[image: Balisage logo]Balisage: The Markup Conference

The Hard Edges of Soft Hyphens
Syd Bauman
Senior XML Programmer / Analyst
Northeastern University / Library / CDS / WWP

<s.bauman@northeastern.edu>

Balisage: The Markup Conference 2016
August 2 - 5, 2016

Copyright © 2016 Syd Bauman. Some rights reserved.

How to cite this paper
Bauman, Syd. "The Hard Edges of Soft Hyphens." Presented at: Balisage: The Markup Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The Markup Conference 2016.
 Balisage Series on Markup Technologies vol. 17 (2016). https://doi.org/10.4242/BalisageVol17.Bauman01.

Abstract
At the WWP, end-of-line hyphens used by the typesetter to
 indicate I ran out of room, so the rest of this word is
 continued on the next line are encoded (somewhat
 problematically) with SOFT HYPHEN (U+00AD). Resolving those so
 that individual words that were split over a line break are
 reconstituted turns out to be very difficult. (At least, using
 XSLT.)

Balisage: The Markup Conference

 The Hard Edges of Soft Hyphens

 Table of Contents

 	Title Page

 	Note to the reader

 	Argument

 	Introduction
 	Soft hyphens

 	Recording lineation and end-of-line hyphens

 	Desired output

 	When I’m wrong, I can be really wrong

 	Seems easy …
 	Whitespace

 	Further complications
 	’Twixt

 	Sibling of Overlap

 	Text that is not there

 	Choosing the shy

 	Shy of the choice

 	Saving graces

 	Attempts
 	Early Days
 	Special-purpose: Perl version

 	Special-purpose: CMS Pipelines

 	XSLT
 	First try: text nodes

 	Second try: decorated elements around those text nodes

 	Third try: decorated elements around tokens

 	About the Author

 The Hard Edges of Soft Hyphens

Note to the reader
A link to an updated version (or even a newer edition) of
 this paper may be available on
 the WWP
 bibliography page.

Argument
In section “Introduction” this paper presents what soft
 hyphens are and how they are encoded, and then discusses the
 desired processing (called resolution). In the next
 two sections (section “Seems easy …” and section “Further complications”)
 an algorithm for how this might be done, and then a somewhat
 detailed discussion of some of the features of TEI encoding that
 make this difficult are presented, along with a few of the
 policies at the WWP that try to make it a bit easier. Lastly, in
 section “Attempts” brief discussions of various attempts to
 perform this processing are presented.

Introduction
Soft hyphens
In the modern post-Unicode era, a soft
 hyphen is typically defined as a spot where you,
 the word processor, may break this word across a line break, if
 needed[1] But even as recently as ISO 8859
 a soft hyphen was for use when a line break has been
 established within a word[2] Although
 not called a soft hyphen back then, this use of
 the hyphen has been around for centuries. E.g., the [OED] cites [NWEW] as saying
 Hyphen … is used … when one part of a word
 concludes the former Line, and the one begins the next.
 It is this latter (older) definition with which we are concerned
 here: a computer character (or other XML construct) used in a
 transcription to indicate where an end-of-line hyphen was
 printed in the source text to indicate this word is
 continued on the next line.

The use of such characters (hyphen to indicate word
 continued on next line) is nearly ubiquitous in printed
 works (at least in English). For example, I searched Google
 Books for the word balisage, and looked at the
 first book listed.[3] Even though I cannot read it because it
 is in French, there are obviously four soft hyphens on the first
 page of printed prose alone (i.e., ignoring the title page,
 etc.); that page has just over 200 words spread over 20 lines.
 In the first full chapter of Michael Kay’s
 book[4] I counted 67 soft
 hyphens in roughly 17,760 words over roughly 1410 lines.

Recording lineation and end-of-line hyphens
The Text Encoding Initiative Guidelines for Electronic Text Encoding and
 Interchange contain a discussion of how to handle
 these extant typographic indicators.[5]
 One common solution is to ignore the soft hyphens, and to simply
 transcribe the word that has been broken across a line break as
 a single word. Consider the following example.[6]
 [image:]

 This passage might be encoded[7] as

 so far they’d been smart enough to keep quiet about it. I’d never seen any
 posts about the Tomb of Horrors on any gunter message boards. I realized,
 of course, that this might be because my theory about the old D&D
 module was completely lame and totally off base.</p>

 or even

 so far they’d been smart enough to keep quiet about it. I’d
 never seen any posts about the Tomb of Horrors on any
 gunter message boards. I realized, of course, that this might
 be because my theory about the old D&D module was
 completely lame and totally off base.</p>

 or, if encoding original lineation

 <lb/>so far they’d been smart enough to keep quiet about it. I’d never seen any
 <lb/>posts about the Tomb of Horrors on any gunter message boards. I realized,
 <lb/>of course, that this might be because my theory about the old D&D
 <lb/>module was completely lame and totally off base.</p>

In all three of the above encodings, the word
 realized has been silently reconstituted from its
 constituent parts, the initial portion immediately prior to the
 soft hyphen, and the final portion shortly after the soft hyphen.
 In the first and third examples the soft hyphen is resolved by
 moving the final portion of the word up from the begining of its
 line to the end of the previous line (which I call
 finalUp). It could just as easily have been
 resolved by moving the initial portion of the word from the end of
 its line to the beginning of the next line (which I call
 initDown). For most of this paper I will discuss
 resolution in only the finalUp direction, but the
 issues generally apply equally well to both directions.
Personally, I do not like that third (last) encoding. It
 explicitly asserts there was a line break in the source document
 between realized, and of course,
 which is not true. But nonetheless, the practice is not uncommon.
 The first encoded example is not nearly so bad, as its implication
 that there was a line break at that spot is implicit, not
 explicit. The middle of the three encoding possibilities is not
 objectionable in assertion of line breaks at all, since it makes
 no such assertions. (One could infer them, but they are not
 implied.) However, many projects will find it a disadvantage to
 transcribe prose completely irrespective of original lineation.
 Keeping track of original lineation is very helpful when trying to
 align the source document with the transcription (or the output of
 processing the transcription). Even if a project does not think
 the users of its transcribed texts will appreciate this alignment,
 the project proofreaders will — a lot.
Another common approach is to explicitly record both the
 hyphen character and original lineation. Consider the following example.[8]

 It turns out that the most important voice in the Su‐
 preme Court nomination battle is not the American peo‐
 ple’s, as Senate Republicans have insisted from the mo‐
 ment Justice Antonin Scalia died last month. It is not even
 that of the senators. It’s the National Rifle Association’s.
 That is what the majority leader, Mitch McConnell,
 said the other day when asked about the possibility of con‐
 sidering and confirming President Obama’s nominee,
 Judge Merrick Garland, after the November elections. “I
 can’t imagine that a Republican majority in the United
 States Senate would want to confirm, in a lame-duck ses‐
 sion, a nominee opposed by the National Rifle Associa‐
 tion,” he told “Fox News Sunday.”

 This excerpt from a New York
 Times editorial might be encoded as follows.

