into an area intended for editing. I call
 this area Stage 1.
Figure 2: Versioning Split Into Two Areas
[image:]

Versioning, then, is represented using a tree structure with two main areas:
	Stable is exactly what it sounds like: stable. It
 contains the major versions of resources and
 documents, that is, groups of resources.

	
 Stage 1 is intended for editing. An author can check out an
 individual resource from Stable to Stage
 1 to work on the resource. He may also be allowed to check out a
 whole document.

Both areas are actual collections in the system, version handled using eXist's
 versioning extension module. In other words, every Save in
 respective collection results in a new version of the old one (offsetting each save
 using a diff against a first, base, version).
Each area, then, is versioned independently from the other. They are designed to be
 used together, however:
	
 Stable implies integer versions: 1, 2, 3, etc.

	
 Stage 1 implies decimal versions: 1.1, 1.2, 1.3, etc; 2.1,
 2.2, 2.3, etc.

Save, Check-in and Check-out
Direct Save operations are only allowed in Stage
 1. In other words, they are edited, saved and versioned there, and
 need to be checked in to Stable to cause a new
 Stable. Stable resources cannot be
 edited directly.

 Stable resources can be checked out to Stage
 1 to be edited, however, in which case they are locked in
 Stable while awaiting a check-in from Stage
 1. A check-in from Stage 1 to
 Stable means that the Stage 1 resource
 is locked from further edits.
Note
The locking of files merits a discussion. See section “Locking”.

Check-out and check-in operations are as follows:
	Check-out from Stable is a copy to Stage
 1. The check-out causes a new file version of the resource in
 Stage 1.

	Check-in from Stage 1 is a copy to
 Stable, locking the resource in Stage
 1 and causing a new file version of the resource in
 Stable.

Version Abstraction
While both areas are version handled using the standard versioning system in the
 respective collection, they are connected to each other only implicitly. There is
 therefore a need to create version abstractions for the resources being copied,
 logically connecting the two areas. A basic URN namespace such as the following
 should be enough:
urn:x-resource:r1:<doc-number>:<lang>:<stable>:<stage1>
where <stable> is the integer version in
 Stable and <stage1> the decimal
 version in Stage1
 [5]. <lang> is a four-position[6] language-and-country code for the resources that require one. For
 example, version 2.1 of a British English document 123456 might be identified like
 so:
urn:x-resource:r1:123456:en-GB:2:1
The URNs can be kept track of using an XML-based URN/URL map document, like
 so:
<resources>
 <resource>
 <urn></urn>
 <url></url>
 </resource>
 ...
</resources>
A resource mapping document is useful, as links can be made to resource names (and
 specific versions) rather than addresses. In a reasonably well-indexed XML database,
 looking up a URN to find its corresponding URL should be quick, even with many
 resources and a large map.

Version Mapping XML
The resource maps need to do more than just map a name to an address, however.
 Every version, integer or decimal, of every URN needs to not only be mapped to a
 URL, but also to be given a context, indicating a relation
 between the two staging areas and, thus, between the different versions of the same
 resource.
The URN schema implies a structure for each resource version. Something like this[7]:
<?xml version="1.0" encoding="UTF-8"?>
<resource>

 <!-- Base URN -->
 <base></base>

 <!-- Stable version 1 -->
 <version>
 <rev></rev>
 <url></url>

 <!-- Stage 1 (decimal versions) -->
 <version>
 <rev></rev>
 <url></url>
 </version>
 <version>
 <rev></rev>
 <url></url>
 </version>
 </version>

 <!-- Stable version 2 -->
 <version>
 <rev></rev>
 <url></url>

 <!-- Stage 1 (decimal versions) -->
 <version>
 <rev></rev>
 <url></url>
 </version>
 <version>
 <rev></rev>
 <url></url>
 </version>
 </version>
</resource>
I've included two Stable versions, each of them inside a
 version tag, and two Stage 1 or decimal
 versions for each Stable version. This is a nice, recursive
 version structure (and yes, there is a reason for it; read
 on).
Each rev identifies an actual stored version (integer or decimal) of
 a resource, with the resource's URL in url. On
 Stable level, there's only a single rev inside
 version, but it may contain an unlimited number of decimal
 versions.
A save operation in Stage 1 causes a new version of the
 resource to be stored in that area. A new decimal-level version
 structure is added to the mapping document, with a new rev (counted up
 a notch) and a URL to the decimal-level resource file.
When a Stage 1, or decimal-level, resource is checked in, the
 resource is copied into the Stable area, causing a new (eXist)
 version of the resource to be stored in that area. A new integer-level
 version is added to the mapping document, with a new
 rev (counted up a notch) and a URL to the integer-level resource
 file.
Using the mapping document and a simple XPath, any version of the base URN can
 easily be retrieved later.

Translations
Resources, of course, are translated to other languages all the time, so a
 versioning system needs to be able to keep track of the translations, clearly
 identifying which translation is based on which original, etc.
Translations As Renditions
A document management system will frequently require writing the actual
 content in one language (the master language) only and then
 translating that content into whatever target languages that are needed. This is
 mostly a design decision, based partly on the authors' preferences and location,
 but also around the notion that a single language will be used to drive the
 contents (and versions) forwards, thus minimising problems arising from allowing
 different languages to take turns in developing the content[8].
Such a system will regard the master-language document as the original bearer
 of content and the translations simply as renditions of
 that original. A typical workflow might be as follows:
	Update the master-language document through a couple of versions, then
 lock an approved version.

	Translate the approved version to any required target languages. These
 translations are seen as renditions of that particular master-language
 version.

	Update the master-language document again, based on the approved and
 translated version from step 1, going through the required number of
 versions until done. Lock the approved version.

	Retranslate the new approved version to any required target
 languages.
Note
Typically, there is no way to know what differences there are
 between this new approved version and the old one. In modularised
 documents, however, some modules may not need updates and will have
 their versions and any translations unchanged.

This works well in some contexts but there are some rather well-defined
 problems:
	In a large, decentralised organisation, it might be difficult to
 always author in a single master language. Market-specific requirements
 frequently drive documentation forwards, and often in a market where the
 available writers would much prefer their own language.

