[image: Balisage logo]Balisage: The Markup Conference

Overlapproaches in documents: a definitive classification (in OWL, 2!)
Silvio Peroni
Department of Computer Science and Engineering, University of Bologna, Bologna,
 Italy

<silvio.peroni@unibo.it>

Francesco Poggi
Department of Computer Science and Engineering, University of Bologna, Bologna,
 Italy

<fpoggi@cs.unibo.it>

Fabio Vitali
Department of Computer Science and Engineering, University of Bologna, Bologna,
 Italy

<fabio@cs.unibo.it>

Balisage: The Markup Conference 2014
August 5 - 8, 2014

Copyright © 2014 by the authors.

How to cite this paper
Peroni, Silvio, Francesco Poggi and Fabio Vitali. "Overlapproaches in documents: a definitive classification (in OWL, 2!)." Presented at: Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup Conference 2014.
 Balisage Series on Markup Technologies vol. 13 (2014). https://doi.org/10.4242/BalisageVol13.Peroni01.

Abstract
Several different types of overlap exist and different strategies are needed to detect
 them. In particular, there is a clear difference between ranges of text that overlap and
 markup items that overlap (that is, elements and attributes), and how these types of
 overlapping affect dominance and containment relations of nodes is of some relevance, too.
 In order to provide a complete definition and description of these overlapping patterns, we
 introduce the EARMARK Overlapping Ontology (EOO), i.e., an OWL 2 DL ontology that extends EARMARK (an OWL-based markup meta-language compliant with extended GODDAGs) to
 define properties describing dominance and containment relations as well as a complete
 characterisation of the different kinds of overlap that can happen to nodes. In addition, we
 also present some inference rules for the automatic retrieval (by means of a reasoner) of all the
 overlapping instances in a given input markup document.

Balisage: The Markup Conference

 Overlapproaches in documents: a definitive classification (in OWL, 2!)

 Table of Contents

 	Title Page

 	Introduction

 	Overlapping markup: a summary for the absent and the distracted
 	Forcing overlaps in plain XML

 	Non-XML syntaxes for overlaps

 	EARMARK

 	Characterizing overlaps by way of an ontology
 	Properties of overlapping
 	Overlapping of ranges

 	Dominance vs. Containment in EARMARK

 	Overlapping of markup items

 	Approaching inferences through reasoners

 	Conclusions

 	About the Authors

 Overlapproaches in documents: a definitive classification (in OWL, 2!)

Introduction
At the Balisage 2009 Conference we presented for the first time a new approach to overlapping markup called
			EARMARK, or "Extremely Annotational RDF Markup". It provided a point of view over something that is
			quintessentially Balisagean, overlapping markup, by using a number of suspicious techniques for this community,
			such as standoff markup, RDF, OWL, reasoners.
In brief, an EARMARK document is a collection of RDF statements about fragments of a text (a plain text or
			even an XML document), that describe the fragments' characteristics and features regardless of whether the
			fragments contain, are disjoint, or overlap with each other. Each fragment is associated to a formal concept
			called Range, which can (but does not have to) be associated to one or more Markup Items, which in turn may, or
			may not, refer to each other in some form. Since these annotations (and the objects they represent) are never
			embedded in the text, there are no implicit properties to consider, in particular no properties indirectly
			provided by the fragments' position in the text, relative to each other, according to document's order, etc. Thus
			in an EARMARK document a property exists (e.g., A contains B) if and only if it has been explicitly stated in the
			ontology, and not just because they happen to refer to the same text fragment.
		 [1]
		
In doing so, EARMARK manages not only to be the only overlapping approach that fully expresses and makes use
		 of unrestricted GODDAG, the formal model introduced in [34] by Sperberg-McQueen and Huitfeldt, but actually
			corresponds to a non-trivial extension of it, e-GODDAG, that supports repetitions of the same node in different
			contexts, in addition to self-overlap, discontinuous overlap, anonymous nodes, decoupling of containment and
			dominance, etc.
The conjunction of stand-off as a referencing approach, and RDF as the assertion syntax, allows EARMARK to
			bypass completely the usual dichothomy of embedded markup, that of either hiding overlapping situations inside a
			traditional, hierarchical XML markup, tricky but conservatively transparent with respect to the most common XML
			tools and services, or inventing a completely new syntax and having to deal with the lack of the usual validation
			tools, transformation tools, storage systems, etc. On the contrary, an EARMARK document is just a collection of
			RDF statements, and plain and usual RDF and OWL tools can be used to manage it: inference engines, rule-based
			systems, query languages, and triple stores work transparently with overlapping data, and any existing and future
			tool for RDF and OWL will be available for use transparently when managing EARMARK documents, too
		 [2].
But in our 2009 paper, we actually and quite conventienly avoided to discuss a rather relevant issue: EARMARK,
			then, did not really allow to describe overlapping markup situations, but rather it allowed to describe traditional
			markup situations that could refer to overlapping content. Since each markup statement is independent of the
			others, it can refer to partially or totally overlapping ranges and children with no need (and no possibility) to
			determine that such overlap has actually happened.
But if you really want to be able to determine whether and where overlapping has happened in an EARMARK
			document, you need a few more tools, that luckily can and have been realized using standard and well-known RDF and
			OWL tools. In this paper, we present the EARMARK Overlapping Ontology
				(EOO), an ontology that uses OWL 2 and SWRL to provide a complete
			characterization of overlapping situations in EARMARK documents, allowing queries and representations that
			discovers and manages explicitly (instead of simply allowing and ignoring) all overlaps in the markup. This
			characterization takes the form of definitions of the overlapping patterns of the basic EARMARK ontology, and is
			therefore a definitive classification
			[3]of the overlapping approaches of EARMARK documents.
Of particular relevance for the EOO ontology is being able to distinguish between different aspects/manifestations of the overlap phenomenom, such as, for example:
	total vs. partial overlap: we talk about total overlap to refer to those situations where one item is completely contained by the other, without breaking the rules imposed by the tree hierarchy, while we use partial overlap to indicate cases where no hierarchy can exist, as only part of the content is shared by the items;

	dominance vs. containment: we use these terms to distinguish and discern between cases where there really is a hierarchical relation between items that overlap (dominance), from situations in which items just happen to refer to the same content (containment);

	range overlap vs. markup overlap: we can also distinguish between items that overlap by sharing the same textual content (range overlap) from situations in which items overlap by insisting either partially or totally on the same elements (markup overlap).

The paper is organized as follows: in the next section, we present a brief overview of the topics, results and languages
		 that have been proposed to handle overlaps in markup documents. In section “EARMARK”, EARMARK is (re-)introduced with
		 its main classes and concepts. In section “Characterizing overlaps by way of an ontology”, the EARMARK Overlapping Ontology is presented and described, as well
			as how it can be used to identify and characterize the overlapping situations of an EARMARK document. The
			following section contains our conclusions and hints at future works.

Overlapping markup: a summary for the absent and the distracted
When marking up text documents it might be necessary to represent features that do not fit
 into the tree structure conveyed by an XML document. In fact, there are many situations in
 which authors may need to annotate the same piece of text with different markup descriptors
 (e.g. when a page spans from the middle of one paragraph to the middle of another, or when
 speeches span multiple verses, etc.): in such cases, the markup descriptors sometimes nest
 correctly into a single tree-hierarchy, sometimes not. In general, this issue may arises
 whenever an author wants to maintain two or more views of a document (e.g. metrical,
 syntactical, layout, etc.), and consequently multiple and incompatible hierarchies insists on
 the same textual content. This problem is referred to in the literature as the overlapping problem.
After a first period in which the deficiencies of markup languages that concerns the
 overlapping problem were overlooked [3][4] or even suppressed [9][5], the digital humanities community started to put an increasing effort in trying to
 define and develop solution to this issue. The essence of the problem can be summarized as
 follows: “overlap can be presented by graphs that are very like trees, but in which nodes may
 have multiple parents. Overlap is multiple parentage” [34].
 While trying to represent non-hierarchical structures using a markup language whose model is
 a tree, such as SGML or XML, authors run into different manifestations of the
 problem, referred to using different terminology in the literature:
	classic overlap: this is the most common case of
 overlap, that consists in two markup elements with different general identifiers that share
 a part of their textual content. This situation occurs whenever two document fragments
 that need to be annotated with different markup descriptors overlap each other. Typically
 this scenarios arises when authors want to merge multiple concurrent hierarchies over the
 same document, e.g. phonetical, grammatical and typographical structures.

