[image: Balisage logo]Balisage: The Markup Conference

Three Ways to Enhance the Interoperability of Cross-References in TEI XML
Joel Kalvesmaki
Editor in Byzantine Studies
Dumbarton Oaks

<kalvesmaki@gmail.com>

Symposium on Cultural Heritage Markup
August 10, 2015

“Three Ways to Enhance the Interoperability of Cross-References in TEI XML”, is licensed under a Creative Commons Attribution 4.0 International License.

How to cite this paper
Kalvesmaki, Joel. "Three Ways to Enhance the Interoperability of Cross-References in TEI XML." Presented at: Symposium on Cultural Heritage Markup, Washington, DC, August 10, 2015. In Proceedings of the Symposium on Cultural Heritage Markup.
 Balisage Series on Markup Technologies vol. 16 (2015). https://doi.org/10.4242/BalisageVol16.Kalvesmaki01.

Abstract
Systems are 'interoperable' if each can work with products of the other with minimal
 external intervention. Semantic interoperability (exchange of underlying meaning not
 just syntax) is the goal. Currently supported TEI cross-reference mechanisms are
 typically not interoperable without extensive human intervention. I offer three
 practical ways to make standard TEI cross-references more semantically interoperable.
 The first is the deployment of Canonical Text Services URNs. The second is informal
 agreements among communities to adopt shared Schematron rules. Both of these methods can
 be implemented right now; the barriers are practical not technical. The third method is
 stand-off markup based on the Text Alignment Network, a planned TEI-friendly XML format
 for the interchange of aligned texts.

Balisage: The Markup Conference

 Three Ways to Enhance the Interoperability of Cross-References in TEI XML

 Table of Contents

 	Title Page

 	Introduction

 	Standard Cross-References in TEI

 	TEI @cRef + Canonical Text Services URNs
 	TEI @cRef + Shared Schematron

 	TEI + Stand-off Markup

 	Conclusion

 	About the Author

 Three Ways to Enhance the Interoperability of Cross-References in TEI XML

Introduction
Two systems are said to be interoperable if each is able to work with the parts or
 products of the other, with minimal if any external intervention. When applied to formats
 of digital texts, interoperability is differentiated between syntactic and semantic.Note
My distinction between and use of syntactic and
 semantic is congruent with that of the European
 Interoperability Framework European Commission 2010, 23:

 Semantic interoperability is about the meaning of
 data elements and the relationship between them. It includes developing
 vocabulary to describe data exchanges, and ensures that data elements are
 understood in the same way by communicating parties.

Syntactic interoperability is about describing
 the exact format of the information to be exchanged in terms of grammar, format
 and schemas.

Syntactic interoperability refers to consistency or completeness in encoding, markup,
 and related conventions attached to that markup. It generally implies the complete,
 lossless exchange of data, no matter its meaning. We witness syntactic interoperability
 every day that we use the Web. Major updated browsers accessing the data in any page
 written validly in a version of Hypertext Markup Language (HTML) will present different
 readers with the same content and roughly the same display. Likewise, in the realm of
 textual scholarship, files validly marked up with one of the Text Encoding Initiative (TEI)
 formats are, in general, syntactically interoperable. A valid TEI file created by one party
 can be shared with any other to be studied, processed, or otherwise used.
Semantic interoperability stands a level higher, and characterizes systems that can
 losslessly exchange not just the data but any associated or underlying meaning. For
 example, the UTF-8 string "France" may be syntactically interoperable with
 other systems that handle UTF-8, but for it to be semantically interoperable, the
 underlying significance or meaning, i.e., that the string represents the name of the
 country France, should also be preserved after exchange. Such semantics admit degrees of
 interest and importance. For example, in both HTML and TEI , <div> and
 <p> have some semantic meaning, but to most users, of little import or
 precision. HTML 5 has allowed a few other semantically interesting elements, e.g.,
 <article>, but there are not many of these, thus keeping vocabulary to
 less than 120 elements. In its more concerted effort to support scholarly concepts with
 markup, the TEI Consortium has produced many more and with even greater precision, e.g.,
 <watermark> and <residence>, so that in its full schema
 TEI supports nearly 550 elements. TEI encourages projects and users to build on this effort
 by customizing the TEI to add their own semantically precise elements, or to remove ones
 that have no relevance to a given project.
But assigning an XML element to every possible concept of interest is impractical, even
 in a customized TEI scheme. Thousands of concepts could be encoded, but with what result?
 If an elemental vocabulary gets too large, it winds up being misunderstood or misused. Or
 it may legitimate interpretations that members of the community may regard as wrongly
 deviating from standard usage.
An alternative has emerged to making elements the main carrier of semantics. Known
 loosely and variously as linked data, open linked data, or the semantic web, this set of
 practices builds upon a recommendation of the World Wide Web Consortium (W3C) called the
 Resource Description Framework (RDF), a relatively simple data model that envisions data as
 a network of nodes connected by lines, termed rather misleadingly edges (http://www.w3.org/RDF/).Note
In everyday usage, edge implies the juncture of two surfaces
 of one or more solid objects, with no implications for where that edge might begin or
 end, if it does at all. None of these sine qua nons for
 real-life edges have a place in the RDF appropriation of the metaphor. A newcomer may
 be forgiven for objecting that what depicted looks like a line, not an edge.

 Semantic web applications call for the use of universal resource identifiers
 (URIs), sometimes called international resource identifiers (IRIs), as the data content of
 nodes and edges to uniquely name things and concepts. These URIs are recommended to take
 the form of http:// universal resource locators (URLs), so that further
 information about a thing or concept can be automatically retrieved. The method of
 transferring semantics thus shifts, from elements and attributes to the data they contain,
 namely URIs.
RDF conventions have been implemented in markup languages to varyious degrees. Across
 the Internet, RDFa and other forms of structured markup (Microdata, Microformat) have been
 applied widely, helping HTML become a major vehicle for semantic interoperability. The Web
 is populated with billions of assertions that are semantically comparable. Note
The University of Mannheim's Web Data Commons project, http://webdatacommons.org, conducts regular crawls of the entire Web. The
 project showed that in winter 2014 31% of HTML pages retrieved from 2.01 billion URLs
 (up from 26% of 2.24 billion in 2013) had some kind of structured markup, resulting
 in 20.5 billion RDF quads (RDF triples attached to a named graph; this figure is up
 from 17.2 billion in 2013). See http://webdatacommons.org/structureddata/2014-12/stats/stats.html and
 http://webdatacommons.org/structureddata/2013-11/stats/stats.html.

A comparable effort within TEI has remained largely nascent. In this article I argue
 that, whether or not TEI is capable of full semantic interoperability, it is capable of at
 least some, certainly much more than is currently outlined in the TEI Guidelines.
 Non-intrusive improvements could be made in several ways, resulting in rewards that far
 outweigh any extra work or requirements. Although a variety of features targeted by TEI for
 markup could be enhanced, I focus here on a relatively straight-forward candidate for
 semantic interoperability, the cross-reference, particularly to well-known or frequently
 cited literature. These are good test candidates because human-readable syntax of the
 cross-reference is rather controlled and simple (e.g., Homer, Iliad
 1.1; Confucius, Analects 1.2.3.1). These canonical
 reference schemes, which are probably better termed standardized reference
 systems, or just simply reference systems, can be easily
 and quickly understood and processed by humans independent of any individual version,
 corpus, or project. They would seem ideal for computer exchange.Note
For a theoretical reflection on canonical or standardized reference numbers and
 their place in digital projects, see Kalvesmaki 2014.