	When translating to certain languages, an intermediate language is
 often desired to keep costs to a minimum due to the availability of
 translators. It is, for example, much easier to find a good translator
 working from English to Simplified Chinese than from Swedish to
 Simplified Chinese.

Which brings us back to the URN schema representing a resource:
urn:x-resource:r1:<doc-number>:<lang>:<stable>:<stage1>
I use a similar URN schema to identify originals and their translations in a
 system that requires the authors to write using a predefined master language and
 then translating an approved version to any required target languages. So if
 urn:x-resource:123456:en-GB:18 is the original, all of these
 are renditions of that original:
	
 urn:x-resource:123456:sv-SE:18

	
 urn:x-resource:123456:es-ES:18

	
 urn:x-resource:123456:pl-PL:18

	
 urn:x-resource:123456:fi-FI:18

	
 urn:x-resource:123456:en-US:18

Etc. But here's the kicker: there's nothing here to identify one as the master
 and the others as translations, other than my introductory sentence. We
 shouldn't have to define a master language, not if the versioning system can
 keep track of a series of URNs, so rather than actually defining one, it should
 be better to define a semantic resource:

 urn:x-resource:123456

Then add a language to render the base content with:

 urn:x-resource:123456:en-GB

And versioning to identify changes over time:

 urn:x-resource:123456:en-GB:18

If we accept that the underlying semantic resource can be updated using any
 rendering language, then this one is a perfectly acceptable updated version to
 version 18:

 urn:x-resource:123456:fi-FI:19

It happens to be rendered in Finnish, but 19 is the next
 version of the semantic resource according to the URN schema, above.

Version Mapping With Translations
Keeping the basics of the (semantic) resource and the URN schema representing
 it in mind, here's a mapping document updated with language handling:
<?xml version="1.0" encoding="UTF-8"?>
<resource>

 <!-- Base URN -->
 <base></base>

 <!-- Stable version 1 -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>

 <!-- 1st decimal version -->
 <version>
 <rev></rev>
 <url></url>
 </version>

 <!-- 2d decimal version -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>
 </version>
 </version>

 <!-- Stable version 2 -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>

 <!-- Stage 1 (decimal versions) -->
 <version>
 ...
 </version>
 </version>
</resource>
Let's walk through this. The first Stable version happens
 to be authored in English (UK):
<?xml version="1.0" encoding="UTF-8"?>
<resource>

 <!-- Base URN -->
 <base></base>

 <!-- Stable version 1 -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>

 <!-- 1st decimal version -->
 ...
 </version>
 ...
</resource>

Then follow two decimal versions. Translations are made based on the second
 saved iteration because the original language version is considered to be
 ready:
<?xml version="1.0" encoding="UTF-8"?>
<resource>

 ...

 <!-- Stable version 1 -->
 <version>
 ...

 <!-- 1st decimal version -->
 <version>
 ...
 </version>

 <!-- 2d decimal version -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>
 </version>
 </version>

 <!-- Stable version 2 -->
 ...
</resource>

The translations (and original) are then checked in (copied to
 Stable) to form a new stable version:
<?xml version="1.0" encoding="UTF-8"?>
<resource>

 ...

 <!-- Stable version 1 -->
 <version>
 ...

 <!-- 2d decimal version -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>
 </version>
 </version>

 <!-- Stable version 2 -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>

 ...
 </version>
</resource>
The concept of the semantic resource means that while translations (or rather,
 renditions) are bound to specific versions, all that is required to identify
 them uniquely is to add the URLs to the actual physical translated files;
 everything else remains the same.
Note
There's nothing above to suggest that the original (as in first
 written) language is always carried over from one stable version
 to the next; a first decimal version based on a stable version might entail
 translating the original-language document to a new language that is then
 used to update the contents with.

Multiple Level Versioning
While the versioning system outlined in section “Better Version Management for eXist” is, in my
 mind, better than the basic versioning offered, there are problems:
	It does not solve the use latest problem, outlined in section “The Use Latest Problem”.
 In all fairness, it doesn't attempt to; it simply provides a better abstraction
 for versioning.

	There will still be a lot of versions in Stage 1. This
 happens because basically, every new version is a save when working on a
 resource in that area.

	Also, it is noteworthy that while too many versions are still being saved,
 overall, too few of them can easily be used to identify
 significant versions[9] of the works in progress.

So what can be done to identify all significant versions in a resource's version
 history?
One solution is to add markup to the version mapping XML to identify significant
 saves. This requires (author) access to the version map, so that suitable markup can be
 added to some saves but not others, but also additions to the save operation itself. It
 means supporting a special case of save.
This, of course, is the general case of adding workflow handling to the markup. The
 problem with workflow markup, apart from the access needed to the versioning markup and
 the additions to the save operation, is that not every check-in comprises a change in a
 workflow. Most, in fact, are simply versions that an author considers to be of interest
 for some reason.
Another is to check in the resource more often, but that would defeat one of the
 purposes of the Stable area, namely to identify stable versions
 only.
But there is a simpler, third option.
Adding a Second Stage
In my mind, it's far easier, and more logical, and better suited for the
 versioning logic as described by the URN schema and the version map markup, to add a
 second (or third, if you consider Stable to be one) stage, like
 so:
Figure 3: Versioning Split Into Three Areas
[image:]

So, what's the use of a third area?
	The Stable branch is still just that, stable.

	 Now, however, Stage 1 is the project checkout
 level, used for checking out projects, groups of documents, from
 the stable branch, but the participating resources cannot be directly edited
 there. Stage 1 is used to store
 significant versions, but also to enable updating links
 in a controlled fashion. More on this last bit later.

	An author can check out an individual resource from Stage
 1 to Stage 2 to edit the
 resource.

All three areas are still actual collections (and subcollections) in the system,
 still versioned using eXist's versioning module. In other words, every
 Save results in a new version.
Each area still implies an integer-based versioning system:
	
 Stable implies integer versions: 1, 2, 3, etc.

	
 Stage 1 implies decimal versions: 1.1, 1.2, 1.3, etc;
 2.1, 2.2, 2.3, etc.

	
 Stage 2 implies centecimal versions: 1.1.1, 1.1.2,
 1.1.3, etc; 2.1.1, 2.1.2, 2.1.3, etc.