 <p>It turns out that the most important voice in the Su<pc force="weak">-</pc>
 <lb break="no"/>preme Court nomination battle is not the American peo<pc force="weak">-</pc>
 <lb break="no"/>ple’s, as Senate Republicans have insisted from the mo<pc force="weak">-</pc>
 <lb break="no"/>ment Justice Antonin Scalia died last month. It is not even
 <lb/>that of the senators. It’s the National Rifle Association’s.</p>
 <p>That is what the majority leader, Mitch McConnell,
 <lb/>said the other day when asked about the possibility of con<pc force="weak">-</pc>
 <lb break="no"/>sidering and confirming President Obama’s nominee,
 <lb/>Judge Merrick Garland, after the November elections. “I
 <lb/>can’t imagine that a Republican majority in the United
 <lb/>States Senate would want to confirm, in a lame-duck ses<pc force="weak">-</pc>
 <lb break="no"/>sion, a nominee opposed by the National Rifle Associa<pc force="weak">-</pc>
 <lb break="no"/>tion,” he told “Fox News Sunday.”</p>

 Here it is explicit that the hyphen character is not a word
 separator (force="weak"), and that the line break
 does not imply the end of an orthographic token
 (break="no"). It is worth noting that many TEI projects
 choose to use either <pc force="weak"> or
 <lb break="no">, but not both.
At my project[9] we encode soft hyphens using the
 Unicode character SOFT HYPHEN (U+00AD). Given that this
 character is explicitly of the a word processor may
 insert a hyphen here if needed variety, in some sense it
 is technically incorrect to use it for this purpose.
 Furthermore, the TEI Guidelines do not
 recommend this use. In our defense, we chose this path back in
 the ISO 8859 days, and when ­ was an SGML
 SDATA reference that did not necessarily mean code-point 0xAD.
 But more importantly, the detail of which character is used to
 represent the this word is continued on the next
 line glyph that was on the source page does not matter,
 so long as it is not also used for some other purpose in the
 same file. So, given that we are encoding early modern printed
 books, we could just as well have used the EURO SIGN (U+20AC)
 for this purpose. In either case it is character abuse; however
 the abuse of SOFT HYPHEN seems much less dramatic than would be
 the abuse of EURO SIGN: this has something
 to do with hyphenation, and nothing to do
 with currency.
So our encoding of the excerpt from the New York Times editorial would be as
 follows.[10]

 <p>It turns out that the most important voice in the Su­
 <lb/>preme Court nomination battle is not the American peo­
 <lb/>ple's, as Senate Republicans have insisted from the mo­
 <lb/>ment Justice Antonin Scalia died last month. It is not even
 <lb/>that of the senators. It's the National Rifle Association's.</p>
 <p>That is what the majority leader, Mitch McConnell,
 <lb/>said the other day when asked about the possibility of con­
 <lb/>sidering and confirming President Obama's nominee,
 <lb/>Judge Merrick Garland, after the November elections. <said>I
 <lb/>can't imagine that a Republican majority in the United
 <lb/>States Senate would want to confirm, in a lame-duck ses­
 <lb/>sion, a nominee opposed by the National Rifle Associa­
 <lb/>tion,</said> he told <title>Fox News Sunday.</title></p>

Desired output
Encoding texts serves little purpose unless some sort of
 analysis or output generation (or both) is undertaken. If all we
 wanted to do was read the text, scanned images of the pages
 would do.
Consider the following snippet of an encoded text:[11]

 <p>Whatever has been ſaid
 <lb n="14"/>by Men of more Wit than
 <lb n="15"/>Wiſdom, and perhaps of
 <lb n="16"/>more malice than either,
 <lb n="17"/>that Women are natural­
 <lb n="18"/>ly Incapable of acting Pru­
 <lb n="19"/>dently, or that they are
 <lb n="20"/>neceſſarily determined to
 <lb n="21"/>folly, …

 For most analyses we would prefer the words
 naturally and Prudently to occur
 in our data, and the the tokens ly,
 Pru, and dently not to occur. That
 is, we would like the soft hyphens resolved. The exception is
 the physical bibliographer who is interested in the phenomena of
 breaking a word across a line.
As with analyses, for most purposes we would prefer to
 read the text with as few interruptions to words as possible.
 The obvious exception is when we want to align reading of the
 processed output with the physical source page or a facsimile
 thereof. This alignment makes proofreading
 much easier.
Thus for proofreading we might like to see something like
 the following.

 13: Whatever has been ſaid
 14: by Men of more Wit than
 15: Wiſdom, and perhaps of
 16: more malice than either,
 17: that Women are natural-
 18: ly Incapable of acting Pru-
 19: dently, or that they are
 20: neceſſarily determined to
 21: folly, …

 Whereas for casual reading, we might prefer:

 Whatever has been said by Men of more Wit than Wisdom, and
 perhaps of more malice than either, that Women are naturally
 Incapable of acting Prudently, or that they are necessarily
 determined to folly, …

 The question is, of course, how to get that resolved output.

When I’m wrong, I can be really wrong
Famous last words: (figuratively,
 expressing sarcasm) A statement which is overly optimistic,
 results from overconfidence, or lacks realistic
 foresight.
— [FLWs]

Like many people, I make good predictions and bad ones.
 But sometimes I make truly horrible predictions. E.g., in early
 1995 or thereabouts I infamously said something like
 remember, the web is not our friend, it is our
 enemy. Hard to be more wrong than that. But when it came
 to soft hyphens, it may turn out I was. You see, sometime during
 the early days of the Women Writers Project I asserted that
 software could read our documents (in which soft hyphens were
 encoded using first the ­. Waterloo Script
 set symbol (essentially a variable), and later the
 ­ SGML SDATA entity reference), and
 resolve the soft hyphen for creating full-text
 searchable word lists or reading output for undergraduates. I
 said this with a how hard can it be? attitude,
 I’m sure.[12]
Well, as will be discussed in the rest of this paper, it
 has turned out to be quite hard.