In this article I offer three practical ways to make standardized references in TEI more
 semantically interoperable. The first of these, deployment of Canonical Text Services URNs,
 is somewhat well known but has not yet been broadly used in TEI cross-references. The
 second has, to my knowledge, not yet been tried at all, namely, informal communities
 agreeing to adopt Schematron files, to be added to the prolog of TEI files to standardize
 cross-references to a work that is frequently cited. My third and final approach shifts to
 stand-off markup, and I offer a model based upon the Text Alignment Network, a planned
 TEI-friendly XML format for the interchange of aligned texts.

Standard Cross-References in TEI
[B]ecause the choice of tags is guided by human interpretation, TEI-XML
 encoded files are in general not interoperable (Schmidt 2014)

Doubts about the interoperability of the XML format supported by the Text Encoding
 Initiative (TEI) have been voiced on numerous occasions, even within the flagship journal
 of the TEI, as in the quote above.Note
See also Schmidt and October 2014 discussions on the public
 TEI-L listserv, initiated by Roberto Rosselli Del Turco under the subject line
 "Interchange of TEI documents: examples?": https://listserv.brown.edu/archives/cgi-bin/wa).

 Although the skeptics' richly complex counterexamples have persuaded me that XML
 and TEI are ill-equipped to handle assertions made by textual scholars when they are at
 their most expressive, I am also convinced that some of their most common, basic assertions
 could be made more semantically interoperable. The humble cross-reference is a good
 candidate. It is supported in TEI through several mechanisms, commonly @cRef,
 in tandem with <ptr> or <ref> (and sometimes supplemented
 by <cRefPattern>). But there are other ways as well. One could also use
 those elements with @target or @type. Or one could use
 <quote> along with @source. Other methods include the use
 of <link> and <linkGrp>, or even loose, unstructured
 mechanisms such as <bibl>. (The variety of options, as I shall argue,
 hamper interoperability.)
A few of these many options are discussed further in this paper. But for ease of
 discussion, I will concentrate on @cRef, presented in the TEI Guidelines as an
 ideal solution for an encoder who wishes to create a cross-reference to another work by
 means of a standardized or canonical reference. The relevant parts of the Guidelines,
 §3.10.4 and §16.2.5, although accurate, are disjoint, technical, and not clearly connected to
 everyday usage. So I present the material somewhat differently, from the perspective of the
 ordinary encoder who is putting a project together and doing the best to follow the
 recommended steps.Note
All references to the TEI guidelines are based on version 2.8.0 of the P5
 Guidelines, http://www.tei-c.org/Guidelines/P5/, last accessed 3 July 2015.

The Guidelines illustrate @cRef with the example of a text that quotes from
 the gospel of Matthew, chapter 5 verse 7 (Guidelines §16.2.5). Let us enhance this example by considering the needs of an encoder who
 is editing works by Anne Brontë and who has decided to encode explicit quotations,
 including the quotation from Matthew 5:7 that appears at chapter 5, paragraph 18 of
 Agnes Grey. Because our focus is on both syntax and semantics, let
 us assume that the encoder wishes to provide a cross-reference that will refer to as many
 versions of that text as possible, created independently by other encoders or projects, and
 will be as useful as possible to the maximum number users, with a minimum of human
 intervention for processing the data. Let us also assume that all the TEI transcriptions
 that exist in the world are both discoverable and available. Of course, this is a terrible
 assumption to make in real life, but the problems associated with discoverability and
 availability are ubiquitous for this method and every other one, whether discussed in this
 article or not. Assessing those problems here would be repetitive and tangential to the
 main point, interoperability.
We turn to the Brontë encoder, who has prepared a plain TEI transcription of
 Agnes Grey, and now turns to marking up cross-references. Following
 the TEI guidelines, the encoder tags the quotation with <quote>. After
 seeing that only <gloss>, <term>, <ptr>,
 and <ref> support @cRef, the encoder ignores the first two.
 Upon further reading, particularly of the examples, the encoder feeling that both
 <ptr> and <ref> are equally valid, decides that the
 markup is more of a reference than a pointer, so adds <ref> nearby in a
 valid location. The relevant part of the TEI file might look like
 this:.....
<div type="chapter" n="5">

 <p @xml:base="•••••••••">‘But, for the child’s own sake, it ought not to be encouraged to have such amusements,’
 answered I, as meekly as I could, to make up for such unusual pertinacity.
 <said>‘<quote>“Blessed are the merciful, for they shall obtain mercy</quote><ref
 cRef="•••"/>.”’</said></p>

</div>
.....
The
 encoder has given @cref and @xml:base dummy values because it is
 as yet unknown what kind of values are expected. A target Bible text must be chosen, and
 then it must be interrogated to find out what elements and attributes have been used, and
 with what values. So the encoder finds one in TEI format. After noting the URL, the encoder
 studies the file and finds that it has the following structure at the place
 quoted:.....
<div n="Matt">

 <div type="chap" n="5">

 <ab type="v" n="7">Blessed are the merciful, for they will be shown mercy.</ab>

 </div>

</div>
.....

The encoder therefore replaces ••••••••• with the target URL (let's call it
 http://example.com/nt.xml) and replaces ••• with Matt
 5:7. But the latter, being so far parsable only to humans, must be converted to
 something a computer can act upon. So the Brontë encoder, again following the Guidelines,
 adds a statement to the <teiHeader>, something like this:<teiHeader>

 <encodingDesc>
 <refsDecl xml:id="biblical">
 <cRefPattern matchPattern="(.+) (.+):(.+)"
 replacementPattern="#xpath(//div[@n='$1']/div[@n='$2']/ab[@n='$3'])">
 <p>This pointer pattern extracts and references the <q>book,</q>
 <q>chapter,</q> and <q>verse</q> parts of a biblical reference.</p>
 </cRefPattern>
 </refsDecl>
 </encodingDesc>

</teiHeader>
Note
The program listing above departs slightly from the official example in the TEI
 Guidelines (§16.2.5), which use #xpath(//div[@n='$1']/div[$2]/div[$3]), an
 XPath expression that assumes that verse labels and positions are isomorphic. That is
 a false assumption for most modern editions, which suppress or demote verses
 considered spurious without altering the canonical numbering. The
 @replacementPattern in my example also takes into account advice at
 §16.3 that Bible verses should be tagged <ab>.

