[image: Balisage logo]Balisage: The Markup Conference

Representing Overlapping Hierarchy as Change in XML
Robin La Fontaine

Balisage: The Markup Conference 2016
August 2 - 5, 2016

Copyright © DeltaXML Limited 2016. All rights reserved.

How to cite this paper
La Fontaine, Robin. "Representing Overlapping Hierarchy as Change in XML." Presented at: Balisage: The Markup Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The Markup Conference 2016.
 Balisage Series on Markup Technologies vol. 17 (2016). https://doi.org/10.4242/BalisageVol17.LaFontaine01.

Abstract
Changes in an XML document may effect not only element and attribute content but,
 more problematically, the markup hierarchy. Markup for tracking structural changes
 must represent multiple, often overlapping, structures in the same document. Thus
 the perennial problem of overlap becomes a subset of the problem of managing change
 to structured documents, such as versions of documents amended over time. Our work
 started with a delta format for two or more documents, which easily represents
 inline changes, but handles hierarchy change by duplicating content. In order to
 avoid duplication, we introduce a distinction between the name of the element (its
 tag) and the element content, so that assertions can be made separately. We then
 introduce @dx (change) and @dxTag (change tag) attributes to mark changes. This
 representation allows us to define overlapping hierarchies in a completely XML way
 without declaring a dominant hierarchy and while keeping element fragmentation to a
 minimum. While this solution probably will not scale for large numbers of variants,
 it shows promise for many classes of documents.

