[image: Balisage logo]Balisage: The Markup Conference

Trials of the Late Roman Republic
Providing XML infrastructure on a shoe-string for a distributed academic project
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

Balisage: The Markup Conference 2016
August 2 - 5, 2016

Copyright © 2016 by the author.

How to cite this paper
Sperberg-McQueen, C. M. "Trials of the Late Roman Republic." Presented at: Balisage: The Markup Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The Markup Conference 2016.
 Balisage Series on Markup Technologies vol. 17 (2016). https://doi.org/10.4242/BalisageVol17.Sperberg-McQueen01.

Abstract
The Trials of the Late Roman Republic (TLRR) project is
 building an XML database with information about criminal and
 civil legal proceedings in the period 149 to 50 BC; it is a
 revision of a work first published in book form in 1991.
 TLRR is a SAND: a small, arcane, non-trivial dataset.
 It exhibits in acute form problems also seen in other
 XML projects and offers a convenient medium for
 experimenting with solutions to those problems, including
 partial and uncertain data, relatively heavy annotation of
 data by means of notes, potential links to other resources
 with information about people and other entities appearing
 in TLRR, a distributed project team, and sparse resources.
 The paper describes the initial translation of the data into
 XML form and the stepwise refinement of the markup,
 the creation of Web-based XML editing interfaces for the
 data, and the treatment of uncertain data in query
 interfaces.

Balisage: The Markup Conference

 Trials of the Late Roman Republic

 Providing XML infrastructure on a shoe-string for a distributed academic project

 Table of Contents

 	Title Page

 	Introduction

 	Translation into desired format
 	Choice of technology

 	Up-translation and the hermeneutic circle

 	The vocabulary design(s)
 	The fielded form

 	Recognizing people and procedures

 	Normalization

 	Editing interface(s)

 	Query interfaces

 	Future work

 	About the Author

 Trials of the Late Roman Republic
Providing XML infrastructure on a shoe-string for a distributed academic project

Introduction
Trials in the Late Roman Republic, 149 BC to 50 BC [Alexander 1990] is the title of a database published in book form by the Roman legal
 historian Michael C. Alexander; it is also the name of a project now underway to produce a new
 version of the database, reflecting newer scholarship and further research. For brevity, both
 the database and the project will be referred to simply as TLRR; the
 first and second editions or versions will be distinguished as TLRR1 and
 TLRR2.
The book provides a chronological list of trials which are
 known or thought to have taken place in the century indicated
 by the subtitle. For each trial, the book gives (I simplify
 slightly) the date of the trial, the charge or claim, the name
 of the defendant, the name of the prosecutor or plaintiff, the
 names of the advocates who spoke on behalf of the defendant or
 plaintiff, the names of the presiding magistrate(s), jurors,
 witnesses, and other individuals involved in the trial, and
 the verdict.
 Since nothing like modern court records survives from ancient
 Rome, this information must be pieced together, sometimes
 tentatively, from sources like records of the speeches given,
 letters, accounts in historical sources, or chance remarks in
 works devoted to other topics.
 For each trial the ancient works which are
 sources of our information about the trial are listed, as are
 some salient recent works of secondary literature.
The first edition of TLRR was prepared for print using a
 batch document formatter (Waterloo Script/GML), but the
 regularity of the information structure invites the idea of
 managing the material with database management system. The
 initial goal of the second edition is to develop precisely
 such a database; the second edition may or may not appear as a
 book.
This paper describes three of the technical challenges
 faced by the project and our experiences using XML
 technologies to address those challenges:
	Translating the data used to typeset the first edition
 into a format suitable for work on the second edition.
This in turn requires that we identify or design the
 desired target format.

	Providing secure distributed editing facilities.

	Providing suitable query interfaces.
This is complicated by the uncertain and fragmentary
 nature of the information in the database.