This <cRefPattern> stipulates for any TEI processor that Matt
 5:7 should be converted to the URL
 http://example.com/nt.xml#xpath(//div[@n='Matt']/div[@n='5']/ab[@n='7']).
The encoder's job finishes, and the work now moves to those who wish to process,
 publish, or study the data. This requires the use of some TEI-compliant and -aware
 processing mechanism, which will take the TEI elements and attributes that have been used
 for cross-referencing, resolve them to retrieve a string or document fragment, and then
 transform that data according to whatever purpose is intended. Although the end result
 differs widely from one processor to another, the initial, preparatory step is common
 across the board. All processors must be programmed to find instances of
 @cRef, take the string value, find a matching pattern in
 @matchPattern (in <cRefPattern>), create an XPath
 expression to be applied to the target XML file of Matthew (specified by
 @xml:base), and then retrieve the document fragment, for later
 transformation.
But even in this preparatory stage, the processor requires some human intervention.
 Someone must first step in and configure it to address irregularities not found in other
 TEI files. The person configuring the processor must study the Brontë text and discern
 which elements have been used for cross-references, and with what kind of editorial
 consistency. Perhaps the configurer is surprised to find that the encoder chose
 <ref> instead of <ptr>, and that the former was left
 empty. Perhaps the configurer is surprised to find that the Brontë encoder was enamoured by
 the attraction of @cRef and ignored a simpler solution, that of
 <quote> with @source. Perhaps the encoder and configurer
 will engage in a spirited discussion as to the best use of TEI.
Perhaps the configurer and encoder are not on speaking terms, and <ref>
 stands. The configurer must interrogate the use of the element even further to determine
 what relationship any given <quote> and <ref> pair share.
 After all, the former could be the previous sibling, next sibling, parent, or child to the
 latter. (Of these four valid configurations, three are offered as examples in the TEI
 Guidelines.) The configurer might find that in a series of adjacent quotes it is difficult
 to tell which <quote> is paired with which <ref>, and the
 encoder may not have been consistent. The variety of options in TEI is the source of extra
 work for the person configuring the pre-processor. As Schmidt points out, in the quote
 above, the choice of an element, as well as its placement, is subject to human
 interpretation, and is therefore detrimental to interoperability.
Such a workflow also requires quite a lot of human intervention and interpretation at
 both stages (transcription, pre-processing configuration). And not only does it fail to
 preserve any data required for semantic interoperability, such as URNs, but it can scarcely
 be said to be even syntactically interoperable. The syntax of the values of
 @cRef and @replacementPattern are guaranteed to be applicable
 only to one quoting version and one quoted version. Any attempts to apply the data to other
 versions of the New Testament (reflected by, say, changing the value of
 @xml:base) must be preceded by checking the structure and contents of the
 new file. In addition, once @cRef is used this way, it becomes difficult to
 use the attribute to refer to works other than the New Testament.Note
This is most acute when an encoder wishes to use @cRef to point to
 multiple works, a practice that would tax the limits of
 @xml:base.

 All in all, @cRef as an interoperable cross-reference mechanism proves
 to be rather limited. It may be suitable for a single project depending upon specific
 files, but it is not prepared to handle a distributed network of independently created TEI
 files.

TEI @cRef + Canonical Text Services URNs
The limitations of @cRef prompt many TEI users to migrate to more complex
 TEI linking mechanisms (discussed below). But @cRef need not be abandoned so
 quickly. Its syntactic and semantic value can be enhanced rather easily through Canonical
 Text Services (CTS) URNs, a convention that defines a way to coin unique,
 computer-actionable references to literary works independent of individual versions. A
 description of the syntax of CTS URNs would take us too far afield, and are easily found elsewhere.Note
Discussed informally at
 http://www.homermultitext.org/hmt-doc/cite/cts-subreferences.html and
 defined formally at
 http://www.homermultitext.org/hmt-docs/specifications/ctsurn/. See
 also Kalvesmaki 2014, paras. 15-24. See esp. notes 12-17, where I
 register some concerns about the design of CTS URNs.

 For the sake of the example adopted for this article, let us assume that the
 following CTS URN provides a unique reference to Matthew 5:7:
 urn:cts:greekLit:tlg0031.tlg001:5.7 (the Greek New Testament is catalogued
 by the Thesaurus Linguae Graecae as author number 0031, and Matthew as work number 001).
 This URN is said, by definition, to be valid for any version of Matthew.
Let us revisit the workflow of our example. Above we started with the Brontë encoder,
 and we placed no special requirements upon the TEI-compliant version of Matthew she or he
 used. But under the CTS URN method, the process has to start earlier, with the target text.
 Or rather, more precisely, a new participant is introduced as a mediary between the New
 Testament encoder and the Brontë one, namely, a CTS server.
The person who administers a CTS server finds one or more TEI-compliant New Testament
 texts, and processes those texts, importing them into an RDF-compliant data store. During
 that process each segment of text is converted into RDF data that connects the text string
 with a CTS URN (in RDF terms, the latter would be the subject and the former the
 predicate). The data could be stored and served in any number of ways, for example as a
 relational database or as a SPARQL Protocol and RDF Query Language (SPARQL) endpoint.Note
Whereas the architects of CTS have developed CTS as a SPARQL endpoint, Jochen
 Tiepmar, at the University of Leipzig, has deployed a CTS server as a MySQL database.
 See https://github.com/cite-architecture/sparqlcts and http://www.culingtec.uni-leipzig.de/ESU_C_T/node/471

 The CTS administrator makes all the text available to queries in an application
 program interface (API) and creates and publishes a method for searching the CTS data
 store, so that anyone who submits a CTS URN will get in return one or more spans of text
 (provided that the intended text is in the CTS server).
In our example, we start with an administrator of a CTS server, who finds a TEI New
 Testament. After interrogating the data structure, the administrator imports the verses of
 the New Testament, along with their proper CTS URNs into the service. The administrator
 publishes specifications for the API that state that any queries should target the URL
 http://ctsservice.example.com/text, add a question mark, then the CTS
 URN.
Work shifts to the Brontë transcriber, who now does not need to study the structure of
 any particular New Testament text. All he or she needs to do is get the base URL for the
 CTS service, follow the specifications for the API, and encode the novel accordingly,
 e.g.:.....
<div xml:base="http://ctsservice.example.com/text?">
 <p>‘But, for the child’s own sake, it ought not to be encouraged to have such amusements,’
 answered I, as meekly as I could, to make up for such unusual pertinacity.
 ‘<quote>“Blessed are the merciful, for they shall obtain mercy.”</quote><ref
 cRef="urn:cts:greekLit:tlg0031.tlg001:5.7"/>’</p>
.....

This particular CTS URN points to every version of the New Testament held in a
 particular CTS service. But if the Brontë encoder knows that the quotation is from a
 specific version of Matthew, say a handwritten diary, and finds that version available in a
 CTS service, the value of @cRef can simply be narrowed further, e.g.,
 urn:cts:greekLit:tlg0031.tlg001.diaryA:5.7.
The two attributes @xml:base and @cRef are all that is
 required of the transcriber. The syntax of the CTS URN renders
 <cRefPattern>unnecessary.
The work now shifts to the person configuring the processor, who still must interrogate
 the Brontë text, to see how elements and attributes have been used for cross-referencing.
 But once that is accomplished, the processor can be preconfigured by simply concatenating
 @xml:base and @cRef. Before sending this request to the CTS
 service, the configurer may wish to restrict the number of versions returned, which is
 simple enough: the value of @cRef or the SPARQL query is changed to specify
 the version or versions intended. The text or texts that are returned from the CTS service
 are then ready for transformation.
Under this method, the amount of work required of the transcriber and the pre-processor
 is reduced considerably. The transcriber does not need to know anything about regular
 expressions, XPath, and replacement patterns. The person configuring the processor does not
 need to rewrite any preprocessing stylesheets. The syntactic and semantic interoperability
 of the Brontë TEI file is increased significantly. The syntactic irregularities inherent in
 the customary use of @cRef are eliminated by the CTS specifications, which
 dictate exactly how a valid URN must be constructed. And a new level of semantic
 interoperability not traditionally part of TEI files has been introduced. In that single
 CTS URN, one has a machine-actionable name not only for a particular passage but for a
 collection, a work, or, possibly, a specific version. The Brontë encoder has not only
 pointed to a specific set of texts in a CTS service, but has uniquely named both a work
 (gospel of Matthew) and a specific part of that work (5:7). That URN can be used by any
 other system that is CTS URN-aware to collate the assertion governed by @cRef
 into heterogenous datasets. And that means that the cross-reference declared in the TEI
 file of the Brontë transcription has now been released to the semantic web.
This approach to cross-references assumes, of course, that a quoted text is available in
 a CTS service, an assumption we made at the outset (see above). But the need to have an
 available CTS server is a reminder that this method introduces a major step into the
 workflow, and an added point of possible failure in data processing. The relationship
 between source text, cross-reference, and target text is now mediated. In addition, the
 extra labor on the part of the CTS administrator is not to be underestimated. CTS services
 require software packages (e.g., SPARQL endpoints) that must be configured and maintained,
 requiring server administrator skills well beyond simply uploading a plain XML file to a
 public server. The average TEI encoder who has a basic website is not likely to be ready to
 administer a CTS server. There are also, at this time, few examples of CTS services, and
 only as that number grows will the specifics of other opportunities and shortcomings be
 made clear.
TEI @cRef + Shared Schematron
At the heart of a CTS URN is a familiar, standardized canonical reference system that
 has been transformed into a syntactically regularized string, to bridge independently
 created texts. Another way a community of encoders and projects can exploit so-called
 canonical references in the name of interoperability is to transform standardized
 references into an agreed controlled vocabulary, then specifying the rules for that
 vocabulary with a Schematron file. Anyone choosing to use the convention need merely add
 a reference to the Schematron file in the head of their TEI documents. This inclusion
 not only tells other users that the shared cross-reference system has been adopted, but,
 in the validation process, can weed out bad values and provide contextual help to the
 TEI encoder who may not know all the rules for the cross-reference system.Note
The method advocated below resembles somewhat the constraints applied by the
 schemas developed for the Mary Baker Eddy Library, which regulates the syntax of
 cross-references within a single corpus to a variety of works. For documentation
 see
 http://www.wwp.neu.edu/outreach/seminars/mbel/TEI_development/schemas/mbel.odd;
 http://www.wwp.neu.edu/outreach/seminars/mbel/TEI_development/schemas/mbel.doc.html#att.pointing;
 and
 http://www.wwp.neu.edu/outreach/seminars/mbel/TEI_development/schemas/mbel.isosch.
 But whereas the Mary Baker Eddy schema focuses on the needs of a single project
 dealing with multiple works, in this section I deal with the inverse: multiple
 projects trying to interoperably quote a single work, no matter the specific
 version.