	self overlap: the term “self” overlap is used to
 refer to that situations in which two components of the same structure, and with the same
 name, overlap each other. A typical example is a document that should be commented by two
 different reviewers: whenever they need to annotate two text fragments that overlap,
 two elements of the same structure (the comment structure) and with the same name overlap
 each other.

	out-of-order elements: there are also cases in which
 the content of an element is a reordering of information present elsewhere in the
 document. For example, sometimes it would be useful to define elements whose content is
 not a continuous text region (we refer to such cases as discontinuous
 elements), or to express more complex features, such as out-of-order or
 repeated uses of the same text fragment, etc. The general approach used by embedded markup
 languages to deal with such cases is to use a technique called virtual elements: the information needed to convey such features is encoded
 by using an ad-hoc mechanism, such as a linking system by means of elements' attributes.
 The term “virtual” is used because these elements are not explicitly present in the
 document, but their presence may be inferred by an external application from the specific
 encoding mechanism supplied [35].

	containment/dominance decoupling: Most of the solutions to the problem of
					overlapping markup implicitly leave unwanted relations between the concurrent hierarchies. The best known is
					the identity between dominance and containment. Dominance is a relation between document parts where one is
					said to dominate another if it is one of its ancestors in the document structure. Containment is rather a look
					at two document parts from the point of view of which slices of the actual character content of the document
					they enclose; a document part contains another one if it encloses all the character content of that other
					part. Tree-based markup languages such as XML have the (implicit) property that containment implies dominance,
					but in general this is neither desiderable nor correct. Consequently, most of the approaches to the overlapping
					problem that forces multiple hierarchies (i.e. graphs) into a single tree structure reflects this limitation.
					Moreover, most of the complexity in the process of managing these document is due to this reason, since it
					requires an external and often conceptual effort to understand, interpret and correctly manage dominance as
					separated from containment.

Since the document model of XML is inherently a tree, there is no simple way to cover such complex situations
			when handling multiple hierarchies. In order to overcome these limitations, many different solutions have been
			proposed. In general, we can identify two different approaches to the problem. The first consists in devising
			techniques to encode the information about overlapping situations by using specific XML features (e.g.
			empty elements to specify the boundary of overlapping elements, attributes to link elements that don't nest
			properly, etc.) or technologies (e.g. XPath [4], XQuery [5], etc.).
			The second approach is to abandon XML altogether and with it the benefits of its tree-based data model, and devise
			a new formalism and notation based on a more general and expressive abstract structure, such as a directed graph.
Forcing overlaps in plain XML
Documents in XML-based formats have the advantage that any existing application, tool
 and technology can be used to process them, at the cost of a post-parsing processing in
 order to reconstruct and correctly handle the not tree-based structures coerced using these
 conventions. The main drawback of this approach is that the overlapping situations encoded
 in XML-based formats are neither easy to read, write and understand by humans without the
 help of specific tools, since these techniques considerably increase the complexity of the
 resulting XML document. Moreover, the process of forcing multiple hierarchies (i.e. a graph)
 into a single tree structure used by most of these techniques often introduces unwanted
 dominance relations between elements belonging to different hierarchies, and these
 situations need a further (and usually manual) effort in order to be identified, properly
 interpreted and managed.
The universe of the XML-based techniques to manage overlapping situations is quite ample. We summarize the
				four most used mechanisms [28]:
	TEI-style milestones: this approach is to represent
 a vocabulary as primary by using a standard XML structure, and to use pairs of empty
 elements to mark the boundaries of elements that belong to secondary vocabularies. In
 order to make explicit the relation between corresponding opening and closing empty
 tags, a co-indexing mechanism may be implemented by means of special linking
 attributes[35][6];

	fragmentation: is another technique that
 envisions/prescribes to break the elements belonging to secondary hierarchies in as many
 smaller fragments (also called partial elements) as
 needed to nest properly into the primary hierarchy. Also in this case overlapping
 elements are linked using special attributes (e.g. id-idref or next-previous
 pairs).

	stand-off markup: the key idea is to represent hierarchical and possibly incompatible structures separately from their actual content. Infact, the real content is present elsewhere, for example within the same document or in separate ones, and included by means of links implemented through a pointer mechanism such as XPointer [10]. In this way, it is possible to represent multiple conflicting structures as stratifications of different layers, at the cost of a overhead to manage and keep up-to-date the referenced content not directly embedded within these structures.

	twin documents: overlapping hierarchies may also be
 encoded by using multiple documents that share the same textual content, but each one
 denoting its own tree structure.

In order to describe the expressiveness power of these techniques, in Table I we summarises their capability to manage the
 complex overlapping features introduced in the previous section.
Table I
Expressiveness
 power of the XML-based techniques to manage overlap with respect of the complex document
 features described in the previous section [* true only if the vocabularies of the
 structures in overlap are disjoint].

	XML techniques /
complex document features
	Classic overlap
	Self overlap
	out-of-order elements
	Containment/dominance decoupling

	Milestones
	Yes
	Yes
	No
	No

	Fragmentation
	Yes
	Yes
	Yes
	No

	Stand-off markup
	Yes*
	Yes
	Yes
	Yes

	Twin documents
	Yes*
	Yes
	Yes
	Yes

In order to overcome the limitations of XML, many different solutions have been
 proposed:
	CONCUR [18] is an SGML option that allows
						multiple DTDs for the same content: all these structures live in the same document, and it is up to the
						parser to either consider the structure of only one DTD, or parse them simultaneously but keeping separate
						track of what elements are open in each. The main advantage of this technique is that documents are quite
						legible and maintainable, but there are many drawbacks: for example, it is not possible to constrain
						relationships across DTDs, it is not possible to express self-overlap situations, and there is little
						software support for this technique;

	JITT (Just In Time Trees): another syntax very
 close to XML have been proposed [14] [15].
 The basic idea is similar to CONCUR in that it requires the parser to filter and take in
 consideration only some tags: multiple overlapping hierarchies may coexist into
 documents, but only those which the filter selects are returned to the application as
 real start or end tags. JITTs’ main contribution is that a document need not be
 well-formed until the moment it is being processed, at the cost of a very small change
 to an XML parser. Unfortunately, JITTs does not provide a way to correlate and validate
 across structures, and it is not possible to express cases of self-overlap.

	MuLaX: another document syntax similar to SGML
 CONCUR for XML called MuLaX has been developed [19] together
 with a constraint based validation language [29] [37]. Each overlapping hierarchy represents a layer identified
 by an ID prefixing each tag name, and multiple layers may coexist into one MuLaX
 document. An external software can parse a MuLaX document and project
 each layer into well formed XML documents. Standard XML tools can only be used
 on these separate XML projections. A drawback of this technique is that these documents
 can get very complex when dealing with a large number of annotation layers : for
 example, updates are difficult since working on MuLaX documents requires frequent
 projections into XML projections. Moreover, the project is still at the state of
 experimental markup languages, lacking the support of tools and technologies as that
 available for XML-based solutions.

	Multi-colored trees: another extension of the XML
 model that is able to represent overlapping structures are the Multi-colored trees
 [24]. The basic idea is to associate a color to each
 concurrent tree, and to allow each node to have multiple colors. Navigation inside the multicolored
 nodes is possible by using an Xpath [4] extension that implements a color
 selector, and an extension of XQuery [5] has also been proposed for
 the creation of nodes.