The project poses a few organizational challenges, which
 should perhaps be described because they provide the context
 for the solution of the technical problems. Like many academic
 projects, TLRR has rather spotty resources: there is no
 central grant funding for the project, so each participant is
 self-funded. There is no money to speak of for infrastructure
 or technical consulting; the technical work is being done
 pro bono by the author of this paper, and the
 project's web presence piggy-backs on an existing contract for
 shared Web hosting, which means that ideally we want software
 that can run in a shared hosting environment. (Moving to a
 virtual private server is not out of the question, but would
 increase Web hosting costs by about an order of
 magnitude.)
Because the work is essentially being done
 on a volunteer basis, resources tend also to be intermittent:
 each participant will have spells during which they can devote
 a lot of time to TLRR, alternating with spells during which
 they must neglect it in order to deal with other demands.
These organizational challenges constrain our technical approach. Our technical solutions
 must be inexpensive in money, because the project doesn't have any money. Ideally, they will
 also be inexpensive in time, but this desideratum stands in tension with the requirement that
 our technical solutions must be interesting, in order to motivate the
 volunteer technical labor. Since doing new things for the first time is often more interesting
 than doing again things one has done many times before, and since doing new things tends to
 expose the work to the danger of surprises and uncertain schedules, the desire that the work
 be interesting may conflict with the desire for it to be inexpensive in time as well as in
 money. There is also some potential here for a conflict of interest between the participating
 historians, who just need technology that will help them do their job, and those providing the
 technical infrastructure, who want to learn something from the technical work.
 The technical problems of TLRR may be of general interest, and TLRR is in some ways an
 ideal case for exploring different approaches to those technical problems. In the terminology
 introduced by Lubell 2014, TLRR is a SAND: a small, arcane, non-trivial dataset.
 The data have intrinsic interest not only for specialists but (because they show interesting
 causes of conflict and misbehavior in ancient Rome) to others; for specialists in Roman legal
 history, however, the data are particularly important. Several problems which are peculiarly
 acute for TLRR (and thus cannot easily be evaded) are also found in many other projects: 	The data are incomplete.
We do not have court records for this period; the information we have is from
 letters, collections of legal speeches, remarks by historians, and so on. Sometimes we
 know the charge and the name of the prosecutor, but not the name of the defendant.
 Sometimes we know the names of two opposing parties in a civil case, but not who was
 plaintiff and who was defendant. And so on.

	The data are often uncertain.
Partly because the records are so incomplete, and partly because the existing
 evidence can often be interpreted in multiple ways, there are varying degrees of
 certainty about crucial details. Some dates (for example) can be quite precise: trial
 208 took place in summer of 65 BC. Others are equally precise, though
 less certain: trial 8 is dated 138?. Others will be less precise: trial
 161 is dated between 74 and 70, trial 373 between 81 and
 43. Some trials have a bound only at one end: before 63 (trial
 219), after 98 (trial 82). Some have more complex dating information:
 possibly before case #327, certainly just before case #326 (trial 325).
 Still other trials cannot be dated at all.[1]

Sometimes the only thing we (believe we) know about the defendant's advocate is that
 it was not Cicero (trial 212).

	In consequence, much of the information in the database needs annotation and
 qualification. Why do we think this trial took place at this time?
 And just how certain are we about the identity of the prosecutor or the nature of the
 charge?
In printed material, this kind of qualification and annotation is handled with
 footnotes and carefully crafted prose; relational databases don't have a promising
 history when it comes to attaching footnotes to atomic values.

	The TLRR database is not (and should not be) an island.
Many of the people, places, and textual sources mentioned in the database are also
 of concern to other projects; there is a natural desire to be able to link from a trial
 involving Publius Quinctius (16) to the relevant entry in a digitized form of
 Pauly/Wissowa, or to the entry in the new Prosopography of the Roman Republic. When the
 details of a trial are based on the account offered by Tacitus in his
 Annals, it would be convenient to be able to traverse directly to
 the relevant passage in a good online edition of Tacitus.

	Many projects have resources which feel sparse (at least to the project; from
 outside, of course, things often look rosy).

	The project team is geographically distributed.
No two participants in the project are in the same city, and few (two pairs of two)
 are in the same country. Techniques for database management that work with a
 geographically concentrated team won't work with such a dispersed team.