This method starts further upstream than either the Brontë encoder or a putative CTS
 server. It begins with the community that wishes to make Matthew and the rest of the New
 Testament (maybe the Bible in general) open to standardized cross-references. Out of
 that community a person or project (or perhaps a TEI special interest group) agrees to
 host and maintain master versions of the schema files. The community agrees to create a
 pair of Schematron files, one to regulate transcriptions of the New Testament, the
 other, transcriptions of texts that quote from the New Testament.
The first file defines the structure of the New Testament text and permissible
 values. Let us suppose the community has agreed that any New Testament transcription
 should have three levels of <div>, one for books, one for chapters, and
 one for verses. They also agree on a set of abbreviations that should be used for the
 names of the books. They envision transcriptions of the New Testament having a TEI
 <text> that looks something like this:

 <text>
 <body>
 <div n="Mt">

 <div n="5">

 <div n="7">
 <p>μακάριοι οἱ ἐλεήμονες, ὅτι αὐτοὶ ἐλεηθήσονται.</p>
 </div>

 </div>

 </div>

 </body>
</text>

To enforce this structure, the community encodes assorted rules in the first of the
 two Schematron files. For example, this rule defines permissible book
 abbreviations:<rule context="tei:div">
 <let name="hierarchy" value="count(ancestor::tei:div) + 1"/>
 <report test="$hierarchy = 1 and not(matches(@n,'^(Mt|Mk|Lu|Jn|Ac|
 Ro|1Co|2Co|Gal|Eph|Php|Col|1Th|2Th|1Tim|2Tim|Tit|Phm|
 Heb|Jam|1Pe|2Pe|1Jn|2Jn|3Jn|Jud|Re)$','x'))"
 >Book value must be one of the following: Mt, Mk, Lu, Jn, Ac, Ro, 1Co, 2Co, Gal, Eph,
 Php, Col, 1Th, 2Th, 1Tim, 2Tim, Tit, Phm, Heb, Jam, 1Pe, 2Pe, 1Jn, 2Jn, 3Jn, Jud,
 Re.</report>

</rule>

The example above concisely specifies that the first-level <div>s
 (those at the book level in the hierarchy) must have values of @n that draw
 from one of the abbreviations adopted by the community for the twenty-seven books of the
 New Testament. In the case of Matthew, the agreed abbreviation is
 Mt.
This <report> is but one of many that could be declared within the
 same <rule>. Another could include a specification as to the number of
 chapters allowed in a particular book. This next <report> specifies that
 the second level <div>s pertaining to the book of Matthew must be
 numbered 1 through
 28:<report test="$hierarchy = 2 and ../@n ='Mt' and @n and
 not(matches(@n,'^([1-9]|1[0-9]|2[0-8])$'))">Mt has a maximum
 of 28 chapters.</report>

The verse numbers too can be defined, as here, which specifies that verse numbers for
 Matthew 5 fall from 1 through
 48:<report test="$hierarchy = 3 and ../../@n = 'Mt' and ../@n = '5' and
 @n and not(matches(@n,'^([1-9]|[1-3][0-9]|4[0-8])$'))">Mt 5 takes
 verses 1 through 48.</report>

Furthermore, let us suppose that this community agrees with many modern text editors
 that certain verses should be deprecated, but they do not wish to render a text that
 includes them as being invalid. For example, Matthew 18:11, widely regarded as spurious,
 could be flagged in a report, but merely as a
 warning:<report test="$hierarchy = 3 and ../../@n = 'Mt' and ../@n = '18' and @n='11'"
 role="warning">Most critical editions suppress Mt 18.11 as spurious.</report>

Perhaps most important of all, the schema file can declare that every
 <div> should have values of @n such that every
 <div> furthest from the root is uniquely citable, what I call the
 Leaf Div Uniqueness Rule:
<pattern>
 <let name="leafdiv-flatrefs"
 value="for $i in (//tei:div[not(descendant::tei:div)]) return
 string-join($i/ancestor-or-self::tei:div/@n,' ')"/>
 <rule context="tei:div">

 <let name="this-ref" value="string-join(./ancestor-or-self::tei:div/@n,' ')"/>

 <report
 test="not(descendant::tei:div) and count(index-of($leafdiv-flatrefs,$this-ref)) > 1"
 >Canonical references must be unique. </report>
 </rule>
</pattern>
The <pattern> above binds to the variable
 $leafdiv-flatrefs a sequence of canonical reference for all leaf
 <div>s. Each item in the sequence is a string made up of all the
 @n values of a leaf <div> and its ancestors joined by a
 delimiter, e.g., Mt 5 7. Each item must be unique to the sequence, a rule
 that is checked by the <report>. If it is not, the duplicate leaf
 <div>s are marked as invalid. Enforcement of the Leaf Div Uniqueness
 Rule allows chains of @n joined vertically along an XML hierarchy to act as
 an ID, one that economically follows the standardized (canonical) reference systems that
 are familiar to human encoders.Note
The uniqueness rule must apply only to leafmost <div>s because
 there are cases where a <div> midlevel in the hierarchy is
 intentionally split. For example, in the Greek Septuagint (LXX) version of
 Proverbs, the 30th chapter is split, and interleaved with the two halves of
 chapter 24 (24.1 - 24.22e [22a - 22e are LXX verses not extant in the Hebrew];
 30.1 - 30.14; 24.23 - 24.34; and 30.15 - 30.33). In this case the @ns
 of the two split book <div>s must be identical. This also explains
 why the report is tested not against a leafmost <div>'s siblings
 (which may be but only a partial selection of siblings according to the reference
 system) but against the entire sequence of leafmost <div>s.