Seems easy …
At first blush, this does not seem like it would be a
 difficult programming task. Basically, when you find a soft
 hyphen, drop it and replace it with the first token from the next
 line. Correspondingly, in order to avoid duplicating the first
 token from the next line,[13] when you find a text node
 whose immediately preceding text node ended in soft hyphen, drop
 the first token. For example, consider the following passage.[14]
 [image:]

 Or, in modern typography,

 [image:]

 If this passage is transcribed as

 <lb/>procuring a ſpeedy adminiſtration of Juſ­
 <lb/>tice for the impartiall puniſhment of all
 <lb/>offenders, to the relief and comfort of the

 then to resolve the soft hyphen, it needs to be
 replaced by the first text token of the line that immediately
 follows.
 [image:]

 In an XSLT context, this means that the template that matches the
 blue portion above needs to strip off the ­
 character and replace it with the red portion in the above; and
 the template that matches the text node that includes the red
 portion needs to strip off said red portion (since it has already
 been put into the output stream by the template that matched the
 blue portion).
 [image:]

Whitespace
That doesn’t sound too tough. Of course it is obviously a
 little harder than the diagrams above make it look, for they
 ignore the whitespace between the blue and red portions:
 [image:]

 In order to handle that whitespace we need to
 	ignore whitespace at the end-of-line when looking for soft hyphens

	ensure that the end-of-line whitespace is not
 inserted between the two parts of the broken word, either by
 stripping end-of-line whitespace off along with the
 ­ character, or by carefully replacing
 only that character (such that the whitespace comes after the
 re-constituted word)

Of course we cannot just normalize whitespace using
 XPath’s built-in normalize-space() function, as in
 many cases leading and trailing space are important. E.g., given
 the following fragment,[15]

 <p rend="first-indent(1)">How far the passages of scripture
 <lb/>she mentions were applicable to the
 <lb/>conduct of <persName>Mr B</persName> it is not our prov­
 <lb/>ince to determine; but it is not

 using normalize-space() on
 ␣it␣is␣not␣our␣prov­↲ would lead to
 …conduct of Mr. Bit is not our province to
 determine; …, because the space in front of
 it would be lost.[16]
 [17]

 But even with this whitespace concern, this is not particularly
 difficult. And if that’s all there was to it, well, I wouldn’t be
 writing this paper.

Further complications
’Twixt
First thing to keep in mind is that XML constructs other
 than just the <lb> element may come between the
 text node that ends in SOFT HYPHEN and the text node that
 contains the representation of the continued word. Besides the
 obvious (XML comments and XML processing instructions), first
 and foremost the feature that forced the typographer to break
 the word in the first place may have been a page break, not a
 line break. Page breaks usually have other information
 associated with them (page numbers, catch words, signature
 marks, running titles) that are generally encoded where
 they lie such that they further interrupt the word that
 has been split. E.g.[18][19]

 <p>Whoever may come out in any society as Mis­
 <pb n="247"/>
 <milestone unit="sig" n="M4r"/>
 <mw type="pageNum">247</mw>
 <lb/>sionaries or teachers, whether here or at <placeName>Sierra-
 <lb/>Leone</placeName>, had need to guard against assimilating too
 <lb/>much in habit or sentiment with other <rs type="properAdjective">European</rs>
 <lb/>residents, …

 Notice that included among those things that follow the soft
 hyphen is a text node (247) which is not part of
 the split word Missionaries.
 [20]
 (Note also that the
 hyphen glyph in Sierra-Leone looks exactly the
 same in the source as the hyphen glyph in
 Mis-sionaries, but the encoding asserts it is a
 hard hyphen even though it occurs at end-of-line. This is
 because other occurrences of Sierra-Leone have a
 hyphen, even when it is in the middle of a typographic line. The
 hard hyphen is probably best encoded with a HYPHEN character
 (U+2010), but is typically recorded with a HYPHEN-MINUS
 character (U+002D).)
But sadly, it is not only the obvious and predictable (XML
 comments, XML processing instructions, line breaks, column
 breaks, and page breaks with their apparatuses) that may come
 between a soft hyphen and the final portion of a word. The most
 common culprits here are annotations and figures, but
 handwritten additions (either authorial or by a later hand)
 could also occur.
In the following example[21] an entire tipped-in
 plate sits between the soft hyphen and the final portion of the
 word.

 <p>
 <label>I.</label> God spoke of Be-he-moth. What ani­
 <pb n="facing 48"/>
 <pb n="facing 49"/>
 <figure>
 <figDesc>An engraving of a “behemoth” (resembles the
 elephant) standing on a grassy bank drinking from a body
 of water, vegitation in background</figDesc>
 <ab type="caption">To face page 49.</ab>
 </figure>
 <pb n="49"/>
 <milestone n="E5r" unit="sig"/>
 <mw rend="align(outside)" type="pageNum">49</mw>
 <lb/>mal is that?

Sibling of Overlap
In all of the examples so far, the initial and final
 portions of the word divided by a soft hyphen are at least at
 the same hierarchical level of encoding. That is (in XPath
 terms) from the text node that contains the soft hyphen, the
 final portion of the word is on the
 following-sibling:: axis, even if it is not the
 first text node, or even the first non-whitespace-only text
 node, on that axis.
However, we are not always so lucky. Here is a modern
 diplomatic transcription of a heading.[22]
 [image:]

 The word Honourable is half in roman (or
 upright) type and half in italics. To account for this font shift,
 the encoding uses the TEI <hi> element and the global @rend
 attribute to indicate that while the entire heading is (in general) in italics, the first
 typographic line is highlighted by being in roman typeface.[23]

 <head rend="slant(italic)"><hi rend="slant(upright)">To all vertuous Ladies Honou­</hi>
 <lb/>rable or Worſhipfull, and to all other
 <lb/>of <persName rend="slant(upright)">He<vuji>u</vuji>ahs</persName> ſex fearing God, and lo<vuji>u</vuji>ing their
 <lb/><vuji>i</vuji>uſt reputation, grace and peace through
 <lb/><persName>Chriſt</persName>, to eternall glory.
 </head>

It would be reasonable to think this
 phenomenon pernicious, not particularly important, and rare.
 But a different manifestation of the same hierarchical problem
 is anything but. When a book is damaged (e.g., by a coffee
 spill, or torn or mouse-eaten edges of pages), it is common for
 the damage to be on only one side of the page. Such damage will
 cause a problem reading either the initial portion (if it is on
 the right edge) or the final portion (if it is ontFIXME!! he left edge)
 of a word split across a line break.
In the following example,[24] the encoder
 has indicated that she cannot read a few characters at the
 beginning of each of four lines due to damage, but that either
 from context alone or from looking at a different edition of the
 same book she has been able to surmise what must have been
 printed.

 <lb/>not your own. It is a miſe­
 <lb/><supplied reason="damaged">ra</supplied>ble thing for any Wo­
 <lb/><supplied reason="damaged">ma</supplied>n, though never ſo great,
 <lb/><supplied reason="damaged">not</supplied> to be able to teach her
 <lb/><supplied reason="damaged">ſerv</supplied>ants; …

 This is a particularly thorny case, because in order to
 resolve the soft hyphen, software will have to recognize that
 not only should the following <supplied>
 element be moved from the beginning of its line to the end of
 the previous line (replacing the ­
 character), but also the first token of the text node
 immediately following the <supplied> needs to
 move with it.

Text that is not there
If the text that is damaged cannot be read at all, the TEI
 Guidelines recommend using the
 <gap> element. While the <gap>
 element may have content, if it does that content does not
 provide a transcription of the source text, but rather provides
 a description of or information about what was not transcribed
 from the source text; and more often than not
 <gap> is empty. In the following example,[25] the
 encoder is asserting that she could not read a significant
 portion of the last line.