Balisage: The Markup Conference

 Representing Overlapping Hierarchy as Change in XML

 Table of Contents

 	Title Page

 	Introduction and Background

 	How Content Duplication Represents Any Change

 	Representing Structural Change without Content Duplication

 	Dominant Hierarchy

 	Attributes

 	Conclusions

 	About the Author

 Representing Overlapping Hierarchy as Change in XML

Introduction and Background
Some discoveries, including quite important discoveries such as penicillin, are made
 by accident. It can be the case that when looking for a solution to one problem, we
 stumble upon a solution to another problem. This is one of those cases. Our objective
 was to find a way to represent change to structure, and this turned out to provide a
 useful representation for overlapping hierarchy, but with the advantage that other
 changes could also be represented.
Jeni Tennison says in one of her excellent blogs, "Overlap is arguably the main
 remaining problem area for markup technologists." [1]. She
 points out that this is not only an issue for academics looking at poetry and historical
 documents, but is also an issue in managing change to structured documents. The example
 she cites is legislation which is amended over time where the authors are not concerned
 about changes to structure, their primary interest is in the textual changes.
There are a number of different approaches to this problem, and some excellent reviews
 of the advantages and disadvantages of the approaches [2]
 [3] [4] [5].
 Our own goal is to represent changes to documents, such as versions of documents over a
 period of time as they are amended, and to represent them in a way that is easy to
 process. This reflects the classic advantage of XML, where content can be re-purposed to
 meet different needs. If the document can be re-purposed, then we need to be able to
 re-purpose changes also, and this means changes need to be represented in way that is
 easy to process.
Ignoring for the moment changes to attributes, most changes can be represented by the
 addition and deletion of elements and their content. Additionally, we need to be able to
 mark segments of text that are either added or deleted. This approach allows us to
 represent any change, although not always in an optimal way. For example, in the
 extreme, the deletion of the 'old' document and addition of the 'new' document correctly
 represents the changes, but not in a very useful way. This leads to the observation that
 by duplicating content it is always possible to represent a change in a structured
 document. The problem is that we do not wish to duplicate content because this appears
 to the user as a change to the content, whereas in practice the only change may be to
 the structural markup around that content. This leads to the need to represent the
 addition, deletion, and overlapping of structural elements representing
 hierarchy.
The TEI format [6] has powerful, though complex, ways of
 representing different hierarchies, and also variants of text within a document. The
 goal is to provide rich semantic information about the document, representing all of
 this information in a single place. Using this semantically rich representation, it
 would be possible to generate all the different variants of the document, including
 variants of the text and variants of the hierarchy. When we are considering change, it
 is essentially all these different variants that we use as a starting point. Therfore in
 this respect our goal is very similar to, but not quite the same as, the goal of the TEI
 format. As our starting point is a set of document variants, it is natural that we
 clearly identify each of these source variants in the single merged document. We
 therefore always make a very precise differentiation between two overlapping structures,
 because these are considered to have come from different source documents.
The inherent model that we adopt here, i.e. one that addresses the representation of
 variants of the whole document, is important because it does differ from a model where
 the desire is to represent variants in structure within a document. The latter model can
 lead to a very large number of whole document variants, and our model is not well suited
 to a large number of variants because the attribute values representing the variants
 become long and therefore difficult to manage. Our model addresses primarily overlap in
 the context of change to a document and is not intended as a solution to all overlap
 representation problems.
Although TEI has these mechanisms, most XML document formats, such as DITA[7] or DocBook[8], do not and would therefore
 benefit from a way of representing overlap. In these formats, overlap representation is
 needed in order to better represent change. There is a clear advantage to having a
 standard way to enhance an existing schema with change and overlap representation
 because structured document editing applications then need to understand only one way of
 handling this. Schmidt [9] suggests that a good way to manage
 documents that have overlapping hierarchy is to split them into separate documents and
 merge them as needed, though this idea does not seem to have gained a significant
 following.
There is another distinguishing feature of this solution. In other solutions for
 representing overlap, identifier attributes (which may or may not be strictly of type
 xml:id) are often used to indicate which fragments are part of the same element, but
 with this solution there is no such use of identifier attributes. The problem with using
 identifier attribtues is that it is difficult to denote a fragment that is part of two
 separate hierarchies because only one identifier attribute can be present on each
 element. The identifier attribute could contain a list of identifiers but this does lead
 to make it more difficult to process.
The representation described here is pure XML. As such, standard XML processing tools
 such as XSLT and XQuery can be used to process it. Each of the original document
 variants can be extracted: this was our primary goal and is an important feature. We
 have verified that it is quite simple in XSLT to extract a single version, and it is
 simple to determine the ancestors of a particular element or piece of text. We are
 currently researching alternative types of processing. One XSLT approach shows
 particular promise for processing n-way comparison results. This uses a template that
 employs sibling recursion and XSLT 3.0 maps, the maps keep track of the state of each
 tree using an extension to the principle of a common stack.
There are validation rules, which we express in Schematron, for this representation.
 Validation against the original schema of the source documents would need to be done by
 extracting each version and validating it. In other words, we can assert that the
 representation is correct if the Schematron rules are passed and if we can extract each
 of the original documents correctly, i.e. the extracted document is deep equal to the
 original.

How Content Duplication Represents Any Change
Our starting point was an existing solution (a delta format) for representing change
 to elements, attributes and text in XML documents.[1] Any change could be represented, but
 changes to structure required some duplication of content. For example, two paragraphs
 (denoted A and B) might
 be:<p>The quick brown fox.</p>

and<p>The <s>quick</s> brown fox.</p>

This is a change only to the XML tag structure, the textual content is unchanged.
 However, we can represent the change by deleting the word ‘quick’ and adding the element
 <s>quick</s>
This is a perfectly valid
 representation of the change, but it implies that there has been deletion and addition
 and thus that the text has changed. This is shown below. The dx attribute indicates the
 documents in which the element and its content were present. The deltaxml:textGroup and
 deltaxml:text elements are wrappers introduced to delineate the word that has been
 deleted. We need the wrapper as a container for the dx attribute that applies to the
 text. The reason for the double wrapper here is that there may be more than one variant
 of the text, so more than one deltaxml:text element, and it is then useful to have these
 grouped in the outer deltaxml:textGroup for easier
 processing.<p dx="A,B">The
 <deltaxml:textGroup dx="A">
 <deltaxml:text dx="A">quick</deltaxml:text>
 </deltaxml:textGroup>
 <s dx="B">quick</s>
 brown fox.
</p>

It would be preferable if we could represent this change without implying change to
 the content. This is discussed in the next section.