Save, Check-in and Check-out Revised
The basic idea is largely unchanged, but an added stage offers better
 control.
Direct Save operations are now only allowed in
 Stage 2, that is, resources must be checked out from
 Stage 1 to Stage 2 to be edited, and
 any edits are saved and versioned there. When sufficiently edited (that is, when a
 significant version is at hand, it can be checked in to
 Stage 1 to cause a new Stage 1 version
 of the resource. Stage 1 resources cannot be edited directly
 but mark those significant versions that are not (yet?)
 stable.
Sufficiently significant
 [10]
 Stage 1 resources can then be checked in from Stage
 1 to Stable, causing a new
 Stable version to be added.
Check-out operations, then, are as follows:
	A check-out from Stable is a copy to Stage
 1. A
 direct Save is not allowed. The check-out causes a new
 file version of the resource in Stage 1.

	A check-out from Stage 1 is a copy to Stage
 2.
 A direct Save is not allowed.

	There is no check-out from Stage 2, as it would mean
 a third stage. A direct Save is allowed and will result
 in a new file version in Stage 2.

Check-in operations are as follows:
	A check-in from Stage 2 is a copy to Stage
 1, locking the resource in Stage 2 and
 causing a new file version of the resource in Stage 1.

	A check-in from Stage 1 is a copy to
 Stable, locking the resource in Stage
 1 and causing a new file version of the resource in
 Stable.

Note
It might be prudent to make the check-out/in operations permission-based,
 requiring special permissions to check in a new Stable
 version, for example, while allowing a writer to check out from (and in to)
 Stage 1.

The following exemplifies a document that is updated from
 Stable version 1 to 2. The numbers inside the circles
 represent an ordered list of check-out and check-in operations.
Figure 4: Updating from Stable Version 1 to Stable Version 2
[image:]

While only the Stable versions might need to be
 published, the Stage 1 could be seen as
 significant, perhaps for traceability, and as such be saved. As we can see, the
 number of these versions is comparatively small. Stage 2, on
 the other hand, is simply the document as a work in progress, and while there may be
 a significant number of new versions produced in that area, none of them is seen as
 significant.

Adding to the Abstraction
The URN schema identifying the resources (see section “Version Abstraction”) can
 easily be expanded, of course:
urn:x-resource:r1:<doc-number>:<lang>:<stable>:<stage1>:<stage2>

Version Map Additions
The version map markup was already recursive, so adding a second stage is
 uncomplicated:
<?xml version="1.0" encoding="UTF-8"?>
<resource>

 <!-- Base URN -->
 <base></base>

 <!-- Stable version 1 -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>

 <!-- 1st Stage 1 (decimal) version -->
 <version>
 <rev></rev>
 <url></url>

 <!-- Stage 2 (centecimal) versions -->
 <version>
 <rev></rev>
 <url></url>
 </version>
 <version>
 <rev></rev>
 <url></url>
 </version>

 <!-- Translations added -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>
 </version>
 </version>

 <!-- 2d Stage 1 (decimal) version -->
 <!-- Translations checked in from last Stage 2 -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>
 </version>
 </version>

 <!-- Stable version 2 -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>

 <!-- Stage 1 (decimal versions) -->
 <version>
 <rev></rev>
 <url></url>

 <!-- Stage 2 (centecimal) versions -->
 <version>
 <rev></rev>
 <url></url>
 </version>
 <version>
 <rev></rev>
 <url></url>
 </version>
 </version>
 <version>
 <rev></rev>
 <url></url>

 <!-- Stage 2 (centecimal) versions -->
 <version>
 <rev></rev>
 <url></url>
 </version>
 <version>
 <rev></rev>
 <url></url>
 </version>
 </version>
 </version>
</resource>
The differences here consist mostly of an added recursive version,
 listing centecimal versions for each decimal version. Notable is how translations
 are added to the last centecimal iteration following the first decimal version and
 then checked in to Stage 1, causing a new decimal
 version:
<?xml version="1.0" encoding="UTF-8"?>
<resource>

 <!-- Base URN -->
 <base></base>

 <!-- Stable version 1 -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>

 <!-- 1st Stage 1 (decimal) version -->
 <version>
 <rev></rev>
 <url></url>

 <!-- Stage 2 (centecimal) versions -->
 <version>
 <rev></rev>
 <url></url>
 </version>
 <version>
 <rev></rev>
 <url></url>
 </version>

 <!-- Translations added -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>
 </version>
 </version>

 <!-- 2d Stage 1 (decimal) version -->
 <!-- Translations checked in from last Stage 2 -->
 <version>
 <rev></rev>
 <url lang="en-GB"></url>
 <url lang="sv-SE"></url>
 <url lang="fi-FI"></url>
 </version>
 </version>

 ...
</resource>
This new decimal version is then immediately checked in to
 Stable, causing a new stable, integer version.

Metadata
While adding markup to identify significant check-ins (see the beginning of this
 chapter, at section “Multiple Level Versioning”) is, in my humble opinion, not a good idea,
 markup to handle metadata for every check-in probably is, as it
 will help locate a specific version later. The versioning module provided by eXist
 will add a timestamp and the user for a save, but other metadata, such as a comment
 field or a list of relevant keywords, need to be added.
The version map hints at several useful locations for the metadata:
	For a resource, regardless of version.

	For a whole version, be it integer, decimal or centecimal.

	For specific content, as identified by the mapped URL.

Markup-wise, one solution might be something like this:
Figure 5: Metadata
[image:]

The structure and contents of the metadata element are beyond the
 scope of this paper, as they concern themselves with metadata for each specific
 version rather than the progression of versions as described here; they simply
 provide human-readable metadata[11] for a specific version (as identified by the node).

Scope and Additional Stages
Adding a second stage allows us to keep track of significant checked-in versions
 beyond the Stable branch. Additional stages might be considered
 to add further semantics to versioning.
For example, if the versioning was used to handle the documentation of a large
 software project (everything from Microsoft Office to the Linux kernel springs to
 mind), the Stable branch could list major releases in the
 project's lifecycle, Stage 1 mark updates within those releases
 and Stage 2 any hotfixes, all of which should be considered to
 identify significant versions aimed at an end user. A Stage 3
 and perhaps a Stage 4 might be needed to handle the versioning
 required for content production, where most versions would never reach the end user
 and only help ease a content author's life.
Note
The additional stages should, of course, be added to the URN schema.