 <lb/>And alſo ge<vuji>u</vuji>eth them grace to <vuji>v</vuji>ſe in his
 <lb/>glorye, po<vuji>u</vuji>ertie, ignomine, infamie, in­
 <lb/>firmitie, with all ad<vuji>u</vuji>erſitie, and the pri­
 <lb/><gap extent="over one third of the line" reason="flawed-reproduction"/>tes,
 e<vuji>u</vuji>en to the death<unclear>,</unclear>

 When a <gap> occurs after a soft hyphen, but
 before any non-ignorable content, we have a case for which it is
 particularly difficult to resolve the soft hyphen; thankfully,
 it is also a case for which it is particularly unimportant to do
 so.
It is difficult to do so for two main reasons. First,
 because (unlike most other empty elements we would encounter
 after a soft hyphen: <cb>, <lb>,
 <milestone>, and <pb>) the
 <gap> represents content, it would have to be
 moved as if it were the first token of content. Second, because
 a <gap> may represent less than a single word, a
 single word, or more than a single word, the software will need
 to parse its attributes (and perhaps content) to determine
 whether or not the first token of an immediately following text
 node (that does not start with whitespace) needs to be moved
 along with the <gap>.
It is unimportant because under no circumstances can the
 soft hyphen resolution process meet the goal of reconstituting
 the entire word. Whether for spell checking, for indexing for
 search, or for generating an easy-to-read display, having
 pri<gap extent="rest of word"/><lb/><gap
 extent="roughly one third of the line minus roughly one half of
 the first word"/> is no better than what you had
 to begin with.

Choosing the shy
The TEI uses a parallel elements mechanism
 for recording a variety of editorial interventions. Here I will
 discuss the correction of apparent errors
 (<choice>, <sic>, and
 <corr>), but the same issues hold true for the
 simple expansion of abbreviations (<choice>,
 <abbr>, and <expan>), the
 substitution of one bit of text for another
 (<subst>, , and
 <add>), the regularization of archaic or
 eccentric spelling or typography (<choice>,
 <orig>, and <reg>), and the
 simultaneous encoding of multiple variant witnesses
 (<app>, <rdg>, and
 <lem>).
The following example[26] demonstrates two
 errors in one title, each of which is directly involved in the
 use of soft hyphens. I will discuss the second error here, and
 the first one in the next subsection.
 [image:]

If you look carefully at the end of the
 3rd line, you will see that the soft
 hyphen character is not a hyphen at all. In this reproduction
 you may find it hard to figure out what it is, but in other
 editions (I am told) it is more obvious that the character there
 is a
 period.
Presuming the encoding project would like to record both
 the error as it appears in the source text and a modern
 correction of it, there are two likely TEI encodings of this:
 letter-level and word-level.

<lb/>Bench</placeName>, for the releaſing of all pri<choice><sic>.</sic><corr>­</corr></choice>
<lb/>ſoners for Debt, according to

 The above letter-level encoding makes resolving the soft hyphen
 potentially quite a bit more difficult. The difficulty lies in
 the fact that if we were to apply the simple algorithm discussed
 above — namely to replace the soft hyphen character with the
 first token of the following line, we would suddenly be
 asserting that the partial word soners was
 somehow a correction of a period:

<lb/>Bench</placeName>, for the releaſing of all pri<choice><sic>.</sic><corr>ſoners</corr></choice>
<lb/>for Debt, according to

 In many, if not the vast majority, of situations this would not
 really be a problem. When performing soft hyphen resolution for
 the purpose of generating word lists or indices, we generally do
 not care about simultaneously handling both the source text and
 the editorial correction. We usually just want the corrected
 version, in which case the entire <choice>
 construct is itself resolved to the content of
 <corr>. Whether this is done before or after
 soft hyphen resolution, we end up with the desired words.
In rare cases we might be interested in the uncorrected
 source text. In which case soft hyphen resolution software has
 to be smart enough to perform the resolution on the text in
 <sic> based on the content of
 <corr>. In theory a project may want to perform
 soft hyphen resolution in both the uncorrected source and the
 editorially corrected text. I do not address this particular
 situation here, as I have never even heard this idea
 entertained.
Word-level correction is a bit easier for soft hyphen
 resolution, as the simple algorithm yields a perfectly
 acceptable result.

<lb/>Bench</placeName>, for the releaſing of all <choice>
 <sic>pri.<lb/>ſoners</sic>
 <corr>pri­<lb/>ſoners</corr>
</choice> for Debt, according to

 However, it has a different drawback: with this system counting
 lines on the page — a common and important task — is harder, in
 that the counter has to know that the choice/sic/lb
 and the choice/corr/lb together need to be counted
 as only one line break.

Shy of the choice
Anything more than a cursory or rapid read of the first
 two lines reveals an egregious error, probably by the
 typesetter: the word commanders is spelled
 commanmanders, as the medial letters
 man are not only in the initial portion of the
 word, but are also repeated after the soft hyphen. Multiple
 possible encodings jump to mind. The editor may consider the
 man at the end of the first line as the correct
 one, and thus the man at the beginning of the
 second line as the one error; or vice-versa. And in each case
 the encoder may use letter-level or word-level encoding.

<titlePart type="second">Alſo a Petition of divers Comman­
<lb/><choice><sic>man</sic><corr/></choice>ders, priſoners in the <placeName>Kings

<titlePart type="second">Alſo a Petition of divers <choice>
 <sic>Comman­<lb/>manders</sic>
 <corr>Comman­<lb/>ders</corr>
</choice>, priſoners in the <placeName>Kings

<titlePart type="second">Alſo a Petition of divers Com<choice><sic>man</sic><corr/></choice>­
<lb/>manders, priſoners in the <placeName>Kings

<titlePart type="second">Alſo a Petition of divers <choice>
 <sic>Comman­<lb/>manders</sic>
 <corr>Com­<lb/>manders</corr>
</choice>, priſoners in the <placeName>Kings

 Furthermore, when using word-level encoding, project editorial
 policy may allow elision of the soft hyphen and line break in
 the corrected version:

<titlePart type="second">Alſo a Petition of divers <choice>
 <sic>Comman­<lb/>manders</sic>
 <corr>Commanders</corr>
</choice>, priſoners in the <placeName>Kings

Saving graces
So we see that there are quite a few complications to soft
 hyphen resolution. Luckily, at least at the WWP, there are a few
 encoding practices we have put in place that ease the process,
 rather than interfere.
	Soft hyphens are consistently
 encoded
We never encode soft hyphen with anything else, ever.[27] That is (as
 demonstrated in section “Choosing the shy”), a U+00AD character is
 encoded at every soft hyphen even if the source text
 erroneously has a different character, or indeed no character
 at all, to represent the soft hyphen.

	U+00AD is unique to this purpose
We never use U+00AD for anything else, ever. This is a
 slight exaggeration, but foregrounds the important point. On
 rare occasion an actual U+00AD character will creep into the
 discussion about the encoding
 of a file in its metadata,
 e.g., in a change log entry that discusses fixing a soft
 hyphen. But this usage never occurs in the content. Furthermore, an actual soft
 hyphen never occurs in metadata. Thus all U+00AD within
 /TEI/text are soft hyphens, all U+00AD within
 /TEI/teiHeader are discussions about soft hyphen
 characters.