Non-XML syntaxes for overlaps
An alternative approach to overcome the limitations of tree-based meta-languages in
 representing complex documents is to use alternative and more expressive data models, such
 as graphs. The more general is the model (acyclic vs. cyclic graphs, ordered vs. unordered
 graphs, etc.), the more expressive is the meta-language in terms of overlapping features
 that can be convenientely managed, at the cost of an increased computational complexity.
 Moreover, since this abstract model may be represented with different concrete
 syntaxes (embedded markup languages, stand-off annotations, etc.), the chosen linearisation
 format may place limits in terms of expressiveness, support provided by standard
 technologies and related tools, etc. A summary of the most eminent solutions is presented
 below:
	GODDAG and TexMECS: Sperberg-McQueen and Huitfeld
 proposed to manage overlapping hierarchies using a directed acyclic graph structure with
 no transitive arcs named GODDAG (General Ordered Descendant Directed Acyclic
 Graph)[34]. Arcs denotes containment relationships,
 and multi-parentage is allowed, thus making it possible to represent overlapping
 situations. Several kinds of GODDAG have been defined in order to explore their
 expressive power and their mutual relation: generalized, restricted and clean in [34], normalized and colored in [23], node-ordered (noDAG) in [26], child-arc-ordered in [27]. The authors of GODDAG also developed a markup meta-language
 named TexMECS [22] as the natural linearisation format for the
 GODDAG structure. As XML, TexMECS is an embedded meta-markup language where elements are
 delimited by start and end tags, but it also allows to represent graph structures by
 allowing tags to not nest properly. TexMECS supports complex document features, such as
 self overlap (using a co-indexing scheme) and discontinuous, virtual and unordered
 elements (using special attributes and elements' delimiters). Since TexMECS documents
 are not isomorphic to XML documents, the standard XML tools cannot be used and, as far
 as we know, no query mechanisms have been developed.

	LMNL: the Layered Markup and Annotaion Language [36] defines a specific syntax based on layered ranges which can overlap each other. A LMNL document is a
						set of layers containing either a sequence of Unicode characters (text
							layer) or a sequence of ranges. A layer can be based on a single other layer, but can also be
						the base of several other layers. LMNL is able to capture classic and self overlap cases and virtual
						elements (via a pointers' mechanism), but since a range spans over continuous sequences of characters, there
						is no way to represent discontinuous text fragments and element with mixed content (i.e. characters and
						other ranges). Despite the main contribution of LMNL is a data model, at least three syntaxes have been
						proposed: two are XML-based (ECLIX [7] and CLIX [8], both
						based on the milestone technique), and a non-XML syntax known as the LMNL syntax. XSLT stylesheets have been
						developed to deal with the XML representation of a LMNL document.

EARMARK
The Extremely Annotational RDF Markup, or EARMARK [12], is an OWL 2 DL
				ontology[7]that defines document meta-markup. It is an ontologically precise definition of markup that
			instantiates the markup of a text document as an independent OWL document outside of the text strings it
			annotates, and through appropriate OWL and SWRL characterisations it can define structures such as trees or graphs
			(in particular, extended GODDAGs [11]) and can be used to generate validity
			constraints (including co-constraints) [13], to make explicit the semantics of markup [30], to annotate text or other markup documents [1], to keep track of changes in markup [31], and as interchange format to enable conversions between different kinds of
			XML vocabularies embedding overlap [2]. The whole ontological description of
			EARMARK is summarised in the Graffoo diagram[8] [16] shown in Figure 1.
Figure 1:
[image:]Figure 1: a Graffoo diagram summarising the EARMARK Ontology.

The core classes of our model describe three disjoint base concepts: docuverses, ranges and markup
				items.
The textual content of an EARMARK document is conceptually separated from its annotations, and is referred to
			through the earmark:Docuverse class. The individuals of this class represent the
			objects of discourse, i.e. all the containers of text from an EARMARK document. Any individual of the earmark:Docuverse class – commonly called a docuverse
			(lowercase to distinguish it from the class) – specifies its actual content through the property earmark:hasContent. There exist two different kinds of docuverses, those that specify all
			its content in form of a string (defined through the class earmark:StringDocuverse) and those that refer to a document containing the string to be marked up
			(defined through the class earmark:URIDocuverse).
We define the class earmark:Range for any text lying between two locations of
			a docuverse. A range, i.e, an individual of the class earmark:Range, is defined by a starting and an ending location (any literal) of a specific docuverse
			through the functional properties earmark:begins, eamark:ends and earmark:refersTo respectively. There exist two main
			types of ranges: those (i.e., earmark:PointerRange) that refer to text lying
			between two non-negative integer locations that identify precise positions within a docuverse, and those (defined
			through the class earmark:XPathPointerRange) that refer to any text, obtained
			from a particular XPath context (specified through the property earmark:hasXPathContext) starting from a docuverse content, lying between two non-negative integer
			locations that identify precise positions.
The class earmark:MarkupItem is the superclass defining artefacts to be
			interpreted as markup such as elements (i.e., the class earmark:Element),
			attributes (i.e., the class earmark:Attribute) and comments (i.e., the class
				earmark:Comment). A markupitem individual is a
				collection[9] (co:Set, co:Bag and co:List, where the latter is a subclass of the second one and all of them are subclasses
			of co:Collection) of individuals belonging to the classes earmark:MarkupItem and earmark:Range. Through these collections it
			is possible:
	to define a markup item as a set of other markup items and ranges by using the property co:element;

	to define a markup item as a bag of items (defined by individuals belonging to the class co:Item), each of them containing a markup item or a range, by using the properties
						c:item and co:itemContent
					respectively;

	to define a markup item as a list of items (defined by individuals belonging to the class co:ListItem), each of them containing a markup item or a range, in which we can also
					specify a particular order among the items themselves by using the property co:nextItem.

A markupitem might also have a name, specified in the functional property
				earmark:hasGeneralIdentifier[10], and a namespace specified using the functional property earmark:hasNamespace.
In order to understand how EARMARK is used to describe markup hierarchies, let us consider the markup
			structures shown in Figure 2.
Figure 2:
[image:]Figure 2: an example of three different markup hierarchies (light-blue rectangles with solid border, light-green
						rectangles with dashed border, and pink rectangles with dotted borders) involving six different ranges (the
						five empty rhomboids with solid red border and the one with blue dashed border).

First of all, we define the whole textual content of the document – i.e., the first three lines of the
				Paradise Lost by John Milton – by creating an instance of the class earmark:StringDocuverse[11]:
@prefix : <http://www.essepuntato.it/2014/balisage/example/>
:doc a earmark:StringDocuverse ;
 earmark:hasContent
 "Of Mans First Disobedience, and the Fruit
 Of that Forbidden Tree, whose mortal tast
 Brought Death into the World" .
Then, we can define all the six different ranges (as individuals of earmark:PointerRange) that are introduced in the figure, i.e.:
The string 'Of Mans First Disobedience, and the Fruit'
:r1 a earmark:PointerRange ;
 earmark:refersTo :doc ;
 earmark:begins "0"^^xsd:nonNegativeInteger ;
 earmark:ends "41"^^xsd:nonNegativeInteger .

The string 'the Fruit Of that Forbidden Tree,'
:r2 a earmark:PointerRange ;
 earmark:refersTo :doc ;
 earmark:begins "32"^^xsd:nonNegativeInteger ;
 earmark:ends "65"^^xsd:nonNegativeInteger .

The string 'Of that Forbidden Tree,'
:r3 a earmark:PointerRange ;
 earmark:refersTo :doc ;
 earmark:begins "42"^^xsd:nonNegativeInteger ;
 earmark:ends "65"^^xsd:nonNegativeInteger .

…
Finally, we can built the three markup hierarchies shown in upon these ranges, as shown in the follwing
			excerpt:
:lg a earmark:MarkupItem , co:List ;
 earmark:hasGeneralIdentifier "lg" ;
 co:firstItem [
 a co:ListItem ;
 co:itemContent :l1 ;
 co:nextItem [
 a co:ListItem ;
 co:itemContent :l2 ;
 co:nextItem [
 a co:ListItem ;
 co:itemContent :l3]]] .

:q a earmark:MarkupItem , co:List ;
 earmark:hasGeneralIdentifier "q" ;
 co:firstItem [
 a co:ListItem ;
 co:itemContent :l1] .

:l1 a earmark:MarkupItem , co:List ;
 earmark:hasGeneralIdentifier "l" ;
 co:firstItem [
 a co:ListItem ;
 co:itemContent :r1] .