 The Rule also preserves the hierarchical organization of texts intuitive to
 humans and ensures that @n has little if any repetition.Note
Such repetition is found in alternate approaches such as those that use
 @xml:id in the leafmost <div>, e.g., <div
 xml:id="Mt.5.7">, where Mt and 5 could have
 been inferred from the ancestors' @xml:id values. Abbreviations of
 book names and chapter numbers would need to be repeated for all ca. eight
 thousand verses of the New Testament.

We turn now to the second part of the pair of shared Schematron files, that
 pertaining to the quoting text and the syntax of the cross-reference. Here rules are
 superimposed upon @cRef (or @source or @ref). The
 community anticipates that the attribute might be used for multiple space-delimited
 cross-references, and to works other than the New Testament. They anticipate complex
 quoting files that might look something like this (illustrating the work of an encoder
 who wishes to add cross-references outside the New Testament, here to Proverbs
 11:17):
.....
 <div type="chapter" n="5">
 <p n="18">‘But, for the child’s own sake, it ought not to be encouraged to have such
 amusements,’ answered I, as meekly as I could, to make up for such unusual
 pertinacity. ‘<quote>“Blessed are the merciful, for they shall
 obtain mercy.”</quote><ref cRef="NT.Mt.5.7 HebB.Prov.11.17"/>’</p>
 </div>
.....
The community therefore defines both a prefix for the work (NT) and some
 character to be used as a delimiter (here a period, but many other nonspacing, nonword
 characters would also serve). And the community specifies that every value of
 @cRef that begins with the reserved prefix should construct the
 cross-reference according to the established rules. For example, this next rule
 specifies that the second element of any New Testament cross-reference (e.g., the
 Mt in NT.Mt.5.7) should be one of the acceptable book
 abbreviations:<pattern>
 <rule context="@cRef">
 <let name="delimiter" value="'\.'"/>
 <let name="these-refs" value="tokenize(.,'\s+')"/>
 <let name="invalid-books"
 value="for $i in $these-refs return
 if(matches($i,concat('^NT',$delimiter))
 and not(matches(tokenize($i,$delimiter)[2],'^(Mt|Mk|Lu|Jn|Ac|
 Ro|1Co|2Co|Gal|Eph|Php|Col|1Th|2Th|1Tim|2Tim|Tit|Phm|
 Heb|Jam|1Pe|2Pe|1Jn|2Jn|3Jn|Jud|Re)$','x')))
 then true()
 else false()"/>
 <report test="some $i in $invalid-books satisfies $i = true()">Error in cross-reference
 no. <value-of select="index-of($invalid-books,true())"/>. Book value must be one of the
 following: Mt, Mk, Lu, Jn, Ac, Ro, 1Co, 2Co, Gal, Eph, Php, Col, 1Th, 2Th, 1Tim, 2Tim,
 Tit, Phm, Heb, Jam, 1Pe, 2Pe, 1Jn, 2Jn, 3Jn, Jud, Re, separated by subsequent values by
 this delimiter: <value-of select="replace($delimiter,'\\','')"/></report>

 </rule>
</pattern>

Under this <rule>, every @cRef is tokenized into a
 sequence of space-delimited cross-references, assigned to the variable
 $these-refs. Another variable checks the ones that begin with NT, and
 makes sure that the next part (defined by the delimiter, the period) is one of the
 acceptable abbreviations for a New Testament book. If any value does not conform, that
 @cRef is marked as invalid, and a message is returned, indicating which
 cross-reference is faulty, as well as a list of acceptable values and the delimiter that
 should be used to separate parts of a cross-reference.
Other reports that are found in the first Schematron file can be replicated here as
 well. For example, allowable chapter and verse numbers can be specified (examples
 suppressed here for the sake of brevity). That second shared Schematron file could also
 specify exactly where the <ref> should be placed relative to the
 quotation:

 <report test="$this-val[1] = 'NT' and not(name(../preceding-sibling::*[1]) = 'quote')">An
 element containing @cRef must come immediately after the closing tag of the matching
 quote element.</report>

This report specifies that the element containing @cRef must be the very
 next sibling of its corresponding <quote>. This test removes the
 guesswork as to where a quotation's cross-reference is to be found, and so saves some
 labor on the part of the person configuring a processor.
The blocks of code in the examples above are not necessarily computationally
 efficient, nor do they necessarily represent the best use of TEI elements. They merely
 illustrate the types of patterns and rules a community of practice might embrace. Once
 the community has established their rules, the two master Schematron files are posted in
 a central location. The community has the freedom to update those rules as the community
 learns what works and what doesn't, and the updates benefit every user.
Now work shifts to the two different communities of transcribers. The first consists
 of those who wish to provide a citable transcription of the New Testament. They begin by
 adding to a pre-existing TEI file an extra prolog statement, for
 example:<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="http://www.tei-c.org/release/xml/tei/custom/schema/relaxng/tei_lite.rng" schematypens="http://relaxng.org/ns/structure/1.0"?>
<?xml-model href="http://www.tei-c.org/release/xml/tei/custom/schema/relaxng/tei_lite.rng"
 schematypens="http://purl.oclc.org/dsdl/schematron"?>
<?xml-model href="http://example.org/schemas/nt/1.0/nt-quotable.sch"
 schematypens="http://purl.oclc.org/dsdl/schematron"?>
<TEI xmlns="http://www.tei-c.org/ns/1.0">

</TEI>

The transcriber runs the validator, and might find that the once-valid TEI file is
 now rendered invalid, because it does not follow the new rules precisely. But the
 explanations provided by the error messages will advise the transcriber on how and where
 to alter the file to make it valid, so it can be made interoperable with all others.Note
In fact, the schematron file could be provided Schematron Quick Fixes, which in
 SQF-aware XML processors would allow the invalid data to be corrected with just two
 clicks or keystrokes, or even automatically. See
 http://www.schematron-quickfix.com/.

 The transcriber complies, and corrects the transcription.
We now turn to the Brontë encoder, who, like the New Testament transcribers, adds a
 prolog:<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="http://www.tei-c.org/release/xml/tei/custom/schema/relaxng/tei_all.rng" type="application/xml" schematypens="http://relaxng.org/ns/structure/1.0"?>
<?xml-model href="http://www.tei-c.org/release/xml/tei/custom/schema/relaxng/tei_all.rng" type="application/xml"
	schematypens="http://purl.oclc.org/dsdl/schematron"?>
<?xml-model href="http://example.org/schemas/nt/1.0/quoting-nt.sch"
 schematypens="http://purl.oclc.org/dsdl/schematron"?>
<TEI xmlns="http://www.tei-c.org/ns/1.0">