	U+00AD is always in element content
At the WWP our encoding is such that any U+00AD in an
 attribute value is in error; and, for this purpose, any U+00AD
 in an XML comment or processing instruction (or the
 <teiHeader>) is ignorable.

	Once you’ve seen one white space,
 you’ve seen ’em all
As with many text encoding projects, the WWP cares very
 much about the presence or absence of most whitespace in the
 encoded XML file, but we don’t care at all about the details
 of said whitespace, i.e. how many or which whitespace
 characters occur. We would consider the following three
 examples entirely equivalent (although obviously, humans
 prefer to work on the first).

 <lg>
 <byline>To the tune of <title>Don’t Cry for me Argentina</title> by Andrew Lloyd Webber and Tim Rice</byline>
 <l>Don’t cry for me Charles Goldfarb,</l>
 <l>The truth is I do not miss them,</l>
 <l>All of those features,</l>
 <l>Because we’re lazy,</l>
 <l>To save us typing,</l>
 <l>They drove us crazy.</l>
 </lg>

 <lg><byline>To the tune
 of <title>Don’t Cry for me
 Argentina</title> by Andrew
 Lloyd Webber and Tim Rice</byline>
<l> Don’t cry for me Charles Goldfarb,
</l><l>The truth is I do not miss them,
</l><l> All of those features,
 </l><l> Because we’re lazy,
 </l><l> To save us typing,
 </l><l> They drove us crazy.
</l> </lg>

 <lg><byline>To the tune of <title>Don’t Cry for me Argentina</title> by Andrew Lloyd Webber and Tim
 Rice</byline> <l> Don’t cry for me Charles Goldfarb, </l><l> The truth is I do not miss them, </l><l>
 All of those features,</l><l>Because we’re lazy,</l><l>To save us typing,</l><l>They drove us crazy.</l></lg>

The results of these encoding practices are that it is
 trivially easy to find all the occurrences of soft hyphens that
 require resolution (without any false positives), and we can
 regularize whitespace (even if we can’t use the
 normalize-space() function; see section “Whitespace”), making tokenization and reconstitution of strings
 easier.

Attempts
Early Days
Roughly speaking, in the 1980s the WWP used Waterloo
 Script; in the early 1990s we used Waterloo GML; in the mid
 1990s we used Waterloo GML using pointy brackets
 (< and
 >) instead of the default tag
 delimiters : and
 .; in the late 1990s we used SGML,
 but still did most processing with Waterloo Script; and in the
 early 21st century we switched to
 XML.
In mid-1991 the WWP embarked on a collaboration with
 Oxford University Press to publish a series of books based on
 our textbase files. Thus I went to work on a program to
 generate camera-ready PostScript output from our pseudo-SGML
 input, using Waterloo Script. I believe this was the first
 time we actually wrote code to resolve our soft hyphens,
 which. The snippet of code below is from a subroutine of that
 program written in 1991-10. The &*txt0. set
 symbol contains a line of text with each SPACE (U+0020)
 converted to a COMMERCIAL AT (U+0040) character. In the input
 files at that time a soft hyphen was encoded just like a hard
 hyphen, i.e. using the HYPHEN-MINUS character (U+002D).

. .*
. .* check the first character; if it is a blank ("@") AND our "we
. .* chopped a hyphen off last time we appended" flag is set, chop off
. .* the blank.
. .*
. .if "&'substr(&*txt0., 1, 1)" = "@" & &nw_shyl. = 1
. .sr *txt1 = &'substr(&*txt0., 2)
. .el .sr *txt1 = &*txt0.
. .*
. .*
. .* parse off the last character; if it is the CONTinuation character,
. .* chop it off. (For some reason in this context Script treats it as
. .* a text character.)
. .*
. .sr *len = &'length(&*txt1.)
. .sr *last = &'substr(&*txt1., &*len., 1)
. .*
. .if "&*last." = "&$cont." .sr *txt2 = "&'substr(&*txt1.,1,&*len.-1)"
. .el .sr *txt2 = "&*txt1."
. .*
. .*
. .* if there are still characters left, check the last one; if it is a
. .* hyphen, chop it off (Script will not treat it as a soft hyphen
. .* here!), and set a flag
. .*
. .sr *len = &'length(&*txt2.)
. .if &*len. gt 0 .do begin
. .sr *last = "&'substr(&*txt2., &*len., 1)"
. .*
. .if "&*last." = "­." .th .do begin
. .sr *txt3 = "&'substr(&*txt2., 1, &*len.-1)"
. .sr nw_shyl = 1
. .do end
. .el .do begin
. .sr *txt3 = &*txt2.
. .sr nw_shyl = 0
. .do end
. .do end
. .*

My vague recollection is that the above code worked
 reasonably well, but e-mail I sent in 1994-03 makes it clear it
 always had problems: hyphens [are] top prio[rity], so I
 will be tackling that … My thinknig rightg now is that
 I've spent years trying to figure out how to get SCRIPT to
 handle this w/o success. But it would be trivial to massage the
 original file w/ Perl (or maybe even BBEdit) in order to remove
 soft hyphens, at least in simple <lb> case, and probably
 others. I do not recall what the problems were. My vague
 recollection is this system had the capability to handle section “’Twixt” problems well, because this routine was not
 called on strings that were not part of the main text flow; i.e.
 it was not used for page apparatus, annotations, figure
 descriptions, etc.
Special-purpose: Perl version
It is clear from an e-mail exchange from mid 1994-03
 that I wrote a special-purpose MacPerl program at that time to
 handle the simple soft hyphen cases, i.e. when
 an end-of-line hyphen was followed by a breaking element
 (<pgbk>, <lb>, or
 <cl>). I have not been able to find that
 original Perl program, but I believe that the soft hyphen
 handling portion of a later routine was based on it. In the
 following snippet, the entire input file is stored as one long
 string in the variable $in.

 $in =~ s,­\s*<lb[^>]*>(<anchor[^>]*>)([^ \t\r\n<]*),\2\1,igs;
 $in =~ s,­\s*(<anchor[^>]*>)\s*<lb[^>]*>([^ \t\r\n<]*),\2\1,igs;
 $in =~ s,­\s*<lb[^>]*>,,igs;

 This snippet of code does not handle <pgbk> or
 <cl> elements, because by the time this
 program, based on the original MacPerl program, was written
 they no longer existed in our encoding system. It does handle
 an empty <anchor> element, whether it is
 before (line 2) or after (line 1) the <lb>
 that follows the soft hyphen. I can only guess at the reason
 why it does not handle <pb>, the replacement
 for <pgbk>: handling the section “’Twixt” problem would be too difficult.

Special-purpose: CMS Pipelines
However, we found the MacPerl program to be too
 cumbersome and slow.[28] Thus a few days later (1994-03-19)
 I wrote a CMS Pipelines version of the same command. The
 program is written in Rexx, but all the work is done by a
 single call to the CMS pipe command. That main
 call follows.