	There is already a fully worked out presentation of data of this kind.
The goal of the technical work on TLRR is to support the information gathered by the
 authors in its full complexity, without forcing simplifications for the sake of the
 technology. As a rough rule, this has been taken to mean that the representation we
 choose for the second edition should be able to represent the first edition as well,
 without requiring any changes in structure or approach. If in the first edition it was
 found necessary to provide annotation recording the rationale for a given datum, then
 the second edition should be free to provide similar rationales (or to retain those of
 the first edition). The design must not force a simplification of
 the structure, or suppress any relevant information.[2]

 At the same time, TLRR has an ideal size: the database is large enough and
 complex enough that database queries will be more helpful than scanning the entire book each
 time one wants to find something, but small enough (400 trials, 700 named individuals in the
 first edition) that if a useful step cannot be fully automated, it can be done by hand in a
 matter of hours and days, not months or years.

Translation into desired format
Before work on the electronic second edition can start, the
 data used to typeset the first edition must be translated into
 a format suitable for work on the second edition. This
 requires that the target format be defined, which in turn
 requires a careful analysis of the information structure, and
 a choice of underlying technology (e.g. relational dbms vs XML
 database). These questions are all deeply intertwingled.

The analysis of information structure might in theory
 be independent of technology. But in order to specify a
 target format concretely, it seems in practice to be necessary to have
 chosen the technology to be used.[3]
Choice of technology
We use XML for reasons which will not surprise attendees
 at Balisage: device- and application-independence,
 reusability, longevity of data. Our document grammars
 will be
 specified in DTD, Relax NG, and XSD.
 We use XSLT for the
 initial translation into XML, XSLT and XQuery for most
 data-manipulation tasks. We use XForms for our editing
 interfaces. And we provide public access to TLRR1 and
 project-only access to the in-progress version of TLRR2
 using an XForms-based search interface, an XQuery back end,
 and XSLT stylesheets to style the results.
Other technologies could (at least in principle) be used.
 The first edition was done with a batch formatter; batch
 formatters still exist. Waterloo Script might be hard to run
 today, but TeX and LaTeX still produce many pages every
 year. A more modern equivalent to a batch formatter, though,
 would be to prepare the book in a word processor.
 Unfortunately, the search possibilities of word-processor
 data tend to be limited, unless the authors are
 supernaturally disciplined in the use of stylesheets. Many
 projects over the years have attempted to use descriptive
 markup by means of styles in word processors; many more have
 tried this approach than have succeeded in making it work.
 (It's possible that the number of successes is greater than
 zero, but I have no evidence for that proposition.) Also,
 word processor files don't lend themselves very well to
 distributed work (although cloud-based systems like Google
 Docs apparently allow much better distributed authorship
 than desktop word processors). And neither batch formatters
 nor more modern word processors have good facilities for the
 kind of consistency checking needed for a project like this.

All in all, neither batch formatters nor word processors
 seem to be a good solution for this project.
Some group-authorship projects develop their documents
 using wikis. Wikis have the advantage that they are built
 for distributed authorship, and wiki software generally
 comes with well tested tools for reviewing the history of
 changes and reverting changes made in error. Many people
 also believe that wiki markup is less intimidating than XML,
 easier to learn, and easier to use. (Attendees at Balisage
 may be inclined to doubt these claims,[4] but that wiki
 markup is less intimidating to some people can
 hardly be doubted.)
And wikis are so well established that if a distributed
 project can agree on conventions for important classes of
 information (in the case of TLRR, that would include
 marking the boundaries of fields and so on), using a wiki
 can reduce training and development costs a great deal.
As it turns out, however, not a single person in the
 TLRR2 project other than the current author admits to any
 famiiliarity at all with wikis, or with the use
 of wiki markup. Wikis remain a fallback to be considered if
 we cannot get the XML infrastructure to a sufficiently
 complete state in a reasonable amount of time, but we have
 chosen to prefer XML over wikis for our work.
The most serious alternative to XML for this project is a
 relational database. These are ubiquitous and very well
 tested. They have very good support for consistency
 checking, for distributed work, and for arbitrarily complex
 and subtle query and retrieval. But they have poor support
 for partial and uncertain data (not much worse than anything
 else, of course, but relational technology is not in itself
 helpful with these problems) and very poor support for
 structurally complex (i.e. irregular) data.
A simple sketch of a relational model for TLRR produces
 five distinct tables for entities (for trials, persons,
 causes of action, ancient sources, and modern secondary
 literature).
 Figure 1
[image:]