Stages, then, are ultimately about scoping and define situations where the
 checked-in versions apply.
Projects
In addition to adding staging levels, the resources frequently need to be
 grouped when version handled. For example, if checking out a resource, it is
 often a good idea to check out the document or documents using them.
 Furthermore, check-outs as discussed here would benefit from defining
 projects, that is, groups of resources that are related
 for some other reason (resources commonly reused; documents belonging to the
 same product; all system administration guides; etc).
As a resource is frequently reused by several documents, a useful (and easy)
 way of identifying such resources in the version map is something like
 this:
<map>
 <resources>
 <resource>
 ...
 </resource>
 ...
 </resources>

 <projects>
 <project>
 <urn></urn>
 <urn></urn>
 <urn></urn>
 </project>
 <project>
 <urn></urn>
 <urn></urn>
 </project>
 </projects>
</map>
A project is an arbitrary group listing resources and project
 metadata, useful when handling the resources together. Obvious features here
 include check-out and check-in operations for the project, but I can think of
 several other uses, most of which are beyond the scope of this paper.
Note
There are several ways of listing the URNs included in the project,
 depending on their use. If the project's aim is to handle every decimal
 version and language of a resource, a wildcard-based shorthand might be
 preferable (say, urn:x-resources:123456:*:1:*).

Projects should, of course, be version handled too, as they will almost
 certainly change over time. For example, one might handle them as any other
 resource in the version map and always store project documents in
 separate files (which requires a way to easily identify them when
 authoring).

Use Latest Revisited
The use latest problem[12] is largely a scoping issue and happens because modules are reused
 everywhere, without defining rules for when and where reuse is allowed[13].
Better is to add one or more stages and clearly define a scope where using
 (and perhaps automatically updating links to) the latest approved versions is
 allowed. For example, if Stage 1 handles the releases of a
 product and its documentation within a major release, it might be reasonable to
 allow at least some of the reused modules to be automatically updated to their
 latest versions within that major version.
Let's say, for example, that Module A in version 3.1 (Stage
 1) needs a link to a warning inside a warnings document authored
 by the legal team. The warnings document is also in Stage 1
 and has version 1.19. Module A is checked out to Stage 2
 and a link to the warning is added to it, including a fragment ID pinpointing
 the warning, like so:
<link xlink:href="URN:1:19#id-warning"/>
First of all, it is easy to define a business rule that updates the link to
 the latest available Stage 1 (decimal) version when Module
 A is published, triggered by the fact that the version linked to is a decimal
 version. It would be easy to look up the latest version in the version map and
 use that during preprocessing. If such a generic business rule feels a bit too
 risky, adding markup that further scopes the link is equally easy if somewhat
 crude:
<link xlink:href="URN:1:19#id-warning" use-latest="yes"/>
The logic here is use latest decimal version. An editor feature
 that checks the available versions of the warnings document, including new
 Stable versions, and alerts the author if newer ones
 are available than the one used in Module A should be useful and relatively
 uncomplicated to implement.
More refined, but perhaps a bit complex to handle without a style guide and a
 good user interface, might be to use the version level as the
 use-latest value[14].
<link xlink:href="URN:1:19#id-warning" use-latest="1"/>
This would include every update to the target checked in to Stage
 1 in the scope. An additional dimension of reuse might be to
 limit the scope to specific project or projects only.

Linking
This paper is about versioning rather than linking, but since the former will only be
 truly useful if there is at least some of the latter, I wish to make a few points
 regarding linking.
Using URNs in Links
My preferences for URNs stem from my day-to-day work but any other abstraction
 would probably do, as long as there is a way to separate the version component(s)[15] from the name. Using a name is important, however, assuming that the
 name is persistent and unique where used. Addresses change because resources are
 frequently moved around. Indeed, here, using an address would be very difficult in
 itself.
Be as it may, there is little point to the multilevel versioning abstraction if it
 is only ever used for checking in and out monolithic XML documents that never
 include a multilevel version link to anything else. In section “Use Latest Revisited”,
 I do just that, though: the link element uses a name-based
 xlink:href rather than an address-based one.
Using a URN in a link should be a simple matter of referencing resources in the
 version map, using the base URN and as many levels of versions as needed (and
 allowed by the business rules and their implementation). For example, an
 implementation might use all version levels available when creating the link
 (resulting in a pointer such as URN:en-GB:2:19:4:3#some-id) but then
 update that link when publishing to the latest version in scope, based on the
 business rules in effect.

The Case for XLink and Linkbases
Until now, I've made few assumptions about the link mechanisms themselves. The
 link tag above, for example, is an inline reference using XLink
 mostly because I rather prefer XLink and use Simple XLinks all the time, but I think
 the example would be equally valid using, say, XInclude.
I do think, however, that XLink([id-xlink-spec]) might prove to be very powerful, especially if the
 links were placed out of line, in a linkbase. There are several points to be made
 here:
	Out-of-line links, of course, would not require updating the resource
 itself, only the linkbase arc, which would certainly change the specifics of
 a use latest implementation and conceivably result in
 easier-to-maintain business rules.

	Extended XLink does also suggest a standardised way for much, if not most,
 of the version map markup. The URNs listed in a project, for example, would
 probably benefit from being handled as XLink locator-type elements.

It would be sort of cool to add the linkbase to the version map directly:
Figure 6: Linkbase Added
[image:]

The Links branch above list the XLink arcs.
There is, to my inner markup geek, something very appealing about this kind of
 all-purpose markup. I get all excited, thinking about how easy it would be to
 create, edit and publish XML with a few XPaths pointing to things across the version
 map XML, but the more practically-minded me questions the feasibility and, above
 all, necessity of including everything in the same, big file when it does not matter
 all that much in a well-indexed XML database where you actually put the markup you
 need to look up later.
All of which neatly brings me to the last big topic in this paper.