…

Characterizing overlaps by way of an ontology
Different types of overlap exist – according to the subset of EARMARK nodes involved (i.e., ranges or markup
			items) – and different strategies are needed to detect them. In particular, there is a clear distinction between
			overlapping ranges and overlapping markup items, and in the ways these overlapping scenarios affect the dominance
			and containment relations between nodes – as shown in figure Figure 2, that will be
			used to illustrate the different kinds of overlapping scenarios.
In this section, we introduce the EARMARK Overlapping Ontology (EOO)[12], which is an OWL 2 DL ontology [MotikOWL2] that extends the EARMARK Ontology by adding support for
			overlapping scenarios and for inferences relative to them. In particular, in the following subsections we describe
			how the ontology models all possible overlapping scenarios between nodes by means of description logic
				formulas[13] and SWRL rules [21] (if needed)[14]. A summary of the taxonomy of possible overlapping scenarios is provided in figure Figure 3.
Figure 3:
[image:]Figure 3: the taxonomy of all the different kinds of overlapping scenarios that are
 introduced in this paper.

Properties of overlapping
The most important property in EOO is the generic property, eoo:overlapsWith, that describes when an EARMARK node overlaps with another EARMARK node of the
				same type. This means that markup items can overlap only with other markup items, and ranges can overlap only
				with ranges. In addition, this property is symmetric (i.e., if A overlaps with B, then B overlaps with A) and
				irreflexive (i.e., if A overlaps with B, then A is different from B[15]). This property is defined formally as follows:
Declaration as an object property
eoo:overlapsWith ⊑ ⊤op

Domain
∃eoo:overlapsWith.⊤ ⊑
 (earmark:Range ⊓ ∀eoo:overlapsWith.Range) ⊔
 (earmark:MarkupItem ⊓ ∀eoo:overlapsWith.MarkupItem)

Range
⊤ ⊑ ∀eoo:overlapsWith.(
 (earmark:Range ⊓ ∀eoo:overlapsWith.Range) ⊔
 (earmark:MarkupItem ⊓ ∀eoo:overlapsWith.MarkupItem))

Symmetry
eoo:overlapsWith ≡ eoo:overlapsWith-

Irreflexivity
⊤ ⊑ ¬∃eoo:overlapsWith.Self
All the properties presented in the following sections are sub-properties of the
 generic relation eoo:overlapsWith.
Overlapping of ranges
By definition, overlapping ranges (i.e., linked through the symmetric property eoo:overlapsWithRange) are two ranges of the same type that refer to the same docuverse and so
					that at least one of the end points of the first range is contained in the interval described by the locations
					of the second range (end-points excluded). The property eoo:overlapsWithRange
					is defined as follows:
Sub-property declaration
eoo:overlapsWithRange ⊑ eoo:overlapsWith

Domain
∃eoo:overlapsWithRange.⊤ ⊑ earmark:Range

Range
⊤ ⊑ ∀eoo:overlapsWithRange.earmark:Range

Symmetry
eoo:overlapsWithRange ≡ eoo:overlapsWithRange-
Specifically, totally overlapping ranges (defined through the property
						eoo:overlapsTotallyWithRange) have the locations of the first range
					completely contained in the interval of the second range or vice versa, i.e., the range is fully contained
					inside the second range. For instance, in the example in Figure 2, the range “the
					Fruit Of that Forbidden Tree” overlaps totally with the range “Of that Forbidden Tree”.
On the other hand, partially overlapping ranges (defined through the property eoo:overlapsPartiallyWithRange) have exactly one location inside the interval and the other
					outside. For instance, considering the example in Figure 2, the range “Of Mans
					First Disobedience, and the Fruit” overlaps partially with “the Fruit Of that Forbidden Tree”. These two
					properties are disjoint, meaning that two ranges cannot overlap totally and partially between them.
					Additionally, this property also handles the situation in which the two locations are complety identical, but
					the end points have reversed roles (i.e., the starting point of the first range is the ending point of the
					second one, and vice versa). They are formally defined as follows:
Sub-property declarations
eoo:overlapsTotallyWithRange ⊑ eoo:overlapsWithRange
eoo:overlapsPartiallyWithRange ⊑ eoo:overlapsWithRange

Disjointness
eoo:overlapsTotallyWithRange ⊓ eoo:overlapsPartialelyWithRange ⊑ ⊥

Symmetry
eoo: overlapsTotallyWithRange ≡ eoo:overlapsTotallyWithRange-
eoo: overlapsPartiallyWithRange ≡ eoo:overlapsPartiallyWithRange-
The following SWRL rules allows us to catch the constraints of this kind of overlap by
 inferring the overlapping relation between the two different kinds of (concrete) ranges,
 i.e., earmark:PointerRange and earmark:XPathPonterRange[16]:
Overlaps partially with range
RANGE_IDENTIFICATION ^
earmark:refersTo(?x,?d) ^ earmark:refersTo(?y,?d) ^
earmark:begins(?x,?b1) ^ earmark:begins(?y,?b2) ^
earmark:ends(?x,?e1) ^ earmark:ends(?y,?e2) ^
(?b1 < ?b2 < ?e1 < ?e2) or (?b1 < ?e2 < ?e1 < ?b2) or
(?e1 < ?b2 < ?b1 < ?e2) or (?e1 < ?e2 < ?b1 < ?b2) or
(?b1 = ?b2 and ?e1 = ?e2) or (?b1 = ?e2 and ?e1 = ?b2) ^
?x != ?y
 ⇒ eoo:overlapsPartiallyWithRange(?x,?y)

Overlaps totally with range
RANGE_IDENTIFICATION ^
earmark:refersTo(?x,?d) ^ earmark:refersTo(?y,?d) ^
earmark:begins(?x,?b1) ^ earmark:begins(?y,?b2) ^
earmark:ends(?x,?e1) ^ earmark:ends(?y,?e2) ^
(?b1 <= ?b2 < ?e2 < ?e1) or (?e1 <= ?b2 < ?e2 < ?b1) ^
(?b1 < ?b2 < ?e2 <= ?e1) or (?e1 < ?b2 < ?e2 <= ?b1) ^
(?b1 <= ?e2 < ?b2 < ?e1) or (?e1 <= ?e2 < ?b2 < ?b1) ^
(?b1 < ?e2 < ?b2 <= ?e1) or (?e1 < ?e2 < ?b2 <= ?b1) ^
?x != ?y
 ⇒ eoo:overlapsTotallyWithRange(?x,?y)
Here, “RANGE_IDENTIFICATION” is a placeholder for the different antecedents to use in case we want to deal
					with pointer ranges or with XPath pointer ranges. In particular, for the pointer range we have:
earmark:PointerRange(?x) ^ earmark:PointerRange(?y)
, and for XPath pointer ranges we have:
earmark:XPathPointerRange(?x) ^ earmark:XPathPointerRange(?y) ^
earmark:hasXPathContext(?x,?c) ^ earmark:hasXPathContext(?y,?c)

Dominance vs. Containment in EARMARK
In this section we introduce how dominance and containment relations are implemented
 in EOO, since their intrinsic relation with any kind of overlapping scenario we discuss in
 the following subsections.
The dominance relation is actually defined by two different and related concepts that
 have always markup items as subject of dominance assertions. In particular, we say that a
 markup item A dominates directly (i.e., eoo:dominatesDirectly) an EARMARK node B if A has B as child.
 This relation is formally defined as follows:
Declaration as an object property
eoo:dominatesDirectly ⊑ ⊤op

Domain
∃eoo:dominatesDirectly.⊤ ⊑ earmark:MarkupItem

Range
⊤ ⊑ ∀eoo:dominatesDirectly.(earmark:Range ⊔ earmark:MarkupItem)
The relation between eoo:dominatesDirectly and the
 parent-child relation in EARMARK[17] is defined by means of the following SWRL rule:
earmark:MarkupItem(?x) ^ co:element(?x,?y)
 ⇒ eoo:dominatesDirectly(?x,?y)
Generalising eoo:dominatesDirectly, we say that a
 markup item A dominates (i.e., eoo:dominates) an EARMARK node B if B is a descendant of A. This property is
 transitive and is also a super-property of eoo:dominatesDirectly (i.e., eoo:dominatesDirectly entails eoo:dominates), as defined as follows:
Declaration as an object property
eoo:dominates ⊑ ⊤op

Sub-property declaration
eoo:dominatesDirectly ⊑ eoo:dominates

Transitivity
eoo:dominates o eoo:dominates ⊑ eoo:dominates
The containment is a transitive relation (i.e., eoo:contains) that is defined on the basis of the dominance relation and
 applies among any EARMARK node (either markup item or range). In particular, we say that
 an EARMARK node A contains another EARMARK node B when one of the following conditions holds:
	A dominates B;

	if A and B are markup items, the leaf nodes dominated by A are a super-set of the
 leaf nodes dominated by B;

	if A and B are ranges, A overlaps totally with B (cf. section “Overlapping of ranges”) and the interval defined by A contains
 completely the locations of B.