Representing Structural Change without Content Duplication
In order to avoid duplication of content, we need to distinguish between the element
 tag and its content so that we can make assertions about the tag and content separately
 and independently.
As a starting point, we can add an attribute to an element to indicate whether or not
 this element was present in a particular variant of the document. If the element was
 present, then the implication is that both the tag and the contents were present. In the
 above situation, we want to indicate that the content, i.e. the word 'quick', was
 present in two versions, but the tag, i.e. the <s>, was only present in one version.
 We can take a simple approach to this and add an additional attribute with this
 information.<p dx=”A,B” dxTag=”A,B”>The
 <s dx=”A,B” dxTag=”B”>quick</s>
 brown fox.</p>

Here, the dx attributes tells us the documents in which the element (and its content)
 were present, as described above. But now the dxTag attribute tells us a bit more:
 whether or not the tag itself was present. So where the document identifiers are the
 same in both the dx attribute and the dxTag attribute, the element and its content were
 present. Where we see dx='A,B' and dxTag='B' we can deduce that the tag was present only
 in B. This means that A contained ‘quick’ and B contained ‘<s>quick</s>’.
We can optimize this a little by omiting the dxTag attribute if its value is the same
 as the dx value. Therefore we
 get:<p dx=”A,B”>The
 <s dx=”A,B” dxTag=”B”>quick</s>
 brown fox.</p>

This is a simple representation of a simple change. We can make an adjustment to this
 to represent, for example, a change from <i> in document A to <s> in document B as
 follows:<p dx=”A,B”>The
 <i dx=”A,B” dxTag=”A”><s dx=”A,B” dxTag=”B”>quick</s></i>
 brown fox.</p>

We can now introduce some overlap and see how the principles above are extended. When
 overlap occurs, in order to avoid duplicating content, we need to split some of the
 elements into fragments - this is the approach that Jeni Tennison calls 'fragmentation'.
 When we fragment an element, then clearly one original element becomes two or more
 fragments. The dxTag attribute refers to the whole tag, so we need to extend this to
 represent the start and the end. To achieve this we have dxTagStart and dxTagEnd so that
 we clearly distinguish between the start fragment and the end fragment. In more complex
 situations where an element is split into more than two fragments, we also introduce
 dxTagMiddle for any fragement betwen the start and end fragments.
This is an example of simple
 overlap:<p>The quick brown fox. It jumped over the lazy dog.</p>
<p>The quick brown fox.</p><p> It jumped over the lazy dog.</p>

This is represented
 as:<p dxTagStart="A" dxTag="B" dx="A,B">The quick brown fox.</p>
<p dxTagEnd="A" dxTag="B" dx="A,B"> It jumped over the lazy dog.</p>

This shows two <p> elements, and for the B document each of these represents a
 complete element, denoted by dxTag="B". For the A document, the two <p> elements are
 fragements and so the first is identified by dxTagStart="A" and the second one by
 dxTagEnd="A". This is an unambiguous representation that requires no duplication of
 textual content. The astute observer may comment that the leading space in the second
 paragraph of the B document would probably have been deleted. Proper handling of
 whitespace is a consumer of considerable time and effort in XML document processing.
 This type of change could be represented but it complicates the story so is ignored for
 this example.
We can now consider an example of double overlap, where text is moved from one
 paragraph to
 another:<p>The quick brown fox. It jumped over the lazy dog.</p><p> Yes!</p>
<p>The quick brown fox.</p><p> It jumped over the lazy dog. Yes!</p>

This is represented
 as:<p dxTagStart="A" dxTag="B" dx="A,B">The quick brown fox.</p>
<p dxTagEnd="A" dxTagStart="B" dx="A,B"> It jumped over the lazy dog.</p>
<p dxTag="A" dxTagEnd="B" dx="A,B"> Yes!</p>

This shows three <p> elements, all of which are fragments in at least one document.
 In the B document the first of these represents a complete element, denoted by
 dxTag="B". The last two <p> elements are fragments and so the first is identified by
 dxTagStart="B" and the second one by dxTagEnd="B". This mechanism will scale to any
 level of complexity, for example three or more overlapping hierarchies. As overlap
 increases, so does the fragmentation and therefore the complexity of the result.
Although there is not time to explore this more fully in this paper, it would
 certainly be interesting to determine how easy it is to perform queries on this
 structure such as, "find all the paragraphs containing both the word 'fox' and the word
 'dog'" and have this return just the A document because in the B document these words
 are in different paragraphs.
We can now look at a larger example including a change. We will for the example ignore
 white space changes. The A document
 is:<book>
 <p>
 <seg>Scorn not the sonnet;</seg>
 <seg>critic, you have frowned, Mindless of its just honours;</seg>
 <seg>with this key SHAKESPEARE unlocked his heart;</seg>
 <seg>the melody Of this small lute gave ease to Petrarch's wound.</seg>
 </p>
</book>