Implementation Notes
Now, I know that there is nothing quite so practical as a good theory, but I would
 still like to include a few implementation notes in my limited capacity as a
 non-programmer. I do believe that most if not everything of what's suggested in this
 paper can be implemented using XML technologies only, without having to learn Java, even
 though I'll readily admit that Java would help[16].
URN Generation and Parsing
The URN schema (see section “Version Abstraction” and section “Adding to the Abstraction”)
 requires a unique base URN that should be generated and handled by the system. At
 its simplest, the base URN is little more than a sequential number, bumped up a
 notch for every new resource, but allowing for different types of base URNs to
 identify different types of resources might be useful.
There is also a need to parse the URN, for example, when locating base URNs,
 handling wildcards, updating links, etc.

Check-in, Check-out and Updating the Version Map
Check-in and check-out are both copy operations from one location to another. In
 eXist, they are handled using XQuery functions for copying resources and, if
 permissions are used, eXist Security Manager functions for checking the appropriate
 permissions and possibly the group of the resource. eXist also provides UNIX-style
 functions for changing permissions, group, etc, for the file that is copied to
 protect it from unwanted changes[17].
Updating the map is a matter of adding to the resource's versions list. A
 check-out means adding a new version to the next stage further down (from
 Stage 1 to Stage 2, for example) and
 starting up the next level revisions in the rev tag. A check-in does
 pretty much the same thing but in the other direction, and needs to check the
 existing revisions on that level before adding a new one.
For example, let's say that this resource in Stage 1,
 revision 2, is checked out:
<version>
 <rev>2</rev>
 <url>xmldb:exist:///...</url>
</version>
A new version is added, like so:
<version>
 <rev>2</rev>
 <url>xmldb:exist:///...</url>

 <!-- Stage 2 (centecimal) versions -->
 <version>
 <rev>1</rev>
 <url>xmldb:exist:///...</url>
 </version>
</version>
Even though this example discusses stages 1 and 2, there's actually nothing apart
 from the comment that places them there. The operation here is the same,
 regardless.
Checking in is slightly more complicated, but only slightly. Here, the
 Stage 1 revision 2 will be checked in:
<resource>

 <!-- Base URN -->
 <base>123456</base>

 <!-- Stable version 1 -->
 <version>
 <rev>1</rev>
 <url>xmldb:exist:///...</url>

 <!-- 1st Stage 1 (decimal) versions -->
 <version>
 <rev>1</rev>
 <url>xmldb:exist:///...</url>

 <!-- Stage 2 (centecimal) versions -->
 ...
 </version>

 <!-- 2d Stage 1 (decimal) version -->
 <version>
 <rev>2</rev>
 <url>xmldb:exist:///...</url>
 </version>
 </version>
</resource>
A new version, revision 2, is added:
<resource>

 <!-- Base URN -->
 <base>123456</base>

 <!-- Stable version 1 -->
 <version>
 <rev>1</rev>
 <url>xmldb:exist:///...</url>

 <!-- 1st Stage 1 (decimal) versions -->
 <version>
 <rev>1</rev>
 <url>xmldb:exist:///...</url>

 <!-- Stage 2 (centecimal) versions -->
 ...
 </version>

 <!-- 2d Stage 1 (decimal) version -->
 <version>
 <rev>2</rev>
 <url>xmldb:exist:///...</url>
 </version>
 </version>

 <!-- Stable version 2 -->
 <version>
 <rev>2</rev>
 <url>xmldb:exist:///...</url>
 </version>
</resource>
Both check-out and check-in should be able to use the same basic function for
 adding a new version, as long as there is something to check which
 operation has been selected so that the new version and the appropriate
 rev can be added either up or down in the structure.
Note
If there is no further level down from Stage 2, in this
 example, there should be a little something to disable the check-out function on
 that level in the editor.

Locking
The versioning in this paper suggests that resources that are checked in or out
 from a stage are to be locked in that stage. While this paper does not attempt to
 solve every problem created by locking, there are a number of points to be
 made:
	A lock, here, primarily signifies that the locked
 resource is being handled in another stage, not that it is checked out
 exclusively by a writer (who then leaves the company and causes problems for
 those remaining behind, etc).

	Allowing a document in the editing stage to be edited by two or more
 writers simultaneously causes various merging problems, all of which are
 manageable, but the important question is (and please remember that we are
 discussing content rather than code): why are they editing the
 same content in the first place? This, to me, hints at an
 organisational problem.

	Not locking a resource that is being handled in
 another stage is entirely feasible, of course. Easiest would be to implement
 an optimistic check-out, never locking anything but having
 the system notify the writer if the resource was already being edited by
 someone, encouraging communication and collaboration.
The author's experience, drawn primarily from developing document content
 rather than code, is that alone, this approach works best within the same
 time zone, preferably the same building, but is made easier by adding
 merging tools and means to easily modularising content that is becoming too
 large to handle.

Business Rules and Linking
As mentioned in section “Using URNs in Links”, while the link implementation might use an exact
 URN version in the pointer, business rules used when publishing might be used to
 update that link to the latest version within scope. That scope might include
 defining a versioning level, but also further limit the use latest
 function to URNs listed in projects (see section “Projects”). Let's say
 that we created this link:
<link xlink:href="urn:x-resources:r1:123456:en-GB:2:2:4" use-latest="1"/>
At the time the link was created, the very latest available version was
 2.2.4. However, later, when the document with the link is
 published, the target resource has gone through a number of revisions and the
 version tree now looks like this (leaving out the URLs):
<?xml version="1.0" encoding="UTF-8"?>
<map xmlns="http://www.sgmlguru.org/ns/versions">
 <resources>
 <resource>

 <!-- Base URN -->
 <base>123456</base>

 <!-- Stable version 1 -->
 <version>
 <rev>1</rev>
 <url lang="en-GB"></url>

 <!-- 1st Stage 1 (decimal) version -->
 <version>
 ...
 </version>

 <!-- 2d Stage 1 (decimal) version -->
 <version>
 ...
 </version>
 </version>

 <!-- Stable version 2 -->
 <version>
 <rev>2</rev>
 <url lang="en-GB"></url>

 <!-- Stage 1 (decimal versions) -->
 <version>
 <rev>1</rev>
 <url></url>

 <!-- Stage 2 (centecimal) versions -->
 ...
 </version>
 <version>
 <rev>2</rev>
 <url></url>