This relation is thus formally defined as follows:
Declaration as an object property
eoo:contains ⊑ ⊤op

Domain
∃eoo:contains.⊤ ⊑ earmark:Range ⊔ earmark:MarkupItem

Range
⊤ ⊑ ∀eoo:contains.(earmark:Range ⊔ earmark:MarkupItem)

Transitivity
eoo:contains o eoo:contains ⊑ eoo:contains
In addition to that, by means of rule 1, we can also state that the dominance relation
 is actually a sub-relation of the containment relation (meaning that if A eoo:dominates B, then A eoo:contains
 B holds as well), as shown as follows:
Sub-property declaration
eoo:dominates ⊑ eoo:contains
While we cannot specify in any way (neither in OWL nor SWRL) the constraint introduced
 in rule 2, we can define a particular SWRL rule to handle the constraint introduced in
 rule 3:
eoo:overlapsTotallyWithRange(?x,?y) ^
earmark:begins(?x,?b1) ^ earmark:begins(?y,?b2) ^
earmark:ends(?x,?e1) ^ earmark:ends(?y,?e2) ^
(?b1 < ?b2 < ?e1) or (?b1 < ?e2 < ?e1) or
(?e1 < ?b2 < ?b1) or (?e1 < ?e2 < ?b1)
 ⇒ eoo:contains(?x,?y)

Overlapping of markup items
The case of overlapping markup items (i.e., linked through the symmetric property eoo:overlapsWithMarkupItem) is slightly more complicated than range overlaps. We define that two
					markup items A and B overlap when at least one of the following scenarios holds:
	a markup item A contains a range that overlaps
 with another range contained by a markup item B;

	two markup items A and B contain at least a range in common;

	two markup items A and B contain at least a markup item in common.

The property eoo:overlapsWithMarkupItem is defined as
 follows:
Sub-property declaration
eoo:overlapsWithMarkupItem ⊑ eoo:overlapsWith

Domain
∃eoo:overlapsWithMarkupItem.⊤ ⊑ earmark:MarkupItem

Range
⊤ ⊑ ∀eoo:overlapsWithMarkupItem.earmark:MarkupItem

Symmetry
eoo:overlapsWithMarkupItem ≡ eoo:overlapsWithMarkupItem-
The three aforementioned scenarios correspond to three different symmetric sub-properties of eoo:overlapsWIthMarkupItem.
The first scenario – i.e., A contains a range that overlaps with another
					range contained by B – refers to markup items overlapping by range.In the example in Figure 2, the element
						l1 overlaps by range with the element unit1. This is captured by a subproperty of eoo:overlapsWIthMarkupItem, property eoo:overlapsByRange, that
					is formally described as follows:
Sub-property declaration
eoo:overlapsByRange ⊑ eoo:overlapsWithWithMarkupItem

Domain
∃eoo:overlapsByRange.⊤ ⊑
 earmark:MarkupItem ⊓
 ∃eoo:dominatesDirectly.(∃eoo:overlapsWithRange.earmark:Range)

Range
⊤ ⊑ ∀eoo:overlapsByRange.(
 earmark:MarkupItem ⊓
 ∃eoo:dominatesDirectly.(∃eoo:overlapsWithRange.earmark:Range))

Symmetry
eoo:overlapsByRange ≡ eoo:overlapsByRange-
The second scenario – i.e., A and B
					contain at least one shared range – refers to markup items overlapping by content
						hierarchy. In the example in Figure 2, the element l2 overlaps by content hierarchy with the element unit2. The corresponding subproperty eoo:overlapsByContentHierarchy is formally described as follows:
Sub-property declaration
eoo:overlapsByContentHierarchy ⊑ eoo:overlapsWithWithMarkupItem

Domain
∃eoo:overlapsByContentHierarchy.⊤ ⊑
 earmark:MarkupItem ⊓ ∃eoo:dominatesDirectly.earmark:Range

Range
⊤ ⊑ ∀eoo:overlapsByContentHierarchy.(
 earmark:MarkupItem ⊓ ∃eoo:dominatesDirectly.earmark:Range)

Symmetry
eoo:overlapsByContentHierarchy ≡ eoo:overlapsByContentHierarchy-
The third scenario – i.e., A and B
					contain at least another markup item in common – refers to markup items overlapping by
						markup hierarchy. In the example in Figure 2, the element lg overlaps by markup hierarchy with the element q.
					The related subproperty eoo:overlapsByMarkupHierarchy is formally described
					as follows:
Sub-property declaration
eoo:overlapsByMarkupHierarchy ⊑ eoo:overlapsWithWithMarkupItem

Domain
∃eoo:overlapsByMarkupHierarchy.⊤ ⊑
 earmark:MarkupItem ⊓ ∃eoo:dominatesDirectly.earmark:MarkupItem

Range
⊤ ⊑ ∀eoo:overlapsByMarkupHierarchy.(
 earmark:MarkupItem ⊓ ∃eoo:dominatesDirectly.earmark:MarkupItem)

Symmetry
eoo:overlapsByMarkupHierarchy ≡ eoo:overlapsByMarkupHierarchy-
The following SWRL rules allows us to catch the constraints of this kind of overlap by
 inferring the right overlapping relation according to the aforementioned three
 scenarios:
overlaps by range
earmark:MarkupItem(?a) ^ earmark:MarkupItem(?b) ^
earmark:Range(?r1) ^ earmark:Range(?r2) ^
eoo:dominatesDirectly(?a,?r1) ^ eoo:dominatesDirectly(?b,?r2) ^
eoo:overlapsWithRange(?r1,?r2) ^
?a != ?b ^ ?r1 != ?r2
 ⇒ eoo:overlapsByRange(?a,?b)

overlaps by content hierarchy
earmark:MarkupItem(?a) ^ earmark:MarkupItem(?b) ^ earmark:Range(?r) ^
eoo:dominatesDirectly(?a,?r) ^ eoo:dominatesDirectly(?b,?r) ^
?a != ?b
 ⇒ eoo:overlapsByContentHierarchy(?a,?b)

overlaps by markup hierarchy
earmark:MarkupItem(?a) ^ earmark:MarkupItem(?b) ^ earmark:MarkupItem(?x) ^
eoo:dominatesDirectly(?a,?x) ^ eoo:dominatesDirectly(?b,?x) ^
?a != ?b != ?x
 ⇒ eoo:overlapsByMarkupHierarchy(?a,?b)

Approaching inferences through reasoners
The EARMARK Overlapping Ontology can be used by OWL reasoners such as Pellet[18] [33] in order to identify all the possible kinds of
 overlapping scenarios that happen within any EARMARK document. As an example, running such
 reasoner according to EOO on the EARMARK file describing the document in Figure 2[19], we obtain a full and complete description of all kinds of overlaps existing in
 such document[20].
In particular, the reasoner identified:
	all the dominance relations among elements that exist in the document, as well as all the related
						containment relations entailed by dominance;

	that the range “Of Mans First Disobedience, and the Fruit” (r1 from now on) overlaps with the range “the Fruit Of that Forbidden Tree”
 (r2 from now on), and r2 overlaps with the range “Of that Forbidden Tree” (r3 from now on). Specifically, r1
 overlaps partially with r2, and r2 overlaps totally with r3;

	about the last total range overlap, that r2 actually contains r3 and, consequently, the markup items syntax and
							unit1 contain r3;

	that the markup items in the pairs l1 - unit1, l2 - unit1, l2 - unit2, l3 -
							unit2, and lg - q overlap between them. Specifically, the markup items in the first two pairs overlap by
						range, while those in the following two pairs overlap by content hierarchy, and the last two overlap by
						markup hierarchy.