 /*
 ** Now do the real work in one big pipeline; it would be fast
 ** except that the SPILL stage is written in Rexx. Oh well.
 */
 'pipe (long endchar #) <' fn ft fm, /* read file in */
 '| nfind <pgbk', /* nuke page-break lines */
 '| join * /@/', /* now 1 line, remembering \n's */
 '| split after string />/', /* chop into reasonable size parts */
 '| change /-@<lb/<NUKEME/', /* mark hyphen-EOL-<lb */
 '| change /-@<cl>/<NUKEME>/', /* mark hyphen-EOL-<cl> */
 '| change /-@<cl /<NUKEME /', /* mark hyphen-EOL-<cl_ */
 '| join *', /* back into 1 line */
 '| split before string /</', /* now chop up such as to separate */
 '| split after string />/', /* tags onto lines of their own */
 '| nfind <NUKEME', /* and kill marked records */
 '| t: find <', /* take only the tags */
 '| change / /%/', /* and protect internal blanks */
 '| a: faninany', /* get back non-tags */
 '| join *', /* back into 1 line, again */
 '| split before string /@/', /* cut into pieces at orginal \n's */
 '| change /@//', /* nuke our \n markers */
 '| spill 153 sep|', /* make sure not too long */
 ' change /%/ /', /* restore protected blanks-in-tags*/
 '| >' ofid, /* write to output file */
 '# t:',
 '| a:'

By the time this command is issued, the input file
 (fn ft fm) has been tested to ensure it has no
 @ or % characters, and the name of the
 output file (ofid) has been set up. The
 spill stage (which was added a month or so later)
 is not a standard CMS Pipeline stage, but rather was a pipeline
 stage written at Brown by James
 Mathiesen.[29]
 Its purpose was to Spill lines at a particular column
 … to wrap one-paragraph-per-line input into a wrapped
 text. This routine was clearly written back when soft
 hyphens were encoded just as hard hyphens, i.e. using the
 HYPHEN-MINUS character (U+002D).
Like the Perl program before it, this program was only
 designed to handle the simple soft hyphens that
 were followed immediately by a <cl>,
 <lb>, or <pgbk> element. These
 were, of course, the vast majority of cases. The problem
 described in section “’Twixt” is handled, at least for
 page breaks, in a novel way: the entire record is simply
 discarded. This worked because during this era it was policy to
 record all details about a page break on a single line.
It is worth mentioning that the program can match
 <lb> elements just by searching for the first
 three characters, which will always be <lb.
 However, the same shorthand does not work for
 <cl> elements, because the first characters of
 the element name are not unique: there were also
 <close>, <closer>,
 <closing>, and <clbk> elements
 at different times in our history.

XSLT
And so it went — for years the WWP limped by on various
 hacks to resolve soft hyphens. Then in 2011 we began moving our
 publication to XTF, a XSLT system built almost entirely on XSLT.[30] Thus we attempted to resolve soft
 hyphens in XSLT.
First try: text nodes
My first crack at this was just a simple attempt to
 implement the algorithm loosely described in section “Seems easy …”. One template matched
 text()[contains(.,'­')] and grabbed the
 first token of the next (i.e., closest following)
 non-all-whitespace text node that was not inside an
 <mw> element. Another template matched that
 closest following non-all-whitespace text node that was not
 inside an <mw>, and dropped the first token
 before spitting it into the output stream.
This code became quite thorny when I added the conditions
 to handle some of the complications mentioned above. But it is
 even thornier than you might imagine because any given text node
 may fall into both categories: it may end in
 ­ and may also immediately follow a line
 that ends in ­. I was ending up with code
 that that almost worked, but was horrible to read and maintain.
 Debugging was a nightmare.

Second try: decorated elements around those text nodes
Eventually it occurred to me that XSLT’s forte is
 processing trees of element nodes and their attributes, not text
 nodes. A large part of the problem I was having was needing to
 repeat a test performed in template A so that template B could
 figure out what template A had thought of a given node. Instead,
 if I processed in separate passes, template A could record what
 it thought of each node so that template B, running at a later
 pass, would know. Of course, one needs a place to record this
 information, and a text node doesn’t really have any convenient
 place.
So a first pass wraps all text nodes other than those that need to be ignored,
 anyway with a temporary element,
 <pcdata>. This element is given attributes that
 record useful information about the text node for later
 examination. E.g., whether or not it ends in a soft hyphen,
 whether or not it starts with whitespace, the first token parsed
 off, etc. The following is what the example from section “Seems easy …” looks like after the text nodes have been
 wrapped.

 <lb/>
 <pcdata xml:id="d2t6"
 endsInShy="true"
 multiWord="true"
 space1st="false"
 firstWord="procuring"
 restWords="a ſpeedy adminiſtration of Juſ­ ">procuring a ſpeedy adminiſtration of Juſ­
 </pcdata>
 <lb/>
 <pcdata xml:id="d2t8"
 endsInShy="false"
 multiWord="true"
 space1st="false"
 firstWord="tice"
 restWords="for the impartiall puniſhment of all ">tice for the impartiall puniſhment of all
 </pcdata>
 <lb/>
 <pcdata xml:id="d2t10"
 endsInShy="false"
 multiWord="true"
 space1st="false"
 firstWord="offenders,"
 restWords="to the relief and comfort of the ">offenders, to the relief and comfort of the
 </pcdata>

A second pass further decorates the new
 <pcdata> elements with attributes that record
 information about other nodes.
 For example, whether or not a text node immediately follows a
 text node that ended in a soft hyphen is recorded on a new
 attribute @immedFollowsShy that is added to its
 wrapper <pcdata> element.
Given the easy access to information now associated with
 each pertinent text node, it should be much easier to resolve
 the soft hyphens by moving the first token following a soft
 hyphen to the end of the <pcdata> containing the
 soft hyphen (replacing the soft hyphen itself). And, of course,
 a final pass would clean up by removing the
 temporary <pcdata> elements.
And in fact, I did find it easier to think about and
 handle the various tests needed to see which bits should be
 moved to replace the soft hyphen. Nonetheless, I found this a
 daunting task and never got a fully working version.

Third try: decorated elements around tokens
Eventually it occurred to me that one of the problems I was
 facing was the difficulty presented by a single
 <pcdata>-wrapped text node that both immediately
 follows a soft hyphen and ends in a soft hyphen; and that
 another was that keeping track of which text nodes contained
 multiple tokens and which did not was, although not particularly
 difficult, an unneeded layer of complexity.
There is no such thing (in English) as a word that is long
 enough to wrap around more than one line. That is, a single
 token will never both immediately follow a soft hyphen and end
 with a soft hyphen. (Note to self: see [FLWs].)
 Thus I am now using the approach to wrap each pertinent text
 token in a temporary, decorated
 (i.e., information-rich) element.