 <!-- Stage 2 (centecimal) versions -->
 <version>
 <rev>1</rev>
 <url></url>
 </version>
 <version>
 <rev>2</rev>
 <url></url>
 </version>
 <version>
 <rev>3</rev>
 <url></url>
 </version>

 <!-- Target at the time of link creation -->
 <version>
 <rev>4</rev>
 <url></url>
 </version>

 <version>
 <rev>5</rev>
 <url></url>
 </version>
 </version>

 <!-- New decimal version -->
 <version>
 <rev>3</rev>
 <url></url>
 <version>
 <rev>1</rev>
 <url></url>
 </version>
 <version>
 <rev>2</rev>
 <url></url>
 </version>
 <version>
 <rev>3</rev>
 <url></url>
 </version>
 </version>
 <!-- New decimal version -->
 <version>
 <rev>4</rev>
 <url></url>
 </version>
 </version>

 <!-- New stable version -->
 <version>
 <rev>3</rev>
 <url></url>
 <!-- New decimal version from v3 -->
 <version>
 <rev>1</rev>
 <url></url>
 </version>
 </version>
 </resource>
 ...
 </resources>
</map>
We can see that two new Stage 1, decimal, versions have been
 added to Stable version 2., but also, there is now a
 Stable version 3, based on version 2.4. Since version 2.4
 is the latest Stage 1 version at the time of publishing and
 it's the level defined by use-latest="1" in the link, it is the one
 used as a target. Version 3.1 is outside the defined scope.
We could, of course, add a project structure to the version map and further limit
 the scope. The business rules would state that the link update was only updated if
 both source and target were part of the same project. Let's say the projects look
 like this:
<?xml version="1.0" encoding="UTF-8"?>
<map xmlns="http://www.sgmlguru.org/ns/versions">
 <resources>
 ...
 </resources>

 <projects>
 <project>
 <urn>123456</urn>
 <urn>111111</urn>
 <urn>222222</urn>
 </project>
 <project>
 <urn>333333</urn>
 <urn>111111</urn>
 </project>
 </projects>
</map>
If the link source document was URN 111111 and the target URN
 222222, the use latest update when publishing would
 be allowed. If the target was 333333, however, it wouldn't.
Implementation-wise, both scoping techniques should be easy to handle in XSLT
 stylesheets used by publishing pipelines.

Permissions
When implementing the more advanced versioning described in section “Multiple Level Versioning”, I
 think it is a good idea to consider requiring different permissions for check-out
 and check-in, depending on the versioning level. For example, it might be a good
 idea to limit check-outs from Stable and Stage
 1 to a project management role to further control scoping and reuse,
 especially when handling larger documentation projects, while allowing authors and
 project managers alike to check out resources to stages 2 and below.

Handling eXist Versions
eXist stores versioning information in /db/system/versions/db/...,
 mirroring the database's collection structure and including diffed resource versions
 in the mirrored collections. The diffed XML files use names that include the eXist
 revision numbers:
Figure 7: Versions in eXist
[image:]

The eXist version-specific metadata is always included, first in the XML diff file
 (for example, ml-versioning-2.xml.4854), which makes it easy to
 retrieve when needed:
<v:version xmlns:v="http://exist-db.org/versioning">
 <v:properties>
 <v:document>ml-versioning-2.xml</v:document>
 <v:user>admin</v:user>
 <v:date>2014-04-17T09:29:14.085+02:00</v:date>
 <v:revision>4854</v:revision>
 </v:properties>
 ...
</v:version>
Binary files are also tracked, but accessing them seems to be more difficult as
 the diffing mechanism (obviously) does not work.
eXist revisions are recorded in the
 v:revision element (see above). A specific version can be retrieved
 using the v:doc($doc,$rev) XQuery function, so
 the
 url element in the version mapping markup will need both the base
 URL to the resource and the revision of the version to be retrieved:
<url>
 <base>xmldb:exist:///db/work/whitepapers/balisage/2014/multilevel-versioning/ml-versioning-2.xml</base>
 <rev>4854</rev>
</url>
Identifying eXist version 4854 of ml-versioning-2.xml.
Note
The base URL, above, denotes the latest
 version of the document rather than eXist's base version, which
 is the first version stored and on which the later versions are based.

A version update must be triggered in eXist whenever copying the file from one
 area to another - both check-in and check-out are copy operations. eXist provides
 versioning triggers for copy events so capturing the new eXist revision number is a
 matter of inserting the v:history function after the copy:
v:history(doc("/db/path/to/xml"))//v:revision[last()]
 This returns a v:revision element, with the eXist revision given in
 @rev:
<v:revision xmlns:v="http://exist-db.org/versioning" rev="5029">
 <v:date>2014-04-18T18:11:19.211+02:00</v:date>
 <v:user>admin</v:user>
</v:revision>
It is then a simple matter to bump up the URN rev and add the
 URL to the new version in the version map.

The eXist User Interface
At its simplest, the user interface needed in eXist is just what's needed to
 display the version map in a browser, easily produced with an XSLT stylesheet and
 some CSS, plus something to trigger the page with.
The map will probably grow to be quite large, so including a filtering mechanism
 is necessary to show only selected parts of the map (i.e., parts of or the complete
 version history of a specified resource). Functionality to show various metadata for
 specified versions, provide links to physical resources, include map icons to
 indicate the language(s) used, and so on, are other examples of useful
 additions.
eXist provides several XForms implementations[18], as well as a powerful XQuery (3.0) implementation, to help add
 these.

The Editor
Here's where I'm currently really out of my depth, as adding check-out and
 check-in functions to an editor will involve programming. Nevertheless, editor GUI
 considerations apart, the versioning additions should consist mainly of calling the
 XQuery doing the copying, including a flag indicating what operation is used, and
 making the editor aware of what versioning level the resource is at and disabling
 the check-out operation, if there are no further levels to copy to.
There should also be a permissions check that disables both operations if the
 author lacks the necessary permissions to run the operation(s).
Also, the editor needs linking functionality using the multilevel versioning
 abstraction (URNs rather than addresses in links). This entails opening the target
 so that the user can identify the target (including a node inside the target
 document); easiest should be to map the target's URN and URL locally rather than
 accessing the version map XML from the database.
Rather than opening the targets one by one, it might be a good idea to retrieve a
 URN/URL map for the whole project, if using the project concept (see section “Projects”).