Of course, this inference process can be run on any EARMARK document. However, the bigger the document (in
				terms of the number of OWL assertions that specify the markup structure), the longer it takes for the reasoner
				to infer those data. For this reason, in some cases, it could be prefereable to express as SPARQL 1.1 inserts
					[17] some of the inference rules that we have shown here as OWL logical
				axioms and SWRL rules. For instance, the rule specified for identifying the overlaps by markup hierarchy could
				improve the efficiency of the system if expressed in SPARQL as follows:
Rule 'overlaps by markup hierarchy' in SPARQL
CONSTRUCT { ?a eoo:overlapsByMarkupHierarchy ?b }
WHERE {
 ?a a earmark:MarkupItem ;
 eoo:dominatesDirectly ?x .
 ?b a earmark:MarkupItem ;
 eoo:dominatesDirectly ?x .
 ?x a earmark:MarkupItem .
}
According to our experience, this approach considerably reduces the time to infer the existing overlapping
				scenarios in an EARMARK document, even if it needs to implement manually all the inferences that are needed,
				including those derived from any ontological axiom, e.g., subsumption, property characteristic (transitivity,
				irreflexivity, symmetry, etc.), and so on.

Conclusions
For EARMARK to be able to claim to be a one-stop answer to overlapping needs of markup authors, we still
			needed a way to identify when, indeed, ranges and markup items actually overlap. EARMARK per se, in fact, does not have a way to identify overlapping situations, simply allowing them to
			exist and each overlapping item to ignore the others. With the EARMARK Overlapping Ontology, on the other hand, it
			is now possible to identify and qualify explicitly every overlapping situation we encounter. For instance in
			[1] we provide a brief overview of situations and contexts where EARMARK
 	can and has been used, especially in the domain of Digital Humanities.
Also, technically, EARMARK is a stand-off notation, and as such it suffers from the same limitations that all
			stand-off notations suffer: namely, whenever the source document (the docuverse)
			is modified outside of the control of the author of the EARMARK annotations, they may (and often will) have the
			pointers become outdated and wrong. Also in [1] we provide some
			mechanisms through which EARMARK pointers can be resynchronized with a modified source, that should be able to
			handle some of the possible situations.
EARMARK still has not finished evolving. The FRETTA parser [2], that provides a
			way for converting EARMARK documents into XML, and expressing overlapping situations choosing parametrically one
			of the many existing XML tricks such as fragmentation, milestones or twin documents, is working and complete, but
			the opposite converter, the one that generates an EARMARK document from an XML file that uses XML tricks to
			express overlaps, is still to be completed. Once this is finished, we will have a complete solution to the problem
			of expressing any markup document with Semantic Web technologies, and we will be able to cover all possible
			situations of conversion of overlapping documents.

Bibliography
[1] Barabucci, G., Di Iorio, A.,
 Peroni, S., Poggi, F., & Vitali, F. (2013). Annotations with EARMARK in practice: a fairy
 tale. In F. Tomasi & F. Vitali (Eds.), Proceedings of the 2013 Workshop on Collaborative
 Annotations in Shared Environments: metadata, vocabularies and techniques in the Digital
 Humanities (DH-CASE 2013). New York, New York, US: ACM Press. doi:https://doi.org/10.1145/2517978.2517990