 <lb/>
 <tmp:tok xml:id="d2t6.1" endsInShy="false" tmp:spaceBefore="false">procuring</tmp:tok>
 <tmp:tok xml:id="d2t6.2" endsInShy="false">a</tmp:tok>
 <tmp:tok xml:id="d2t6.3" endsInShy="false">ſpeedy</tmp:tok>
 <tmp:tok xml:id="d2t6.4" endsInShy="false">adminiſtration</tmp:tok>
 <tmp:tok xml:id="d2t6.5" endsInShy="false">of</tmp:tok>
 <tmp:tok xml:id="d2t6.6" endsInShy="true">Juſ</tmp:tok>
 <lb/>
 <tmp:tok xml:id="d2t8.1" endsInShy="false" tmp:spaceBefore="false">tice</tmp:tok>
 <tmp:tok xml:id="d2t8.2" endsInShy="false">for</tmp:tok>
 <tmp:tok xml:id="d2t8.3" endsInShy="false">the</tmp:tok>
 <tmp:tok xml:id="d2t8.4" endsInShy="false">impartiall</tmp:tok>
 <tmp:tok xml:id="d2t8.5" endsInShy="false">puniſhment</tmp:tok>
 <tmp:tok xml:id="d2t8.6" endsInShy="false">of</tmp:tok>
 <tmp:tok xml:id="d2t8.7" endsInShy="false">all</tmp:tok>
 <lb/>
 <tmp:tok xml:id="d2t10.1" endsInShy="false" tmp:spaceBefore="false">offenders,</tmp:tok>
 <tmp:tok xml:id="d2t10.2" endsInShy="false">to</tmp:tok>
 <tmp:tok xml:id="d2t10.3" endsInShy="false">the</tmp:tok>
 <tmp:tok xml:id="d2t10.4" endsInShy="false">relief</tmp:tok>
 <tmp:tok xml:id="d2t10.5" endsInShy="false">and</tmp:tok>
 <tmp:tok xml:id="d2t10.6" endsInShy="false">comfort</tmp:tok>
 <tmp:tok xml:id="d2t10.7" endsInShy="false">of</tmp:tok>
 <tmp:tok xml:id="d2t10.8" endsInShy="false">the</tmp:tok>

At the time of this writing, the program that uses this
 method runs, and handles the simple case well. It also has the
 added advantage that it will resolve soft hyphens in either
 direction: finalUp or initDown,
 moving the final portion of the word up to replace the soft
 hyphen, or by moving the initial portion of the word down to the
 beginning of the next line. However, it still has quite a few
 bugs. In particular, it does not handle the problem pointed out
 in section “Sibling of Overlap” well at all. However, I am still
 holding out hope.

Works Cited
[NWEW]
 Edward Phillips, The New World of English
 Words, or, a General Dictionary, 4th edition; 1678.

[OED]
 The Oxford English Dictionary, online edition, accessed 2016-04-22.

[FLWs]
 famous last words in Wiktionary,
 accessed 2016-04-21.

[SH]
 soft hyphen in Wiktionary,
 accessed 2016-04-22.

[SHHP]
 Soft hyphen (SHY) – a hard problem?,
 accessed 2016-04-22.

[TEI]
 Burnard, Lou and Syd Bauman, eds. TEI P5:
 Guidelines for Electronic Text Encoding and
 Interchange. Version 3.0.0, 2016-03. TEI Consortium.
 (2016-04-22).

[1] E.g., soft hyphen: (computing,
 typography) A generally invisible text character marking a point
 where hyphenation can occur without forcing a line break in an
 inconvenient place if the text is later re-flowed.
— [SH]

[2] From [SHHP], an excellent resource by Jukka Korpela. That
 said, I’m a little concerned because Mr. Korpela quotes clause
 6.3.3 of ISO 8859-1. I have not yet gotten my hands on a copy of
 ISO 8859-1:1987 or earlier, but the 1998 edition does not seem
 to have a clause 6.3.3.It is worth noting here
 that the hard problem Mr. Korpela discusses in
 his paper is not at all the same difficult problem I am trying
 to tackle in the current paper.

[3] Mémoire
 sur l'éclairage et le balisage des côtes de France,
 Volume 2 by Léonce Reynaud. Sadly, it is not about markup
 technologies. (Not surprising, though: it was published in
 1864.)
[4] XSLT 2.0 and XPath
 2.0, 4th edition.
[5]
 TEI
 Section
 3.2.2, Hyphenation

[6] From Ready Player One
 by Ernest Cline. 1st edition,
 paperback, ISBN 978-0-307-88744-3, page 67.
[7] All encoded
 examples use TEI unless otherwise
 specified
[8] From The Senate Defers to the N.R.A.,
 The New York Times, page A24
 (editorials), 2016-03-24. Although you can read the editorial
 online, it does not have the same lineation as the
 printed National Edition.
[9] Formerly the Brown University
 Women Writers Project, now the Women Writers
 Project, which is part of the Digital Scholarship
 Group in the Northeastern University
 Library.
[10] Here, as elsewhere, the hyphen glyph in
 the source is transcribed as a numeric character reference
 because an actual SOFT HYPHEN does not show up in a web
 browser.
[11] Copied from lines 697–705 of the WWP transcription of
 Mary Astell’s 1694 book A Serious
 Proposal to the Ladies as of revision
 r27555, last updated 2015-12-30; I then added the
 @n attributes to make talking about the lines
 easier.
[12] In my own defense, by summer 1994 I had
 posted to the internal WWP list that this was a difficult
 problem. Re: Missing hyphens and spaces
 posted 1994-07-21 to WWPTAG-L

[13] The re-peat
 Pete, identi-cal Cal, or duplic-ate
 8 problem.
[14] From page 5 of The petition of the
 Jewes for the repealing of the act of Parliament for their
 banishment out of England by Johanna Cartwright (with
 her son Ebenezer Cartwright), 1648. The image is from the
 Hathi Trust page image. The transcription is copied from
 the WWP transcription of the same edition as of revision r27244,
 last updated 2015-11-24.
[15] Adapted from the WWP transcription of Memoir of Mrs. Chloe Spear, a native of Africa, who
 was enslaved in childhood and died in Boston, January 3,
 1815...aged 65 years by A lady of
 Boston, as of revision r27576, last updated 2016-01-04.
[16] One might imagine that a processor should know that a
 <persName> is always a word unto itself, and thus
 should be followed by whitespace. I.e., that the presence of the
 <persName> element should cause
 whitespace around its content, thus giving us Mrs. B
 it as opposed to Mrs. Bit. But this turns
 out not to be the case. Personal names are often immediately
 followed by a non-whitespace character. While these characters are
 most commonly punctuation (e.g., an apostrophe, a comma, or a
 period) that might be encoded inside the
 <persName>, there are cases where even such
 white lie encoding will not work. E.g., the
 following passage copied from the WWP transcription of Lady Mary Chudleigh’s 1701 work The Ladies Defence as of r28816, last updated 2016-06-09.