Afterword
The versioning system suggested here came to be partly because I really want a more
 advanced version handling for eXist, but mostly because the more primitive
 straight versioning system that introduces this paper was prominently
 figured in my paper from last year's Balisage ([id-semantic-profiling]) and
 Eliot Kimber promptly dismissed the problems with updating the document link tree as the
 results of bad configuration management. He was right, too, and I hope this is better.
 Thank you, Eliot.
A Few Notes
Disclaimer
I am in no way claiming originality in terms of a versioning scheme that
 includes multilevel numbering (1.1.1, 1.1.2, etc)
 or the idea of different (and arbitrary) levels of versions defining version
 significance and version structure. A number of software systems already use
 such versioning schemes (for example, see [id-windchill-multilevel]).
Somewhat original (having not been able to find anything similar) is my
 implementation, in the context of an XML database and using an XML-based version
 mapping format defining an arbitrary level of versions. In particular, my goal
 here was to define a way to add a versioning layer to an existing,
 straight, versioning system, one that differentiates between
 significant versions and simple saves by providing multiple
 levels of check-outs and check-ins while leaving the definition of the
 significance of each level to the end user.

git and Other VCSs
The version mapping document is, of course, by no means unique as a concept.
 As a reviewer pointed out, part of it is equivalent with the git
 index file (see [id-git-index-format]). After all, a lot if it is simply about
 mapping the names of resources and their versions to URIs. It is XML because XML
 is easy to handle in eXist, however, and there is a recursive hierarchy because
 such hierarchies (in my mind) neatly represent the relations between any number
 of versioning levels, which is not the case with a git index[19].
The point is that it should be straight-forward in eXist to implement the
 versioning represented by the XML. I'm sure it is possible to implement
 multilevel versioning in eXist based on git or some other VCS[20], with whatever advantages that they might bring to the table, but
 the point with this one is to do it in XML with a minimum of non-XML involvement[21].
I also realise that git (and other) VCSs have variants of the use latest
 problem, as pointed out by that same reviewer. While the problem here is
 similar, it is not the same. As a technical writer with
 some insight into developing code, I am struck by some subtle differences:
First of all, in theory at least, it should be possible to avoid using an
 incompatible later version of a piece of code by writing automated tests. This
 is not possible in the use latest problem as described here. An incompatible
 change is only possible to detect by an author who can manually spot the
 differences, provided that s/he has sufficient knowledge in the subject of both
 the old version [of whatever that is being described] and any forks that
 happened along the way.
The scoping as provided by the stages, then, are simply an agreed-upon, but
 untestable, convention.
Second, while there are similarities between versioned code and versioned
 content, a major difference is that the documents as described here effectively
 need to include links addressing arbitrary versions of other resources in the
 VCS. As far as I understand git, a check-in in git represents a snapshot where
 any such links will point to a current file in that snapshot, not an historic
 one.

Notations for Related Content
Regarding the notion of translations as renderings of an original, a reviewer
 kindly linked to the Akoma Ntoso XML vocabulary for legal
 documents, specifically its URI namespace conventions for handling related
 content (see [id-akomantoso]).
Using URN abstractions (see section “Version Abstraction” and section “Adding to the Abstraction”) provides me with a useful way to describe the relationships I had in mind,
 namely versions of original-language resources and their translations, and how
 they relate to each other. Akoma Ntoso provides a fascinating and complex
 alternative, going well beyond my relatively uncomplicated naming conventions. I
 mention them here for comparison, but do not intend to implement them as naming
 conventions.
There are, of course, many other naming conventions in use for XML document
 management. Worth mentioning is the S1000D standard's Data Module Code, used to
 identify reusable content in an S1000D system. It is of particular interest
 because it provides a physical location of the component being described, in
 addition to mere document handling formalia.
My point here is that both of these conventions, as well as many others, are
 feasible, but none, including my simple URN scheme, is necessarily more right
 than the other. The idea here is to provide a suitable identifier that includes
 a version and localisation information, used when uniquely identifying
 resources.

Terminology
The terms stage and staging are, perhaps,
 unfortunate, as they are in no way unique to what I propose in this paper. Git,
 for example, uses the term staging area, which may cause some
 confusion (for more, see [id-git-staging] and [id-git-index]).
The git staging area, however, is an indexing area for a commit to which you
 can add the files you wish to commit in any way you want to, before they are
 committed, while every stage discussed here, regardless of
 level, is intended to be a recorded next step after a
 commit. The point here is to enable any number of levels of usable versions;
 git's staging area should not be regarded as a recorded level
 other than in terms of determining versioned content.

Future Work
There are several things I want to do with all this:
	Doing a basic eXist implementation of the version handling itself is
 rather obvious, of course. I don't know if it is a case of chronic naïvety
 or something else, but I think it really shouldn't be all that hard to do in
 XQuery and an XSLT stylesheet or two. I'm not entirely sure of the parts
 that involve addressing eXist versions, but I remain hopeful.

	Handling the first save and subsequent first check-in. A new document
 should start in the save stage and be checked in to the next
 stage and finally the first stable stage[22].

	I want to test Extended XLink for the version map and project markup,
 because I think it would be a good fit.

	Also, I think doing a basic Extended XLink implementation for linking
 inside eXist would be both interesting and fun, as well as make it easier to
 use standard markup languages such as DocBook or DITA in such an
 implementation, without changing either of them but helping implement the
 version handling that is the topic of this paper.

