
1

XPath is an expression language for navigating the contents of XML

documents. Using XPath, we can select contents in an elegant, concise and

very intuitive way. What is more: XPath is not a loose collection of expressions

and rules, but a complete and fully composable expression language.

Therefore there is virtually no limit to the selectiveness we may achieve,

constructing XPath expressions. XML documents and a file system have much

in common – they both expose a tree-structured collection of names. So –

should we not have something like „XPath for files and folders“ – FOXpath for

short? This presentation reports my efforts to design and implement such an

expression language.

First, we check the basic assumption that XPath is an adequate model for file

system navigation. Then we explore FOXpath, a new expression language for

navigating the file system. We shall see that this first version of FOXpath is a

modified copy of XPath. But then we merge FOXpath back into XPath,

obtaining an extended version of XPath supporting file system navigation. And

finally we shall see that FOXpath is not restricted to physical file systems, but

can navigate logical file systems as well, as for example used to organize the

contents of a NOSQL database, version control repositories or the URI

collection exposed by REST-ful web services.

2

XPath îs a device for exploring and navigating XML documents. A closer look

at XPath reveals core concepts not based on XML, but on the general notion

of a tree-structured collection of names. XML is a particular instance of that

notion, and the file system is another instance. We conclude that it should be

possible to design an expression language which is similar to XPath, but deals

with files and folders, rather than XML nodes.

3

Let us start with a few examples illustrating the desired expression language.

They look like XPath, and they are as powerful as XPath expressions.

4

If we want to use XPath beyond XML, we must understand the core principles

of XPath in an abstract way, which is independent of XML. „Affe“ is the

German word for monkey, and most monkeys love to traverse trees. It‘s

natural to summarize the core principles of XPath under the term AFFe. It‘s an

acronym referring to the building blocks of selection: axis + filter + filter

expression. The axis collects everything visited when traversing the tree in a

particular direction (children, descendants, parent, ancestors, and so forth).

Collected items are submitted to a simple filter, which in the case of XPath is

either a name test or a kind test. If this filtering is still too crude, further filtering

of unlimited selectiveness can be achieved by adding filter expressions.

5

XPath is a masterly elaboration of the AFFe principle. I never cease to marvel

at the expressiveness achieved by uncomprising rigour and consistency.

Aspiring to a new „XPath for files and folders“, what would be more promising

than to stick as closely to XPath as possible?

6

So the fox path expression is the only difference between XPath and FOXpath!

Before becoming formal, let us look at an illustrative example. The expression

reports all Niem XSDs without documentation. Ignoring the tilde and the use of

wildcards within names, this could be an XPath expression.

7

That‘s because the grammar of the fox path expression is just a modified copy

of the grammar of the path expression.

8

So the core functionality of folder nagivation, which is the fox axis step, is a

modified copy of the axis step of XPath, which is the core functionality of node

navigation..

9

FOXpath supports most of the axes supported by XPath, excepting of course

the attribute axis, as well as the preceding and following axis, which are not

believed to be useful when navigating a file system. As in XPath, the child axis

is the default axis.

10

The fox name test filters by file or folder name. In contrast to the node name

test of XPath, name patterns with inserted wildcards are supported. As file

names can be almost arbitrary strings – not only NCNames – the syntax of a

name test must make sure to avoid parsing ambiguity.

11

In XPath, the steps of a path expression are combined by the path operator,

represented by a slash. In FOXpath, steps are combined by the foxpath

operator, also a slash. The semantics are very similar to the path operator, but

there is a key difference: what is pumped from left to right are URIs, not nodes.

12

As we want FOXpath expressions to be just as elegant and concise as XPath

expressions, we are motivated to introduce a slight extension to the

expression semantics of XPath. Consider these examples, which look elegant

and intuitive, yet would produce type errors if we retained XPath semantics

without any changes.

13

Extended semantics are defined in terms of a comparison between the

outcomes of evaluating the expression as an XPath or as a FOXpath

expression.

14

FOXpath defines four semantic extensions.

15

The power of XPath relies on a standard ibrary of built-in functions. FOXpath

supports all XPath functions, plus a few additional functions believed to be

especially useful when navigating and reporting file system contents.

16

A few examples illustrate the use of XPath as well as FOXpath functions.

17

If FOXpath is almost identical to XPath, it is natural to ask if we cannot merge

FOXpath back into XPath, obtaining an extended version of XPath, rather than

a modified copy..

18

Indeed – it‘s possible! This new version of FOXpath is called FOXpath 3.0, as

it is an extended version of XPath 3.0.

19

With FOXpath 3.0, you can not only use fox axis steps, you can also mix axis

and fox axis steps within a single path expression. This enables expressions

accomplishing a two-phase navigation: initial steps select resources, following

steps navigate into their contents.

20

Another example of mixing is the use of fox axis steps with predicates

containing axis steps, which means resource selection based on resource

contents.

21

A reference implementation of FOXpath 3.0 is available.

22

The implementation in action – a complex expression producing a tree

representation of the folder tree found under the niem-3.0 folder.

23

The folder navigation supported by FOXpath is not restricted to physical file

systems – it can also deal with other kinds of resource trees, which may be

regarded as logical file systems.

24

It is important to recognize the basic building block of folder navigation – which

is the fox axis step. The question arises whether the fox axis step can deal

with logical file systems as well.

25

As you remember, the fox axis step combines a fox axis with a fox name test.

A complete implementation can be built upon navigation primitives, three

functions mapping an input URI to output URIs – root, child and descendant

URIs. The functions constitute a sufficient interface to the tree, as far as

navigation is concerned. This interface completely hides the nature of the

resource tree – physical file system, SVN repository, etc. In principle, FOXpath

can navigate any type of resource tree, for which implementations of these

three navigation primitives are available.

26

What is more: FOXpath can support in parallel any number of resource tree

types. This presupposes that for a given URI, the type of containing resource

tree can be determined. If this is the case, for a given context URI, the

appropriate instances of the navigation primitives can be selected and the fox

axis step can be executed.

27

Support for various resource tree types will certainly be implementation

dependent. How to integrate this variability cleanly into the highly standardized

XPath language?

28

An afterthought: FOXpath complements tree navigation of resource contents

with tree navigation of resource collections. FOXpath encourages us to

perceive a nested forest of information: an outer forest consisting of resource

trees, an inner forest consisting of the node trees corresponding to leaves of

the resource trees. FOXpath enables us to navigate the complete structure in

a seamless way, and therefore we may experience this nested forest as a

single, continuous space – the info space.

29

There is a choice to be made: either XPath remains an ingenious tool for

navigating XML documents, or it will be extended to become the engine of the

info space.

30