And the second, B, document is as
 follows:<book>
 <l>Scorn not the sonnet; critic, you have frowned,</l>
 <l>Mindless of its just honours; with this key</l>
 <l>Shakespeare unlocked his heart; the melody</l>
 <l>Of this small lute gave ease to Petrarch's wound.</l>
</book>

There are different representations that we can generate for this depending on how we
 decide to nest the fragments. For example, if we generally nest the <seg> elements
 inside the <l> elements, we get this
 result:<book dx="A,B">
 <p dx="A,B" dxTag="A">
 <l dx="A,B" dxTag="B">
 <seg dx="A,B" dxTag="A">Scorn not the sonnet; </seg>
 <seg dx="A,B" dxTagStart="A">critic, you have frowned,</seg>
 </l>
 <l dx="A,B" dxTag="B">
 <seg dx="A,B" dxTagEnd="A">Mindless of its just honours; </seg>
 <seg dx="A,B" dxTagStart="A">with this key</seg>
 </l>
 <l dx="A,B" dxTag="B">
 <seg dx="A,B" dxTagEnd="A">
 <deltaxml:textGroup dx="A,B">
 <deltaxml:text dx="A">SHAKESPEARE</deltaxml:text>
 <deltaxml:text dx="B">Shakespeare</deltaxml:text>
 </deltaxml:textGroup> unlocked his heart;</seg>
 <seg dx="A,B" dxTagStart="A">the melody</seg>
 </l>
 <l dx="A,B" dxTag="B">
 <seg dx="A,B" dxTagEnd="A">Of this small lute gave ease to Petrarch's
 wound.</seg>
 </l>
 </p>
</book>

It is instructive to visualize this structure as shown below. Here we are looking at
 it primarily as document A, so the tags and text that belong only to B have been greyed
 out. This is to visualize more clearly the A structure. Some of the <seg> elements
 are still split so these would need to be merged in order to get back to the original A
 document, although the basic original structure of A is apparent.[image:]
This visualization illustrates the very simple nature of this approach. The attributes
 we are adding provide information about an element, specifically for each variant the
 attributes tell us which of the following is true: 	The tag and its content are present in this variant and the element is not
 fragmented

	The tag and its content are present in this variant and the element is
 fragmented, so this is the start, the end or a middle fragment

	The content is present in this variant but not the tag

	The tag and its content are not present in this variant

Therefore it is very simple to extract any one variant from the whole document or any
 part of it. It is also very simple to work out, for a given piece of content, the list
 of ancestors in any variant. An important characteristic of this representation is that
 as the overlap reduces to zero so the representation reduces to the original
 structure.

Dominant Hierarchy
Methods for representing overlapping hierarchy often need to know the dominant
 hierarchy in order to know which tree structure 'overrides' the others. In this proposed
 representation, there is no need for a concept of a dominant hierarchy. We are at
 liberty to create a hierarchy that reduces the fragmentation as far as possible.
 Therefore it is possible to adopt various different algorithms to generate different
 results. The format describes how to represent overlapping hierarchy, it does not
 dictate what the overlap should be. Therefore another valid representation of the
 example above would be as
 follows:<book xmlns:dx="xx" dx="A,B">
 <p dx="A,B" dxTag="A">
 <seg dx="A,B" dxTag="A">
 <l dx="A,B" dxTagStart="B">Scorn not the sonnet;</l>
 </seg>
 <seg dx="A,B" dxTagStart="A">
 <l dx="A,B" dxTagEnd="B">critic, you have frowned, </l>
 </seg>
 <seg dx="A,B" dxTagEnd="A">
 <l dx="A,B" dxTagStart="B">Mindless of its just honours;</l>
 </seg>
 <seg dx="A,B" dxTag="A">
 <l dx="A,B" dxTagEnd="B">with this key </l>
 <l dx="A,B" dxTagStart="B">
 <dx:textGroup dx="A,B">
 <dx:text dx="A">SHAKESPEARE</dx:text>
 <dx:text dx="B">Shakespeare</dx:text>
 </dx:textGroup>
 unlocked his heart;</l>
 </seg>
 <seg dx="A,B" dxTag="A">
 <l dx="A,B" dxTagEnd="B">the melody </l>
 <l dx="A,B" dxTag="B">Of this small lute gave ease to Petrarch's
 wound.</l>
 </seg>
 </p>
</book>