Bibliography
[id-existdb-versioning] "eXist Versioning Extensions". Part of the eXist
 DB documentation. http://www.exist-db.org/exist/apps/doc/versioning.xml

[id-db-triggers] "Configuring Database Triggers". Part of the eXist DB
 documentation. http://exist-db.org/exist/apps/doc/triggers.xml

[id-xlink-spec] XML Linking Language (XLink) Version 1.1,
 editors Steve DeRose, Eve Maler, David Orchard and Norman Walsh. http://www.w3.org/TR/xlink11/

[id-semantic-profiling] Nordström, Ari. Semantic Profiling Using
 Indirection. Presented at Balisage: The Markup Conference 2013, Montréal,
 Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies, vol. 10 (2013).
 doi:https://doi.org/10.4242/BalisageVol10.Nordstrom01. http://www.balisage.net/Proceedings/vol10/html/Nordstrom01/BalisageVol10-Nordstrom01.html

[id-git-index-format] The Git Index. http://schacon.github.io/gitbook/7_the_git_index.html
[id-windchill-multilevel] PTC Windchill Multi-Level Versioning
 Labels. https://firstrobotics.ptc.com/Windchill-WHC/index.jspx?id=ViewVersionConvertUtilAbout&action=show
[id-git-staging] The Staging Area (a git
 ready blog post on January 9 2009. http://gitready.com/beginner/2009/01/18/the-staging-area.html
[id-git-index] What’s The Deal With The Git Index? http://www.gitguys.com/topics/whats-the-deal-with-the-git-index/
[id-akomantoso] The Akoma Ntoso Naming Convention. http://www.akomantoso.org/release-notes/akoma-ntoso-3.0-schema/naming-conventions-1

[1] Using a check-out/check-in procedure that bumps up the version with every
 check-in.
[2] A nicer way of grouping together those of us who think Java
 is really a drink.
[3] His comment was given at Balisage 2013, in response to a description of
 the problems involved in updating a document link tree such as the one in
 Figure 1. It's an insightful comment, and one that
 directly caused this paper to come into being. Incidentally, the paper
 presented, Semantic Profiling ([id-semantic-profiling]), also used URNs.
[4] Collections, in eXist.
[5] Both are integers from 1 and up.
[6] Plus a position for the hyphen.
[7] Leaving, for the moment, out the lang attribute and element
 content examples.
[8] This is a common occurrence in traditional, desktop-based authoring.
 Without systems support, a few translations and new versions of the
 documentation are enough for the writers to lose track of which version
 that contains the latest information.
[9] The problem is that every new version in Stage 1
 is basically the same; they are all the result of a save.
[10] Finished and approved, that is.
[11] For example, a free-text comment.
[12] Where the latest (approved) version of a leaf node in a document link
 tree is always preferred and should therefore always be linked to, but
 where the module doing the linking may have been updated elsewhere, with
 incompatible changes, and therefore not be possible to update with a new
 link for the document at hand.
[13] As mentioned earlier, one (non-) solution is to update the link anyway
 and create a new (stable) version. This will pass on the problem to
 someone else and eventually come back to bite you, but nevertheless, you
 might be tempted to refine it by using merge software and such.
 Basically, however, it would always result in a situation where a new
 version could not be assumed to be a development of
 the last one, but rather an incompatible change.
[14] I've considered renaming the Stable level
 Stage 0, for this reason and others.
[15] And the language/country components.
[16] Java would probably be especially helpful when constructing suitable
 versioning triggers in eXist.
[17] For example, checked-out files might simply be have their group changed to
 a checked-out group.
[18] XSLTForms and Better Forms are both configured and ready for use, and
 Orbeon is easy to add.
[19] The git index file is used when staging resources to be committed,
 creating a single tree object to be stored in the database.
[20] There is, for example, a Subversion module for eXist.
[21] The reasons for which are that a) I am a poor programmer, and b) eXist
 is an XML database and well suited for that approach.
[22] If that version is 0 or 1is probably
 a matter of agreed-upon conventions.

Balisage: The Markup Conference

Multilevel Versioning
Ari Nordström
Ari Nordström is the resident XML
 guy at Condesign AB in Göteborg, Sweden. His information structures and
 solutions are used by Volvo Cars, Ericsson, and many others. His favourite XML
 specification remains XLink so quite a few of his frequent talks and
 presentations on XML focus on linking and various aspects of reuse.
Ari spends some of his spare time
 playing with old 35/70 mm film projectors and has a respectable collection of
 Dolby cinema processors, which goes some way towards explaining why he wanted to
 automate cinemas using XML, once upon a time. He has now fully accepted that
 it's too late.

Balisage: The Markup Conference

content/images/Nordstrom01-001.png
Root doc
URN-Root

Chapter 1
URN-CH1

Chapter 2
URN-CH2

Warning 1
URN-W1

Section 1
URN-S1

Section 2
URN-S2

Warning 2
URN-W2

Warning 3
URN-W3

Figure
URN-FIG

content/images/Nordstrom01-006.png
Resources

Resource

Resource

Sources
Targets

Base URN

Version

Version

Version

Metadata

URL en-GB
URLsv-sE

Version
Version

Version
Version

Rev

R

content/images/Nordstrom01-007.png
Collection Browser

EEIEDEDED]

| /db/system/versions/db/work/whitepapers/balisage/2014/multilevel-versioning
Name issi Owner Group Last-modified

m-versioning-2.xml.base April 16 2014 157
mi-versioning-2.xml.4800 1 1 April 16 2014 15+
mi-versioning-2.xml.4801 i i i April 162014 15
miversioning-2xml.4802 ' ' April 16 2014 15:33:01
miversioning-2xml.4803 ' ' Aprl 16 2014 15:38:52
miversioning-2xml.4804 ' ' April 16 2014 15:46:30
miversioning-2xml.4805 | | April 16 2014 15:48:03
ml-versioning-2.xml.4806 April 16 2014 15:54:26
mi-versioning-2.xml.4807 i i April 162014 15
mi-versioning-2.xml.4808 1 1 April 162014 15
miversioning-2xml.4809 ' ' '

mi-versioning-2.xml.4810

mi-versioning-2.xml.4811 April 16 2014 16:12:14

content/images/Nordstrom01-002.png
URNL

2-stage versioning

content/images/Nordstrom01-003.png
o

(-stage versioning)

content/images/Nordstrom01-004.png
.../stagel

content/images/Nordstrom01-005.png
BascURN Metadata

URLen-GB__ Metadata

Version

— Resource Version

Resources

(Version ma
N ® Version

Version
Version

Resource

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