 <l><persName>Narciſſius</persName>-like, you your own Graces view,</l>
 <l>Think none deſerve to be admir'd but you:</l>
 <l>Your own Perfections always you adore,</l>
 <l>And think all others deſpicably poor:</l>

[17] I often use a WWP
 function explicitly for this purpose:
 <xsl:function name="wwp:regularize-space" as="xs:string">
 <!-- Collapse all strings of whitespace *including leading & trailing white- -->
 <!-- space* in the parameter (a string) to a single space (U+0020) character. -->
 <!-- Written long ago on a computer far away by Syd Bauman; copyleft. -->
 <xsl:param name="arg" as="xs:string"/>
 <xsl:variable name="intermediate" select="concat('␠', $arg, '␠')"/>
 <xsl:variable name="semifinal" select="normalize-space($intermediate)"/>
 <xsl:value-of select="substring($semifinal, 2, string-length($semifinal) -2)"/>
 </xsl:function>

[18] Adapted from the WWP
 transcription of Memoir of the late Hannah
 Kilham, 1837, as of revision r28478, last updated
 2016-04-21.
[19] The
 <mw> element is the WWP’s version of the TEI
 <fw> element.
[20] An overall helpful anonymous reviewer suggested that
 page numbers should be encoded in an attribute value instead
 of in element content, and further suggested the TEI Guidelines recommend an attribute
 value. The reviewer is certainly correct, the process of soft
 hyphen resolution would be much easier if there was never any
 element content between the initial and final portions of a
 word broken across a line, column, or page break. And, indeed,
 in TEI 3.10.3
 Milestone Elements the Guidelines say The global
 @n attribute is used in each case to provide a
 value for the [page number]. However, this is a
 mechanism for recording what the page number is, not the page number as it is written on the page. The two
 may not match, and (in the general case) it is definitionally
 not possible to record what is written on the page in an
 attribute value, for two reasons:
 	it may include characters outside of Unicode
 — which need to be represented using markup, in the TEI case
 the <g> element;

	it may require markup for other reasons, for
 example the correction of an apparent error, said correction
 made either by the current encoder (which would entail the
 use of the TEI <choice>,
 <sic>, and <corr> elements)
 or by an 18th century librarian
 (which would entail the use of, e.g., the TEI
 <subst>, , and
 <add> elements).

 The TEI provides the <fw> element precisely to
 record page numbers etc. actually present in the
 document being encoded (see TEI 11.6
 Headers, Footers, and Similar
 Matter).
[21] Adapted from the WWP transcription of Favell Mortimer’s
 1842 publication The History of Job, in
 Language Adapted to Children, as of revision r29046,
 last updated 2016-07-07.
[22] In
 particular, the heading at the top of page 1 of A Muzzle for Melastomus by Rachel Speght,
 published in 1617. The heading is actually the complete title of
 the book, and because there is a lot of front matter, occurs
 almost halfway through. This image is of Shirley Marc’s
 Renascence Editions edition, which can be found
 at the University of Oregon’s Scholars’
 Bank.
[23] The encoding also uses the <vuji> element,
 which is not a TEI element. It is WWP shorthand for the
 typographic regularization of V,
 v, U, u,
 J, j, I,
 i, VV, and vv.
 E.g., the expanded TEI form of the WWP
 <vuji>u</vuji> would be
 <choice><orig>u</orig><reg>v</reg></choice>.
[24] Copied from the
 WWP transcription of The cook's guide: or,
 rare receipts for cookery by Hannah Wolley, 1664, as
 of r27331, last updated 2015-12-03.
[25] Copied from the WWP transcription of the second edition of
 Sermons of Barnardine Ochyne, (to the
 number of. 25.) concerning the predestination and election of
 god, translated by Ann Bacon in 1570, as of r27244,
 last updated 2015-11-24.
[26] From the title page of The petition
 of the Jewes for the repealing of the act of Parliament for
 their banishment out of England by Johanna Cartwright
 (with her son Ebenezer Cartwright), 1648. The image is from
 the
 Hathi Trust page image. The transcription is copied from
 the WWP transcription of the same edition as of revision r27244,
 last updated 2015-11-24.
[27] This is in accordance with the enthymeme I often give
 clients: I’d prefer your encoding be consistently wrong
 than inconsistent..
[28] Apparently a large part of
 the problem was that for reasons I do not know and may have
 never known, we could not run our preferred Mac↔mainframe
 transfer program at the same time as
 MacPerl.
[29] Written 1991-05-24. Interestingly,
 James and I shared an apartment at the time.
[30] The eXtensible Text
 Framework from the California Digital
 Library.

Balisage: The Markup Conference

The Hard Edges of Soft Hyphens
Syd Bauman
Senior XML Programmer / Analyst
Northeastern University / Library / CDS / WWP

<s.bauman@northeastern.edu>
Syd Bauman began working at the Women Writers Project in
 1990. Although his title would have you believe that he is a
 computer programmer, Syd is fond of pointing out that he
 doesn’t write that much actual code, which is perhaps the
 genesis of this paper. (A more serious computer scientist or
 software engineer might not have such trouble with soft
 hyphens.) In any case, Syd usually writes in XSLT, and his
 programs are always copylefted.
Syd became a hard-core computer user in 1982, and a
 devotee of descriptive markup two years later. He began using
 SGML and the TEI when he came to the Women Writers Project.
 From 2001 to 2007 Syd served as North American editor of the
 TEI, and is currently on the TEI Technical Council.

Balisage: The Markup Conference

content/images/Bauman01-006.png
u<lb/>procuring,a lpeedy_adminiftration_of _Jul­ ,d
u.<lb/>tice for the_ impartiall punilhment of_all_d
.<lb/>offenders, ,to,the,relief and, comfort of_thed

content/images/Bauman01-007.png
To all vertuous Ladies Honou-

rable or Worshipfull, and to all other

of Heuahs sex fearing God, and louing their
iust reputation, grace and peace through
Christ, to eternall glory.

content/images/Bauman01-008.png
Alfo a Petition of divers Comman-
manders, prifoners in the Kings
Bench, for the releafing of all pri.
foners for Debt, according to
the Cuftome of other

Countries.

content/images/Bauman01-002.png
T TR T Tl TEEE TUERVENEES Wy

1’""""”2 ;%e.e:’;'n’dmini/imion of Fuf-
tece for the impartiall puwifbment of all
offenders, to the re/i:/ and comfart of the

content/images/Bauman01-003.png
procuring a [peedy adminiftration of Jul-
tice for the impartiall punifhment of all
offenders, to the relief and comfort of the

content/images/Bauman01-004.png
<lb/>procuring a flpeedy adminiftration of Jul&#XxAD;
<lb/>tice for the impartiall punifhment of all
<lb/>offenders, to the relief and comfort of the

content/images/Bauman01-005.png
<lb/>procuring a [lpeedy adminiftration of Jultice
<lb/> for the impartiall punifhment of all
<lb/>offenders, to the relief and comfort of the

content/images/Bauman01-001.png
so far they’d been smart enough to keep quiet about it. I’d never seen any
posts about the Tomb of Horrors on any gunter message boards. I real-
ized, of course, that this might be because my theory about the old D&D
module was completely lame and totally off base.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