</TEI>

And once again, the encoder runs the validator, and the extra Schematron pattern is
 used to see if the citations to the New Testament conform to the rules agreed upon by the
 community. If there are any errors, the message specifies exactly where and for what
 reason. The Brontë encoder edits the file until there are no more error messages.
This process can be repeated as often as one wants, upon any version of any text,
 whether quoting or quoted. In fact, they can be combined in the same file, to allow a
 New Testament to be marked with internal cross-references. No matter the context, the
 Schematron reports steer the transcriber into the (usually small) fixes that need to be
 made. @cRef alone is sufficient to declare the cross-reference. Neither
 @xml:base nor <cRefPattern> is necessary. An
 @xml:base could be supplied, if so desired, but the @cRef
 is now applicable to any version of the New Testament that adopts the shared Schematron
 files.
Work now turns to the processor to do something with the cross-reference. Here,
 because the structure of every New Testament TEI file has been precisely defined (as a
 series of tesselated <div>s) very little human intervention is needed.
 Or, rather, the type of human intervention shifts, primarily to deciding which and how
 many of the available versions of the New Testament should be processed (compare the
 same wealth of riches in the CTS method). Once a processor is configured to handle these
 user-defined cross-references to the New Testament, it can be used on any valid file
 that also uses it, with no extra work. Naturally, this applies only to the preprocessing
 phase. How exactly that data will be used (display, statistics, etc.) is determined by
 what users want.
This method greatly improves both the syntactic and semantic interoperability of TEI
 files. It requires no new infrastructure, and it supports both customized and standard
 TEI schemas. The shared Schematron files provide structure and predictability—a
 controlled vocabulary for cross-references—in areas where encoders most want it. Like
 CTS, a middleman has been introduced, but it is rather simple and benign: two relatively
 small Schematron files made available by http request that will normally be cached by
 users on their local drive for day-to-day work. So maintenance and overhead are rather
 light.
Note too that the shared Schematron files can be used on TEI Lite, TEI All, or even
 customized TEI. No one has to use the same version of TEI in order to make New Testament
 references interoperable. The validation files do not preclude any other markup within a
 leaf <div>. They can be used on any version of the New Testament,
 partial or complete, in any language, and the books or chapters need not be in a
 specified order (thereby accommodating unusual editions that adopt alternative orders of
 the books of the New Testament).
Furthermore, this effort could be extended outside the TEI realm. That same community
 might create variations of the Schematron file pairs for XHTML 1, thereby allowing web
 pages to serve as host to syntactically and semantically interoperable transcriptions of
 New Testaments, or of texts quoting the New Testament.
But this general method also has a few major problems. It might work fine for heavily
 quoted works, but what about less frequently quoted ones? Organizing a community of
 practice to agree on rules might be difficult if not impossible for some texts
 (including, ironically, the Bible). Further, how would reserved keywords (here,
 NT) within the value of @cRef be minted without conflict?
 What happens in the case of duplicate or ambiguous prefixes adopted by independent
 communities? Such questions should be regarded not as reasons for abandonment but as
 problems that can and should be solved. But those solutions go beyond the scope of this article.Note
The problem of conflicting prefixes could be solved if they were handled like
 namespace prefixes. But such "work prefixes" would require new specifications in
 the TEI Guidelines, to ensure the integrity of the method.

 A central problem in these questions is to distinguish real objections from the
 theoretical, but such discernment would require experimentation and real-world examples,
 to see what works and what doesn't.

TEI + Stand-off Markup
The three methods discussed so far assume cross-references that are embedded within a
 transcription. Such inline annotation is the most common way an encoder points from one
 text to another, not just in TEI but also in HTML. But the TEI guidelines (§§16.9-16.10) provide for an alternative approach, stand-off markup, where linking and
 cross-referencing are placed in a file separate from the transcriptions. Such stand-off
 markup or annotation has a few immediate drawbacks, the most immediate being that it is
 difficult to easily see the text to which an annotation applies, either because the files
 must be navigated and edited independently or because the semantics in the pointing scheme
 may be difficult for a human to parse (character counting, complex or opaque XPath
 expressions, etc.). But stand-off markup also has great benefits. It allows multiple
 complimentary or competing annotations to be made of the same base transcription; stand-off
 markup files can be created, edited, and served independently of any source texts; it
 facilitates a division of labor that allows transcribers and annotators to focus
 independently and concurrently on their discrete tasks.
The current specifications of the TEI guidelines provide for a specific method of
 stand-off markup. It presumes that one or more transcription files are to be found
 somewhere, and an external aligning file stands apart from them. That external file can
 point to the source files either by means of XInclude elements (explained at TEI Guidelines
 §16.9) or by using @target with <ptr>,
 <ref>, or <link> (TEI Guidelines §§16.2, 16.7). Common to all these methods is a reliance upon the TEI XPointer scheme,
 which provides a precise, stable, and expressive reference system that follows a
 straight-forward, consistent syntax. The following examples show two different ways to
 create a stand-off cross-reference from the Brontë novel's quotation to the New
 Testament:.....
<linkGrp>
 <link target="http://example2.com/agnesgray.xml#xpath(//div[@n='5']/p[18])
 http://example.com/nt.xml#xpath(//div[@n='Matt']/div[@n='5']/div[@n='7'])"/>
</linkGrp>
.....

.....
<body>
 <div>
 <include href="http://example2.com/agnesgray.xml" xmlns="http://www.w3.org/2001/XInclude"
 xpointer="range(xpath(//div[@n='5']/p[18]))"/>
 <include href="http://example.com/nt.xml" xmlns="http://www.w3.org/2001/XInclude"
 xpointer="range(xpath(//div[@n='Matt']/div[@n='5']/div[@n='7']))"/>
 </div>
 </body>
.....
Other examples using <ref> or <link> would look similar
 to the second one above. The XPointer framework stands at the heart of them all,
 pinpointing the precise node or document fragment that is meant. But as currently
 constructed, this XPointer scheme shares with @cRef a lack of semantics behind
 the syntax. That is, no information about the meaning of a particular node is built into
 the XPointer scheme. For the examples above, there is no way to imply in the XPath fragment
 div[@n='Matt'] that the div means a book and that the
 @n means the name of that book. In addition, this fragment has coinage only
 within a specific TEI file. Its interoperability is as limited as @cRef was
 shown to be above, since the XPointers are not guaranteed to have any validity for other
 versions of the same work. For every new version of Matthew or Agnes
 Grey that the encoder wishes to include, the file structure must be
 interrogated and a new XPointer expression created.
I propose a different approach to stand-off cross-references, one that relies upon
 semantically defined alignment. My proposal shares points with the previous two methods
 (CTS URNs and community-written Schematron files) but is more extensive in scope,
 anticipating an ecosystem of scholarly texts in which stand-off markup is the norm for all
 types of annotations, not simply cross-references. This ecosystem is the goal of a project
 that is still in development, the Text Alignment Network (TAN; http://textalign.net), a suite of XML encoding formats and set of recommended
 best practices to serve anyone who wishes to encode, exchange, and study varieties of text
 reuse: translations, quotations, paraphrases, adaptations, summaries, and so forth. In this
 section I use fragments of examples created in the TAN format to illustrate how stand-off
 annotation might be used to maximize the syntactic and semantic interoperability of the cross-reference.Note
Because the TAN format is still under development, examples provided in this
 article may be rendered invalid in any public release.

Methods discussed above moved the beginning of the encoding workflow earlier, either to
 a new network of CTS servers or to communities of practice coming up with their own
 Schematron files. Under the TAN method work begins with what I hope will become an informal
 community that actively develops and maintains TAN validation schemas, documentation, and
 examples, and to house those files in a central repository.
To make the format maximally useful to TEI users, TAN defines a minor customization of
 the TEI All schema, introducing a few constraints. Every transcription file must:
	be dedicated exclusively to a normalized text of one version of one work found
 on one text bearing object;

	be uniquely named;

	uniquely name the work that has been transcribed;

	segment the transcription of the work into a series of nested
 <div>s. Each <div> must:
	contain other <div>s or no <div> at
 all;

	take @type and @n, specifying the type of
 division and its name;

	observe the Leaf Div Uniqueness Rule (explained above).

	define every metadatum with both human-readable names and machine-readable ones
 (URI/IRIs).