We can also take this a step further, and look at the representation for what might be
 called full fragmentation, i.e. each piece of text that has a different set of ancestors
 is put into a single fragment. It would also be possible to treat the paragraph element
 in the same way, but ideally this can be kept as a single element around all of the
 text, providing a clearer and simpler representation.

 <book dx="A,B">
 <p dx="A,B" dxTag="A">
 <seg dx="A,B" dxTag="A">
 <l dx="A,B" dxTagStart="B">Scorn not the sonnet;</l>
 </seg>
 <seg dx="A,B" dxTagStart="A">
 <l dx="A,B" dxTagEnd="B">critic, you have frowned, </l>
 </seg>
 <seg dx="A,B" dxTagEnd="A">
 <l dx="A,B" dxTagStart="B">Mindless of its just honours;</l>
 </seg>
 <seg dx="A,B" dxTagStart="A">
 <l dx="A,B" dxTagEnd="B">with this key </l>
 </seg>
 <seg dx="A,B" dxTagEnd="A">
 <l dx="A,B" dxTagStart="B">
 <dx:textGroup dx="A,B">
 <dx:text dx="A">SHAKESPEARE</dx:text>
 <dx:text dx="B">Shakespeare</dx:text>
 </dx:textGroup>
 unlocked his heart;</l>
 </seg>
 <seg dx="A,B" dxTagStart="A">
 <l dx="A,B" dxTagEnd="B">the melody </l>
 </seg>
 <seg dx="A,B" dxTagEnd="A">
 <l dx="A,B" dxTag="B">Of this small lute gave ease to Petrarch's wound.</l>
 </seg>
 </p>
</book>

The actual hierarchy of the overlapping elements can be determined based on any
 criteria. One criterion might be to minimise the fragmentation. The results of an
 automated generation of the above by comparing the two documents and aligning them
 according to their text content is shown below. In this example the attribute names are
 shown in full, e.g. dx attribute is shown as deltaxml:deltaV2 and its content indicates
 whether the two documents are equal, i.e. "A=B" or not equal, i.e. "A!=B". The hierarchy
 is reconstructed to reduce
 fragmentation.<book xmlns:deltaxml="http://www.deltaxml.com/ns/well-formed-delta-v1"
 deltaxml:deltaV2="A!=B"
 deltaxml:version="2.1" deltaxml:content-type="full-context">
 <p deltaxml:deltaV2="A!=B" deltaxml:deltaTag="A">
 <seg deltaxml:deltaV2="A!=B" deltaxml:deltaTag="A">
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTagStart="B"
 >Scorn not the sonnet;</l>
 </seg>
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTagMiddle="B"> </l>
 <seg deltaxml:deltaV2="A!=B" deltaxml:deltaTag="A">
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTagEnd="B">critic, you have frowned,</l>
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTagStart="B">Mindless of its just honours;</l>
 </seg>
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTagMiddle="B"> </l>
 <seg deltaxml:deltaV2="A!=B" deltaxml:deltaTag="A">
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTagEnd="B">with this key</l>
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTagStart="B">
 <deltaxml:textGroup deltaxml:deltaV2="A!=B">
 <deltaxml:text deltaxml:deltaV2="A"
 >SHAKESPEARE</deltaxml:text>
 <deltaxml:text deltaxml:deltaV2="B"
 >Shakespeare</deltaxml:text>
 </deltaxml:textGroup>
 unlocked his heart;</l>
 </seg>
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTagMiddle="B"> </l>
 <seg deltaxml:deltaV2="A!=B" deltaxml:deltaTag="A">
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTagEnd="B">the melody</l>
 <l deltaxml:deltaV2="A!=B" deltaxml:deltaTag="B">Of this
 small lute gave ease to Petrarch's wound.</l>
 </seg>
 </p>
</book>