[2] Barabucci, G., Peroni, S., Poggi, F., &
 Vitali, F. (2012). Embedding semantic annotations within texts: the FRETTA approach. In
 Proceedings of the 2012 ACM Symposium on Applied Computing (SAC 2012): 658–663. New York, New
 York, US: ACM Press. doi:https://doi.org/10.1145/2245276.2245403
[3] Barnard, D., Hayter, R., Karababa, M.,
 Logan, G., & McFadden, J. (1988). SGML-based markup for literary texts: Two problems and
 some solutions. Computers and the Humanities, 22(4), 265-276. doi:https://doi.org/10.1007/BF00118602.
[4] Berglund, A., Boag, S., Chamberlin, D., Fernández, M.
 F., Kay, M., Robie, J., Siméon, J. (2010). XML Path Language (XPath) 2.0 (Second Edition). W3C
 Recommendation 14 December 2010. World Wide Web Consortium.
 “http://www.w3.org/TR/xpath20/”.
[5] Boag, S., Chamberlin, D., Fernández, M. F., Florescu,
 D., Robie, J., Siméon, J. (2010). XQuery 1.0: An XML Query Language (Second Edition). W3C
 Recommendation 14 December 2010. World Wide Web Consortium.
 “http://www.w3.org/TR/xquery/”.
[6] Ciccarese, P., & Peroni, S. (2013). The
 Collections Ontology: creating and handling collections in OWL 2 DL frameworks. Semantic Web –
 Interoperability, Usability, Applicability. doi:https://doi.org/10.3233/SW-130121
[7] Cowan, J., Tennison, J. ECLIX: reading XML as
 LMNL. LMNL wiki “http://lmnl-markup.org/specs/”.
[8] DeRose, S. J. (2004). Markup Overlap: A Review and a
 Horse. In Extreme Markup Languages.
[9] DeRose, S. J., Durand, D. G., Mylonas, E.,
 Renear, A. H. (1990). What is text, really? In Journal of Computing in Higher Education, 1(2), 3-26. doi:https://doi.org/10.1007/BF02941632.
[10] DeRose, S., Daniel, R., Grosso, P., Maler, E.,
 Marsh, J., Walsh, N. (2002). XML Pointer Language (XPointer). W3C Working Draft 16 August
 2002. World Wide Web Consortium. “http://www.w3.org/TR/xptr/”.
[11] Di Iorio, A., Peroni, S., &
 Vitali, F. (2009). Towards markup support for full GODDAGs and beyond: the EARMARK approach.
 In Proceedings of Balisage: The Markup Conference 2009, Balisage Series on Markup Technologies
 3. Rockville, Maryland, US: Mulberry Technologies, Inc. doi:https://doi.org/10.4242/BalisageVol3.Peroni01
[12] Di Iorio, A., Peroni, S., & Vitali, F.
 (2011). A Semantic Web approach to everyday overlapping markup. Journal of the American
 Society for Information Science and Technology, 62(9): 1696–1716. doi:https://doi.org/10.1002/asi.21591
[13] Di Iorio, A., Peroni, S., &
 Vitali, F. (2011). Using semantic web technologies for analysis and validation of structural
 markup. International Journal of Web Engineering and Technology, 6(4): 375–398. doi:https://doi.org/10.1504/IJWET.2011.043439
[14] Durusau, P., O'Donnell, M. B. (2002). Coming down
 from the trees: Next step in the evolution of markup? In Extreme Markup
 Languages®.
[15] Durusau, P., O'Donnell, M. B. (2002).
 Just-In-Time-Trees (JITTs): Next Step in the Evolution of Markup. In Proceedings of 2002
 Extreme Markup Languages Conference, Montréal, Canada.
[16] Falco, R., Gangemi, A., Peroni, S., &
 Vitali, F. (2014). Modelling OWL ontologies with Graffoo. In ESWC 2014 Satellite Events -
 Revised Selected Papers, Lecture Notes in Computer Science. Berlin, Germany: Springer.
 Postprint available at
 http://speroni.web.cs.unibo.it/publications/falco-in-press-modelling-ontologies-graffoo.pdf
[17] Gearon, P., Passant, A., & Polleres,
 A. (2013). SPARQL 1.1 Update. W3C Recommendation, 21 March 2013. World Wide Web Consortium.
 Retrieved from http://www.w3.org/TR/sparql11-update/
[18] Goldfarb, C. F., Rubinsky, Y. (1990). The SGML
 handbook. Oxford University Press.
[19] Hilbert, M., Schonefeld, O., Witt, A. (2005,
 August). Making CONCUR work. In Extreme Markup Languages.
[20] Horrocks, I., Kutz, O., & Sattler, U.
 (2006). The Even More Irresistible SROIQ. In P. Doherty, J. Mylopoulos, & C. A. Welty
 (Eds.), Proceedings of the 10th International Conference on Principles of Knowledge
 Representation and Reasoning (KR 2006): 57–67. Palo Alto, California, USA: AAAI
 Press.
[21] Horrocks, I., Patel-Schneider, P. F., Boley,
 H., Tabet, S., Grosof, B., & Dean, M. (2004). SWRL: A Semantic Web Rule Language Combining
 OWL and RuleML. W3C Member Submission, 21 May 2004. World Wide Web Consortium. Retrieved from
 http://www.w3.org/Submission/SWRL/
[22] Huitfeldt, C., Sperberg-McQueen, C. M. (2001).
 TexMECS: An experimental markup meta-language for complex documents.
 “http://mlcd.blackmesatech.com/mlcd/2003/Papers/texmecs.html”.(DAG, noDAG, child-arch-ordered
 direct graph (CODG), overlap-only (oo) TexMECS, etc.)
[23] Huitfeldt, C.,Sperberg-McQueen, C. M. (2006).
 Representation and processing of goddag structures: implementation strategies and progress
 report. In Extreme Markup Languages.
[24] Jagadish, H. V., Lakshmanan, L. V.,
 Scannapieco, M., Srivastava, D., Wiwatwattana, N. (2004). Colorful XML: one hierarchy isn't
 enough. In Proceedings of the 2004 ACM SIGMOD international conference on Management of data.
 (pp. 251-262). ACM. doi:https://doi.org/10.1145/1007568.1007598.
[25] Krötzsch, M., Simancik, F., & Horrocks, I.
 (2013). A Description Logic Primer. No. arXiv:1201.4089, 2013, The Computing Research
 Repository. Retrieved from http://arxiv.org/abs/1201.4089
[26] Marcoux, Y. (2008). Graph characterization of
 overlap-only TexMECS and other overlapping markup formalisms. In Proceedings of Balisage: The
 Markup Conference (Vol. 1). doi:https://doi.org/10.4242/BalisageVol1.Marcoux01
[27] Marcoux, Y., Sperberg-McQueen, M., Huitfeldt, C.
 (2013). Modeling overlapping structures. Graphs and serializability. In Balisage: The Markup
 Conference, 2013. doi:https://doi.org/10.4242/BalisageVol10.Marcoux01
[28] Marinelli, P., Vitali, F., Zacchiroli, S. (2008).
 		Towards the unification of formats for overlapping markup. In New Review of Hypermedia and
 		Multimedia 14, 1 (January 2008), pages 57-94. doi:https://doi.org/10.1080/13614560802316145
[29] O. Schonefeld. (2007). XCONCUR and
 XCONCUR-CL: A constraint-based approach for the validation of concurrent markup. In Data
 Structures for Linguistic Resources and Applications. Proceedings of the Biennial GLDV
 Conference 2007, Tübingen, Germany, 2007. Gunter Narr Verlag.
[30] Peroni, S., Gangemi, A., &
 Vitali, F. (2011). Dealing with markup semantics. In Proceedings the 7th International
 Conference on Semantic Systems (I-SEMANTICS 2011): 111–118. New York, New York, US: ACM Press.
 doi:https://doi.org/10.1145/2063518.2063533
[31] Peroni, S., Poggi, F., & Vitali,
 F. (2013). Tracking changes through EARMARK: a theoretical perspective and an implementation.
 In G. Barabucci, U. Burghoff, A. Di Iorio, & S. Maier (Eds.), Proceedings of 1st
 International Workshop on (Document) Changes: modeling, detection, storage and visualization
 (DChanges 2013), CEUR Workshop Proceedings 1008. Aachen, Germany: CEUR-WS.org. Retrieved from
 http://ceur-ws.org/Vol-1008/paper6.pdf
[32] Prud’hommeaux, E., & Carothers, G.
 (2013). Turtle - Terse RDF Triple Language. W3C Candidate Recommendation, 19 February 2013.
 World Wide Web Consortium. Retrieved from http://www.w3.org/TR/turtle/
[33] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur,
 A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Web Semantics: Science,
 Services and Agents on the World Wide Web, 5(2): 51–53. doi:https://doi.org/10.1016/j.websem.2007.03.004
[34] Sperberg-McQueen, C. M., & Huitfeldt,
 C. (2004). Goddag: A data structure for overlapping hierarchies. In Digital Documents: Systems
 and Principles (pp. 139-160). Springer Berlin Heidelberg. doi:https://doi.org/10.1007/978-3-540-39916-2_12.
[35] TEI Consortium (2008). TEI P5: Guidelines for
 electronic text encoding and interchange. Eds. Lou Burnard, and Syd Bauman. TEI Consortium,
 2008.
[36] Tennison, J., Piez, W. (2002). The Layered Markup and
 Annotation Language (LMNL). In Extreme Markup Languages, 2002.
[37] Witt, A., Schonefeld, O., Rehm, G., Khoo, J.
 Evang, K. (2007). On the lossless transformation of single-file, multi-layer annotations into
 multi-rooted trees. In Proceedings of Extreme Markup Languages, Montréal, Québec,
 2007.

[1] This non-implicitness of properties in EARMARK results, of course, in having a linearisation of standard documents (i.e., those that do not contain any overlap) that is more verbose than that obtained by using other markup languages such as XML or TexMecs, both in terms of bytes [31] as well as in terms of comparing RDF statements in an EARMARK document vs. number of markup nodes in an XML document [12]. However, while the gap in bytes between XML-based formats (e.g., ODT used by OpenOffice and OOXML used by Microsoft Word) and EARMARK (linearised in Turtle) seems to be proportional when additional overlapping elements are introduced in documents [31], the gap between number of statements and number of nodes changes in favour of EARMARK [12] the more overlapping markup item are added to the document.As introduced in [12], from a pure syntactical point of view, EARMARK is nothing but yet another standoff notation, where the markup speciﬁcations point to, rather than contain, the relevant substructure and text fragments. Thus it is affect of all the usual problems of any standoff notations:
		 	very difficult to read for humans;

	the information, although included, is difficult to access using generic methods;

	limited software support as standard parsing or editing software cannot be employed;

	standard document grammars can only be used for the level which contains both markup and textual data;

	new layers require a separate interpretation;

	layers, although separate, often depend on each other.

		
However, EARMARK provides also a number of workarounds to most of the above-mentioned issues, as discussed in [12].