There are some other constraints, but they are not central to this
 discussion. The five rules above mean that every TAN-compliant TEI transcription, whether
 quoting or quoted, will have a regularized, sometimes predictable structure. That structure
 does not preclude extra TEI markup within leaf <div>s, but such markup is
 likely to be ignored by TAN users, since they are interested in TEI files primarily as a
 source of normalized, well-segmented transcriptions. Extra markup, such as nuanced, complex
 cross-references, are expected to be found in a separate file.
So, coming back to our example, we start with the transcriber of Agnes
 Grey, who makes a few adjustments to the TEI file (explained below):
<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="http://textalign.net/release/1/schemas/TAN-TEI.rnc" type="application/relax-ng-compact-syntax"?>
<?xml-model href="http://textalign.net/release/1/schemas/TAN-TEI.sch" type="application/xml"
 schematypens="http://purl.oclc.org/dsdl/schematron"?>
<TEI xmlns="http://www.tei-c.org/ns/1.0" TAN-version="1" id="tag:textalign.net,2015-04-07:test1">
 <teiHeader>

 </teiHeader>
 <head xmlns="tag:textalign.net,2015:ns">

 <declarations>
 <work>
 <IRI>http://dbpedia.org/resource/Agnes_Grey</IRI>
 <name>Agnes Grey</name>
 </work>
 <div-type xml:id="chapter">
 <IRI>http://dbpedia.org/resource/Chapter_(books)</IRI>
 <name>chapter</name>
 </div-type>
 <div-type xml:id="p">
 <IRI>http://dbpedia.org/resource/Paragraph</IRI>
 <name>paragraph</name>
 </div-type>

 </declarations>

 </head>
 <body xml:lang="eng">

 <div type="chapter" n="5">

 <div n="18" type="p">
 <p>‘But, for the child’s own sake, it ought not to be encouraged to have such
 amusements,’ answered I, as meekly as I could, to make up for such unusual
 pertinacity. ‘“Blessed are the merciful, for they shall obtain
 mercy.”’</p>
 </div>

 </div>

 </body>
</TEI>
That is all the Brontë encoder need do. The New Testament transcriber has a similar
 responsibility:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="http://textalign.net/release/1/schemas/TAN-TEI.rnc" type="application/relax-ng-compact-syntax"?>
<?xml-model href="http://textalign.net/release/1/schemas/TAN-TEI.sch" type="application/xml"
 schematypens="http://purl.oclc.org/dsdl/schematron"?>
<TEI xmlns="http://www.tei-c.org/ns/1.0" TAN-version="1" id="tag:textalign.net,2015-04-07:test2">
 <teiHeader>

 </teiHeader>
 <head xmlns="tag:textalign.net,2015:ns">

 <declarations>
 <work>
 <IRI>http://dbpedia.org/resource/New_testament</IRI>
 <name>New Testament</name>
 </work>
 <div-type xml:id="bk">
 <IRI>http://dbpedia.org/resource/Book</IRI>
 <name>book</name>
 </div-type>
 <div-type xml:id="ch">
 <IRI>http://dbpedia.org/resource/Chapter_(books)</IRI>
 <name>chapter</name>
 </div-type>
 <div-type xml:id="v">
 <IRI>tag:textalign.net,2015-04-07:div-type:verse:biblical</IRI>
 <name>verse (Bible)</name>
 </div-type>

 </declarations>

 </head>
 <body xml:lang="eng">
 <div n="Matt" type="bk">

 <div n="5" type="ch">

 <div n="7" type="v"><ab>Blessed are the merciful: for they shall obtain mercy.</ab></div>

 </div>

 </body>
</TEI>
Starting from the top of both examples, observe the following:	The prolog contains two declarations, one pointing to a customized TEI schema
 in RELAX-NG (compact syntax) and another pointing to a Schematron file. (These
 URLs do not resolve; they are merely illustrative.)

	The rootmost element, <TEI>, has @TAN-version and
 @id. The latter is a user-defined URN naming the file. (Actually,
 the name applies to all versions of that file, but I avoid a full explanation
 here.)

	There is a new <head> element. The TAN suite has formats for
 different kinds of data (some of which one would never use TEI to encode).
 Metadata from one type of TAN file to the next must be predictably and
 consistently structured. In a word, <teiHeader> is inadequate for
 TAN files, and would be confusing when juxtaposed with other TAN files. The
 <tan:head> structures metadata in a manner consistent with
 other TAN files. The need for predictability is also why it is a sibling, not a
 child, of <teiHeader>.

	The literary work and the division types are defined by <work>
 and <div-type>, which take what I call an IRI + name
 pattern, a recurrent feature of all TAN files. One or more
 <IRI>s supply a computer-readable name in the form of an
 Internationalized Resource Identifier (IRI, an extension of URI, Uniform Resource
 Identifier) and one or more <name>s, a human-readable one. The
 @xml:id provides a local identifier so that the entity, properly
 defined by its IRI values, can be easily referenced. Thus, the two examples assign
 the division "chapter" different abbreviations (ch versus
 chapter), but this difference does not matter because the
 definition, made by <IRI>, is shared.

	<body> takes a set of nested <div>s. Any markup
 inside a leaf <div> is optional, and will be ignored by many users
 of the file. (For this reason, a bare TAN format for transcriptions is provided,
 to support users who prefer plain text to TEI.)

The transcribers' work is finished. Before we move to the next phase, however, it is
 worth noting some important gains in interoperability that have already been made. Because
 a TAN transcriber is compelled to segment a single work according to a semi-intuitive
 reference system, and to declare the work and the types of division according to IRI/URIs,
 we have in place the foundation for computer-actionable alignment. That is, if one were to
 have one hundred people each independently transcribe a different version of
 Agnes Grey or the New Testament along TAN rules, it is likely that
 many of them would structure, define, and label <div>s in a similar
 fashion. Thus, a good number of these versions will already be prepared for automatic
 alignment, with no human intervention whatsoever. There will always be some versions
 encoded differently, of course, and the TAN format provides the tools for an aligner to
 easily reconcile differences where they exist. But even before the aligner has arrived, the
 stage has been set for computers to create multilingual editions of versions of the same
 work with minimal human intervention.
At this point, work shifts to the annotator who wants to encode the cross-reference. The
 TAN format specifies two formats for cross-referencing. One is designed exclusively for
 pairs of texts (bitexts) and is used to create clusters of words (or merely letters) that
 correspond across the bitexts. This format, intended for highly detailed, nuanced, and
 complex work, provides a kind of microscopic alignment. But we focus here on the other kind
 of format, mascroscopic, which is intended to be used to align any number of versions of
 any number of works, and to specify further alignments on the basis of leaf
 <div>s (but more larger or mor precise alignments, down to the level of
 words, can also be made).
Let us suppose an aligner has found not only our two example TAN transcription files but
 another version of each work, and wishes to declare a cross-reference from the Brontë novel
 to the New Testament that applies to all four. That alignment file will look something like
 this:<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="http://textalign.net/schemas/1/TAN-TEI.rnc" type="application/relax-ng-compact-syntax"?>
<?xml-model href="http://textalign.net/schemas/1/TAN-TEI.sch" type="application/xml"
 schematypens="http://purl.oclc.org/dsdl/schematron"?>
<TAN-A-div xmlns="tag:textalign.net,2015:ns"
 TAN-version="1" id="tag:textalign.net,2015-04-07:alignment-test1">
 <head>

 <source xml:id="bronte">
 <IRI>tag:textalign.net,2015-04-07:test1</IRI>
 <name>Agnes Grey in English</name>
 <location when-accessed="2015-07-13">test1.xml</location>
 </source>
 <source xml:id="bronte-fra">
 <IRI>tag:textalign.net,2015-04-07:test3</IRI>
 <name>Agnes Grey in French</name>
 <location when-accessed="2015-07-13">test3.xml</location>
 </source>
 <source xml:id="nt">
 <IRI>tag:textalign.net,2015-04-07:test2</IRI>
 <name>King James version of the New Testament</name>
 <location when-accessed="2015-07-13">test2.xml</location>
 </source>
 <source xml:id="nt-grc">
 <IRI>tag:textalign.net,2015-04-07:test4</IRI>
 <name>Nestle Aland version of the Greek New Testament</name>
 <location when-accessed="2015-07-13">test4.xml</location>
 </source>