In addition there are several elements that contain only white space, e.g. the second
 <l> element. This is because the A document contained a space between the two
 <seg>
 elements:<seg>Scorn not the sonnet;</seg> <seg>critic, you have frowned, Mindless of its just honours;</seg>
The
 B document had this space within the <l>
 element:<l>Scorn not the sonnet; critic, you have frowned,</l>

As mentioned earlier, correct handling of white space is often very complicated
 because a careful distinction needs to be made between white space that can be ignored
 and white space that is part of the content. Element boundaries are not always word
 separators, for example elements that represent formatting are not considered word
 separators whereas a new line would be considered a word separator. This is often not
 clearly specified or represented in the XML schema.
The overlapping hierarchy representation described here is therefore suited to a
 number of different situations.

Attributes
 Attributes are an important part of the XML structure, and have not yet been
 mentioned. Where an element appears in a particular document variant, and is not
 fragmented, it is simple to add the attributes onto that element as part of the start
 tag. When an element has been fragmented, then the attributes for that element will
 appear in the start tag, i.e. the element with the dxTagStart attribute. This means that
 any attributes that appear on a middle tag or end tag would not be relevant to a
 particular document variant.
This is an example of simple overlap including some attribute
 data:<p>The quick brown fox. It jumped over the lazy dog.</p>
<p>The quick brown fox.</p><p class="B"> It jumped over the lazy dog.</p>

This is represented
 as:<p dxTagStart="A" dxTag="B" dx="A,B">The quick brown fox.</p>
<p dxTagEnd="A" dxTag="B" dx="A,B" class="B"> It jumped over the lazy dog.</p>

This shows the class attribute but an attribute applies only to those variants where
 the tag is a dxTag or dxTagStart. Therefore class="B" applies only to the B document
 because for A this <p> is an end tag.
Changes to attributes can also be represented. This is done by converting the
 attribute into markup as part of a new first child of the element. Although
 theoretically possible to represent changes to attributes within attributes, this leads
 to some dedicated syntactic conventions within the attribute string, which is not easy
 to process. Therefore separating change attributes out into XML markup makes processing,
 particularly using XSLT, much easier.
This is an example of simple overlap, including some changed attribute
 data:<p class="B" align="left">The quick brown fox. It jumped over the lazy dog.</p>

 <p class="B" align="right">The quick brown fox.</p><p> It jumped over the lazy dog.</p>

This is represented
 as:<p dxTagStart="A" dxTag="B" dx="A,B" class="B">
 <deltaxml:attributes>
 <dxa:align dx="A,B">
 <deltaxml:attributeValue dx="A">left</deltaxml:attributeValue>
 <deltaxml:attributeValue dx="B">right</deltaxml:attributeValue>
 </dxa:align>
 </deltaxml:attributes>
The quick brown fox.</p>
<p dxTagEnd="A" dxTag="B" dx="A,B"> It jumped over the lazy dog.</p>

This shows that the unchanged attribute, class="B", remains as an attribute, but the
 changed align attribute is represented as markup to show the two values. This is a
 simplified representation and full details can be found in the documentation of the
 DeltaXML DeltaV2.1 format [11].
The delta representation also allows an alternative representation because the <p>
 tag in the A document can be wrapped around the two <p> tags in the B document, as
 shown below:
 <p dxTag="A" dx="A,B" class="B" align="left">
 <p dxTag="B" dx="A,B" class="B" align="right">The quick brown fox.</p>
 <p dxTag="B" dx="A,B"> It jumped over the lazy dog.</p>
</p>

This is, in this case, a shorter representation though it has in effect used
 duplication of the (unchanged) attributes and tags to show the change. However, this may
 be a preferred representation for some formatting elements, for example if the class
 attribute in a is changed then it may be more useful to represent this as a
 different . Both representations conform to the delta format.