[2] In our past works on EARMARK, we show how a correct use of Semantic Web technologies can allow us to query and validate EARMARK documents in a proper way, even simplifying some of these tasks when overlapping scenarios exist in a document. In particular, in [12] and [31] we show how a simple natural language query like "give me the textual content of all paragraphs inserted by John Smith" is very complex to handle by using XPath on XML documents (stored according to both ODT and OOXML formats) while it is quite trivial by applying SPARQL on EARMARK documents. Similarly, the syntactic validation of documents with overlapping markup is not so straightforward to check in XML documents, since it is not easy to retrieve each hierarchy that a document defines by means of overlapping workarounds (e.g., milestones and fragmentation elements). However, in EARMARK this task is simplified since all the hierarchies are explicitly defined without using any workaround and the document validity can be verified easily through a reasoner against a grammar implemented as an OWL ontology, as we show in [13]. In addition, the use of OWL allows us to perform also the semantic validation of the markup in EARMARK documents, with several application in real-case scenarios such as semantic search in digital libraries and the quality evaluation of legal drafting [30].
[3] as per meaning #3 of the entry on definitive in the Merriam-Webster
					Dictionary at http://www.merriam-webster.com/dictionary/definitive.
[4] In the first paper that deals with overlap in digital texts, in 1988 Barnard et
						al argue that “SGML can successfully cope with the problem of maintaining multiple structural
					views”, and that the solutions “can be made practical” by means of simple mechanisms, such as by exploiting
					the CONCUR feature of SGML [3].
[5] In a famous paper [9], Renear et al.
 defend their OCHO thesis stating that “If you treat texts as ordered
 hierarchies of content objects many pratical advantages follows, but not otherwise.
 Therefore texts are ordered hierarchies of content objects”.
[6] It's worth noting
 that many slightly different types of milestones have been proposed: for example, another
 (more general) type of milestone consists in using milestone elements to mark the boundary
 between sections of a text, as indicated by changes in a standard reference system
 (e.g. the structure of pages in a standard codex). In those cases, each milestone element
 (except the first and the last) represents both the end of the previous feature and the
 beginning of the next one.
[7] EARMARK Ontology: http://www.essepuntato.it/2008/12/earmark. The prefix earmark
					refers to entities defined in it, while the prefix co refers to entities –
					used in the EARMARK Ontology – defined in the old version of the Collections Ontology [6].
[8] Graffoo is a graphical notation for OWL ontologies and it is available at http://www.essepuntato.it/graffoo.
[9] In the following descriptions the prefix co is used to indicate entities taken
					from version 1.2 of the Collections Ontology [6], an imported ontology used for
					handling collections, available at http://swan.mindinformatics.org/ontologies/1.2/collections.owl.
[10] General identifier actually refers to the SGML generic identifier, i.e., the SGML term for the local name of the markup
					item, e.g., “p” for markup element “<p>...</p>”.
[11] This and all the following excerpts are defined in Turtle [32].
[12] EARMARK Overlapping Ontology: http://www.essepuntato.it/2011/05/overlapping. The prefix eoo
					refers to entities defined in it.
[13] OWL 2 DL [MotikOWL2] is based on a particular description logic (DL), i.e., SROIQ [20]. In this paper, we decided to use DL notation for the sake of clarity, instead
					of adopting one of the possible linearisation of OWL made available by the W3C. We recommend the reading of
						[25] for more information about DL notation. As an extension of common DL
					notation, we are using ⊤ and ⊤op to indicate the top class and the top object property respectively.
[14] Any OWL 2 DL ontology can be accompanied by SWRL rules so as to guarantee additional inferences that are
					not directly handled by current ontological definitions. All these rules will be defined using an informal
					human readable syntax as introduced in [21], where each rule is represented in
					the form of “antecedent ⇒ consequent” statements, meaning that if the antecedent is true, then the consequent can be inferred. Both
						antecedent and consequent are a list of
					ontological assertions separated by “^”. Each assertion can be composed by an atomic entity (e.g., a class or
					a property) containing zero, one or two variables (each beginning with a “?”) depending on the kinds of unary
					(i.e., class) or binary (i.e., property) entity used, or by a (boolean, cardinality, etc.) restriction of
					multiple entities.
[15] Note that OWL 2 DL does not support the unique name assumption typical of database systems. Among the
						various consequences of this choice, in this case it means that two different IRIs cannot be guaranteed to
						refer to two different resources.
[16] In the following examples, we introduce some generic SWRL rules for ranges that
 actually work fully only with instances of the class earmark:PointerRange, which is one kind of range defined in EARMARK. In
 particular, note that if we consider individuals of the class earmark:XPathRange, the XPath context (defined through the property
 earmark:hasXPathContext) must be taken into account
 to identify when such ranges overlap between them. Even if the SWRL rules for XPath
 ranges are not introduced in this paper for the sake of clarity, in EOO the issue of
 using also the property earmark:hasXPathContext in
 such rules has been approached in the most lazy way, saying that two XPath ranges have
 the same context when the XPath expressions specified are exactly the same. However,
 currently EOO does not handle the cases of having different XPath expressions that are
 either semantically-equivalent (i.e., “//p” and “//element()[name() = 'p']”) or
 functionally-equivalent (i.e., they return the same sequence of items).
[17] As anticipated in section “EARMARK”, note that in EARMARK any
 parent-child relationship between a markup item and a node is defined through the
 property co:element in case the markup item is
 defined as a set (i.e., co:Set) or a bag (i.e.,
 co:Bag), while it is defined by the chain co:item o co:itemContent if the markup item is defined as a
 list (i.e., a co:List). However, the new version of
 the Collections Ontology [6], available at http://purl.org/co, defines the property
 co:element as sub-property of the aforementioned
 property chain, meaning that if we have “A co:item I” and “I co:itemContent B”, then
 “A co:elements B” holds as well. Even if EARMARK is still using the old version of the
 Collection ontology, that does not includes the above sub-property axiom, we have
 added such axiom in EOO in order to map co:element
 assertions between markup items and nodes as parent-child relationships.
[18] Pellet, OWL 2 reasoner for Java: http://clarkparsia.com/pellet/.
[19] Available online at http://www.essepuntato.it/2014/balisage/earmark-document.ttl.
[20] An OWL file containing all the assertions about overlaps inferred by the reasoner is
 available online at http://www.essepuntato.it/2014/balisage/earmark-overlapping.ttl.

Balisage: The Markup Conference

Overlapproaches in documents: a definitive classification (in OWL, 2!)
Silvio Peroni
Department of Computer Science and Engineering, University of Bologna, Bologna,
 Italy

<silvio.peroni@unibo.it>
Silvio Peroni holds a Ph.D. degree in Computer Science and he is a post-doc at the University of Bologna. He is an expert in document markup and semantic descriptions of bibliographic entities using OWL ontologies. He is one of the main developers of SPAR (Semantic Publishing and Referencing) Ontologies (http://purl.org/spar) that permit RDF descriptions of bibliographic entities, citations, reference collections and library catalogues, the structural and rhetorical components of documents, and roles, statuses and workflows in publishing. Among his research interests are Semantic Web technologies, markup languages for complex documents, design patterns for digital documents and ontology modelling, and automatic processes of analysis and segmentation. In particular, his recent works concern the empirical analysis of the nature of citations, the study of visualisation and browsing interfaces for semantic data, and the development of ontologies to manage, integrate and query bibliographic information according to temporal and contextual constraints.

Francesco Poggi
Department of Computer Science and Engineering, University of Bologna, Bologna,
 Italy

<fpoggi@cs.unibo.it>

Fabio Vitali
Department of Computer Science and Engineering, University of Bologna, Bologna,
 Italy

<fabio@cs.unibo.it>

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Peroni01-003.png
overlaps with

N

o. with fange o. with markup item

LN

o. partially with range 0. totally with range 0. byrange o. by content hierarchy ©. by markup hierarchy

content/images/Peroni01-002.png
©F Mans First Disobedience, and the Fru/Of that Forbidden Tree Yahose mortal tas)rought Deatinto the World)

content/images/Peroni01-001.png
earmark:hasContent only xsd:string earmark'haanntent only xsd:anyURI El Prefixes
rdfs http://www.w3.0rg/2000/01/rdf-schema
xsd http:/ /www.w3.0rg/2001/XMLSchema#
earmark http://www.essepuntato.it/2008/12 /earmark#
rdfs:subClassOf rdfs S“hc'“so' o http://swan.mindinformatics.org/ontologies/1.2/collections/

rdfs:subClassOf rdfs:subClassOf

(co:Bag and (co:item only co:itemContent only earmark:Markupltem
or earmark:Range) and (co:item exactly 0 co:Collection))
or
(co:Set and (co:element only earmark:Markupltem or earmark:Range))

earmark hasContent

rdfs:subClassOf
rdfs:Literal earmarkirefersTo xsd:string
A

earmark begins !
earmaricends rdfs:subClassOf

earmark:hasGeneralldentifier

corelement
xsd,string
earmark hasxPathContext rdfs:subClassOf rdfs:subClassOf earmarkchasNamespace
v
N co:item
cozitemContent xsd:anyURI
rdfs:subClassOf rdfs:subClassOf

¢ co:firstitem
(earmark:begins only xsd:nonNegativelnteger) rdfs:subClassOf co:lastitem
and
(earmark:ends only xsd:nonNegativelnteger)
co:nextltem
rdfs suhclassof4