 </head>
 <body>
 <align>
 <div-ref src="bronte" ref="chapter 5 p 18"/>
 <div-ref src="nt" ref="bk Matt ch 5 v 7"/>
 </align>
 </body>

The <head> is somewhat long, because four different versions are in
 play, and they each need the IRI + name pattern (see above) as well as one or more
 <location>s, to specify where the source has been found. But the
 <body> is relatively straightforward. A single <align>
 encloses a set of <div-ref>s, each of which names a particular passage by
 identifying the source and reference. The pair of <div-refs> provide a
 two-way cross-reference that follows a human-friendly syntax that does not require any
 knowledge of XPath, XPointer, regular expressions, and so forth.
Even though this cross-reference invokes only the sources given the id
 bronte and nt, the reference applies to all four sources. That
 is because <div>-based alignment rules stipulate that every processor must
 infer alignment wherever possible and that, unless otherwise specified, alignment is
 transitive. If two texts are versions of the same work (discerned through the
 <IRI> values of each source's <work>), then their
 constituent parts—their <div>s—should be aligned wherever they can (using
 the IRI values of @type and the data values of @n). Furthermore,
 if special alignment is made across works (such as the cross-reference above), then that
 alignment is to be treated as transitive unless otherwise specified. That is, if an
 <align> says that X ~ (aligns with) Y, then for every A ~ X and every B
 ~ Y, A ~ B.
There are a number of benefits to the simplified <div>-based alignment
 illustrated above, but one should be singled out. The value of @when-accessed
 (a required attribute of <location>) indicates when the aligner last saw a
 source transcription. If that file is corrected and updated, and the date of the change is
 logged in the source file, then when the aligner validates the alignment file, the
 Schematron pattern will issue a warning that the source has been updated. The aligner can
 then decide if the changes have any important consequences. So transcribers can keep their
 files in a central location and have the liberty of correcting
 typographical errors. They need not worry about altering any stand-off markup files or
 hunting down every person using their files. The Schematron schemas do the notifying. Those
 who depend upon the source file can be automatically informed of any changes, one of the
 signal strengths of stand-off markup.
The aligner's task is finished, and work shifts to the processor. Configuration of the
 pre-processor is a one-time affair that will apply not only to any version of a particular
 text (as was the case with the method of the shared Schematron file, discussed above) but
 to any TAN div-based alignment file for any work.
 That is, those who configure processors do not need to learn the structure of a given work
 or transcription file. They need only to know the TAN specifications for alignment (i.e.,
 how to interpret a TAN-A-div file). Any TAN-compliant processor can be used on any
 TAN-A-div file, no matter how many works or versions it has. How the processor uses or
 transforms the data is another issue altogether, because that depends upon the purpose and
 questions the transformation serves. But the preliminary pre-processing stage need be
 configured only once, since all valid TAN files (both transcription and alignment) are
 interoperable, both syntactically and semantically.
There is obviously much more I should say about TAN alignment, in response to important
 questions or concerns. What if independent transcriptions of the same work are discordant,
 using different values for @n? What if division types and works are defined by
 different IRI vocabularies? What about versions of the same work that use altogether
 different reference systems? What about works that are similar but not really the same?
 What about coordinating specific ranges of text smaller than the leaf
 <div>? What if a commonly used reference system is misleading or
 inadequate?
These questions and more have been anticipated, and will be addressed in the full
 specifications for the Text Alignment Network. Explaining any single point adequately would
 involve moving into territory outside the remit of this article, and would raise yet other
 questions that would require a full discussion of the TAN design principles and rules.
But let us assume for the sake of argument that these concerns are not handled
 adequately under TAN specifications. Inevitable shortcomings aside, consider how much extra
 interoperability has been secured in the simple examples above. Like CTS URNs,
 TAN-compliant TEI provides a means for uniquely naming literary works. Like the shared
 Schematron method, TAN-TEI offers transcribers rules to make their texts consistent and
 predictably structured (and therefore citable). And by compelling <div> to
 be given a semantically precise definition, TAN specifications allow an otherwise generic
 element to become highly productive and semantically precise. That is, a transcriber is now
 free to define <div> to mean a textual division that might be unusual or
 specific to a field. Thus the world of textual divisions is now opened to the semantic web.
Even if TAN proves to have fatal flaws, I hope these examples inspire someone to create
 a better stand-off annotation system. If the goal is to allow a cross-reference to apply to
 any number of versions of any two works, then in-line annotation is not viable, because it
 indelibly impresses the cross-reference into a single version. To be applicable to other
 versions the cross-reference must be freed.

Conclusion
Three methods for enhancing the syntactic and semantic interoperability of
 cross-references in TEI files have been offered: Canonical Text Services URNs, shared
 Schematron files, and the stand-off markup of the Text Alignment Network. The first two
 could be implemented now. The principal barrier is practical—getting independent scholars,
 projects, and groups to adopt a method, try it out, and through trial and experience
 develop the protocols behind it. The third method needs both experimentation and
 development before it can be widely used. But all three show that greater interoperability
 is possible through a few modest adjustments to our approach to TEI. First, make source
 transcriptions predictably structured. Second, make sure that references to those
 predictably structured sources are themselves predictably structured. Third, define the
 syntax of the metadata such that each constituent part retains its semantics, defined by
 IRIs/URIs. Even if a reader finds one of the three methods disfavorable, that method is
 successful if, in the end, it catalyzes a better way.

Bibliography
[European Commission 2010] European Commission, Annex 2,
 ‘Towards Interoperability for European Public Services’, ver. 744final (2010-12-16),
 http://ec.europa.eu/isa/documents/isa_annex_ii_eif_en.pdf (accessed
 2015-07-02).
[Kalvesmaki 2014] Joel Kalvesmaki, Canonical
 References in Electronic Texts: Rationale and Best Practices, Digital
 Humanities Quarterly 8.2 (2014),
 http://www.digitalhumanities.org/dhq/vol/8/2/000181/000181.html.
[Schmidt 2014] Desmond Schmidt, Towards an
 Interoperable Digital Scholarly Edition, Journal of the Text Encoding Initiative
 [Online], Issue 7 | November 2014, Online since 12 November 2014, connection on 24 March
 2015. URL:http://jtei.revues.org/979; doi:https://doi.org/10.4000/jtei.979.
[Schmidt] Desmond Schmidt, The Inadequacy of
 Embedded Markup for Cultural Heritage Texts, Literary and Linguistic
 Computing 25 (2010): 337-356. doi:https://doi.org/10.1093/llc/fqq007.

Balisage: The Markup Conference

Three Ways to Enhance the Interoperability of Cross-References in TEI XML
Joel Kalvesmaki
Editor in Byzantine Studies
Dumbarton Oaks

<kalvesmaki@gmail.com>
Joel Kalvesmaki (PhD, early Christian studies, Catholic University of America,
 2006) is Editor in Byzantine Studies at Dumbarton Oaks. His research centers on Greek
 theological and philosophical texts from late antiquity. Editor of the digital-only
 scholarly reference work Guide to Evagrius
 Ponticus, Joel also serves broadly as an advisor on the digital
 humanities. In 2015 he began the Text Alignment Network, a suite of TEI-friendly XML
 formats intended to facilitate the interoperable exchange of text alignments.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