Conclusions
This paper has described a new representation for overlapping hierarchy which is also
 capable of representing changes to text and attributes. This makes it suitable for some
 important use cases for overlapping hierarchy, particularly the representation of change
 between two or more variants of a document.
A significant advantage over some previous representations is that it is pure XML, and
 therefore can be processed using standard XML tools. The dominance of one hierarchy over
 another does not need to be fixed and this means that the actual hierarchy of the
 overlapping structures can be determined for other reasons and indeed varied throughout
 the document. This flexibility allows fragmentation of elements to be kept to a
 minimum.
The underlying data model is based on document variants and therefore is better suited
 to situations where the number of variants is small. Although it does scale to any
 number of variants, its complexity increases as the number of variants increases, e.g.
 each new variant has an identifier in the dx attribute so this will become longer and
 more difficult to interpret.
Overlapping hierarchy is a powerful tool to use in certain markup situations, though
 its use can lead to complex situations and any solution is also likely to look
 complicated. This paper is intended to contribute to the discussion as the XML community
 continues to strive for a simple, generic and universal solution to this problem.

References
[1] Overlap, Containment and Dominance, URN:http://www.jenitennison.com/2008/12/06/overlap-containment-and-dominance.html
[2] Modeling overlapping structures, Yves
 Marcoux, Michael Sperberg-McQueen, Claus Huitfeldt, http://www.balisage.net/Proceedings/vol10/html/Marcoux01/BalisageVol10-Marcoux01.html. doi:https://doi.org/10.4242/BalisageVol10.Marcoux01
[3] Markup Overlap: A Review and a Horse, Steven DeRose, http://conferences.idealliance.org/extreme/html/2004/DeRose01/EML2004DeRose01.html
[4] Multiple hierarchies: new aspects of an old solution,
 Andreas Witt, http://conferences.idealliance.org/extreme/html/2004/Witt01/EML2004Witt01.html
[5] Representation of overlapping structures,
 Michael Sperberg-McQueen, http://conferences.idealliance.org/extreme/html/2007/SperbergMcQueen01/EML2007SperbergMcQueen01.html
[6] TEI: Text Encoding Initiative, http://www.tei-c.org/index.xml
[7] OASIS Darwin Information Typing Architecture (DITA)
 TC, https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
[8] OASIS DocBook TC, https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook
[9] Schmidt, Desmond. “Merging Multi-Version Texts:
 a Generic Solution to the Overlap Problem.” Balisage Series on Markup Technologies, vol.
 3 (2009), http://www.balisage.net/Proceedings/vol3/html/Schmidt01/BalisageVol3-Schmidt01.html. doi:https://doi.org/10.4242/BalisageVol3.Schmidt01
[10] Overlapping Hierarchies in DeltaV2 Format, http://www.deltaxml.com/support/documents/deltav21
[11] Two and Three Document DeltaV2 Format
 (patent pending), http://www.deltaxml.com/support/documents/deltav2

[1] The delta format being used here is a simplified form of the DeltaXML
 DeltaV2.1 format [10]. The dx attribute would normally
 be a deltaxml:deltaV2 and the content would indicate whether or not the
 documents were the same or different for this element. This distinction is not
 important for this paper and so has been omitted to make the examples
 simpler.

Balisage: The Markup Conference

Representing Overlapping Hierarchy as Change in XML
Robin La Fontaine
Robin is the founder and CEO of DeltaXML. He holds an Engineering Science
 degree from Oxford University and an MSc in Computer Science. His background
 includes computer aided design software and he has been addressing the
 challenges and opportunities associated with information change for many
 years.

Balisage: The Markup Conference

content/images/LaFontaine01-001.jpg
<book >

<p >
<seg >Scorn not the sonnet; </seg>
<seg dxTagStart="A">critic, you have frowned,</seg>
<seg dxTagEnd="A">Mindless of its just honours; </seg>
<seg dxTagStart="A">with this key</seg>
<seg dxTagEnd="A">
SHAKESPEARE
unlocked his heart;</seg>
<seg dxTagStart="A">the melody</seg>
<seg dxTagEnd="A">Of this small lute gave ease to Petrarch's

wound.</seg>

</p>
</book>

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