 To this, we will need to add ten or so tables recording relationships
 among the entities (Person is-defendant-in Trial; Person
 is-prosecutor-or-plaintiff-in Trial; etc.).
 Figure 2
[image:]

 The multiplication of tables has an inconvenient
 consequence: every query
 that seeks to retrieve all the trials that have some
 particular property turns out to involve a fifteen-way join.
 This may or may not lead to performance issues, but it is
 certain to make the queries more complicated to write and
 read. Of course, named views can be used to hide the
 complexity. But if we define a view involving a fifteen-way
 join, and seek our trials in that view, the result does not
 have one result per trial; if the trial has two possible
 dates, and two possible identifications for the defendant
 (as for trial 188), we will end up with four rows from the
 view table, with each possible combination of defendant
 identity and date. If there are two prosecutors, two
 witnesses, two laudatores and two possible
 outcomes, the result of our query will contain sixteen rows
 for this trial. And none of these rows will actually contain
 everything we wish to know about the trial (the names of
 both prosecutors, both witnesses, and both
 laudatores, and both possible reconstructions
 of the outcome. In order to avoid this multiplication of
 partial records, we could first find the trial(s) we wish to
 examine, and then for each trial retrieve the date
 information, then the charge information, then the defendant
 information, and so on. In that case, we will be able to
 avoid getting sixteen records for trial 186. The price we
 pay for this is that we end up making ten queries, each
 against a three-way join describing a relationship between
 two entities. Neither of these approaches seems very
 attractive.[5]
Other problems arise in designing a format for the data.
 	In display, each field is labeled; usually the
 label is the name of the field, but sometimes it varies:
 prosecutor when there is one, prosecutors when
 there are two or more. The presiding magistrate may be
 labeled judge, praetor, urban
 praetor, peregrine
 praetor, iudex
 quaestionis, etc., etc.

	Some but not all advocates are known to have
 spoken for the defendant; others for the plaintiff. Sometimes,
 we don't know for whom they spoke.

	The date value (as already illustrated) is not
 always a year, nor a year range.

	Every field may have one or more end-notes.

 None of these problems is insoluble, and none is peculiar to a
 relational design (they are all also problems for an XML
 design) but all seem (at least to this author) to be more
 easily soluble in XML than in SQL.

Up-translation and the hermeneutic circle

 In the first edition, a sample trial (trial 1) looks like this:
 Figure 3
[image:]

 As can be seen, each type of information (each
 field, if we allow ourselves to use
 the world field a bit loosely)
 begins on a line of its own, with a label and a colon.
 Footnotes point to supporting evidence for some values.
 Each named individual is identified by name, followed by a
 number in parentheses, which indicates the number of the
 individual's article in Pauly/Wissowa 1894-1980.[6]
 The (58) after the name of Servius Sulpicius Galba,
 for example, indicates that his is the fifty-eighth
 sub-entry in RE under
 Sulpicius; the numbers thus provide
 a convenient ways of distinguishing different people with
 the same name. In addition, for members of the senatorial class
 the date at which they were consul is given (or, if they did not
 become consul, the date of the highest office they attained
 is given); in addition, if they held office in the year of the trial,
 that office is given (as here for Lucius Scribonius Libo, who
 was tribune of the people during the year 149).

 The first edition of TLRR was prepared using Waterloo Script/GML,
 a batch formatter widely available on IBM mainframes
 installed in North American academic settings.[7]
 In the Waterloo Script source, the first trial looks like this:

 .chapter
 .sr ZAA = &chapter
 .br
 .hi +2
 date: 149
 :EN.On the date see Cic%
 :hp1.Att%:ehp1.
 12.5b.
 :eEN
 .br
 .ix 1 "&'italic('quaestio extraordinaria')" . &ZAA
 charge:
 :hp1.quaestio extraordinaria:ehp1.
 (proposed)
 :EN.See Douglas, :hp1.Brutus:ehp1. p. 77.
 :eEN
 (misconduct as gov. Lusitania 150)
 .br
 .ix 2 'Sulpicius (^>58), Ser. Galba' . &ZAA
 defendant: Ser. Sulpicius Galba (^>58) cos. 144 spoke
 :hp1.pro se:ehp1.
 (:hp1.ORF:ehp1. 19.II, III)
 .br
 .ix 3 'Fulvius (^>95), Q. Nobilior' . &ZAA
 advocate: Q. Fulvius Nobilior (^>95) cos. 153, cens. 136
 .br
 .ix 4 'Cornelius (^>91), L. Cethegus' . &ZAA
 prosecutors:
 .in +2
 L. Cornelius Cethegus (^>91)
 .br
 .ix 4 'Porcius (^>^>9), M. Cato' . &ZAA
 M. Porcius Cato (^>^>9) cos. 195, cens. 184 (:hp1.ORF:ehp1. 8.LI)
 .br
 .ix 4 'Scribonius (^>18), L. Libo' . &ZAA
 L. Scribonius Libo (^>18) tr. pl. 149
 (:hp1.promulgator:ehp1.)
 .in
 outcome: proposal defeated
 .hi off
 .sk 1
 Cic%
 :hp1.Div% Caec%:ehp1.
 66;
 :hp1.Mur%:ehp1.
 59;
 :hp1.de Orat%:ehp1.
 1.40, 227-28; 2.263;
 :hp1.Brut%:ehp1.
 80, 89;
 :hp1.Att%:ehp1.
 12.5b;
 Liv% 39.40.12;
 :hp1.Per%:ehp1.
 49;
 :hp1.Per. Oxy%:ehp1.
 49;
 Quint. :hp1.Inst.:ehp1. 2.15.8;
 Plut%
 :hp1.Cat. Mai%:ehp1.
 15.5;
 Tac%
 :hp1.Ann%:ehp1.
 3.66;
 App%
 :hp1.Hisp%:ehp1.
 60;
 Fro%
 :hp1.Aur%:ehp1.
 1. p. 172 (56N);
 Gel. 1.12.17, 13.25.15; see also V. Max. 8.1. abs. 2;
 [Asc.] 203St;
 :hp1.Vir. Ill%:ehp1.
 47.7
 .br
 Ferguson (1921); see also Buckland (1937);
 Richardson (1987) 2 n. 12
 .sk
 :ENDNOTES

For those who have never worked with Waterloo Script or
 any similar batch formatter, a partial glossary may be in order:
 	.chapter =
 Start a new chapter (user-defined command)

	.sr ZAA = &chapter =
 Set the reference ZAA to refer to the current chapter number.

	.br = line break

	.hi +2 = start a hanging indent of 2 characters

	date: 149 (actual text)

	:EN.On the date see Cic%
 :hp1.Att%:ehp1.
 12.5b.
 :eEN = end-note, with the contents indicated [here % = .;
 a literal full stop cannot be used here because it is GML's default tag-close delimiter]

	:hp1.Att%:ehp1. = highlighed phrase [again % = .]

	.ix 1 "&'italic('quaestio extraordinaria')" . &ZAA =
 Add an entry to index number 1, under the heading
 quaestio extraordinaria, pointing (by number) to trial ZAA

	.ix 2 'Sulpicius (^>58), Ser. Galba' . &ZAA = Ditto,
 for index 2 and the entry Sulpicius (58), Ser. Galba
 [^ = one-en space, > = backspace]

	.hi off = turn hanging indent off

	.sk 1 = skip one line

	:ENDNOTES = Put the accumulated end-notes here

Finding a suitable representation of this material for database query and retrieval,
 and for work on TLRR2, requires a more or less standard process of document analysis,
 in which we try to identify the information present at a level more abstract than
 what characters are in bold or italic and what strings go into which indexes,
 the different forms information of each kind can take, and what rules might be
 able to distinguish correctly entered information from nonsense.
With a view towards the expected uses of the data, the technical work on the TLRR project
 has devoted particular attention to questions of display (at a minimum, we should be
 able to recreate the formatting of the first edition in its essentials),
 query (on which see below), and the connection of the information to
 other resources (for later hyperlinking).
At this point, however, we encounter a chicken-and-egg problem.
 To design the target XML format, so that we can create a database,
 we need to understand the data and know what's actually present,
 in what form(s). To discover what is present, we need to be able to search
 it effectively (TLRR provides many illustrations of the principle that one
 must know the data).
 String search goes only so far in a format like that of TLRR1.
 To search the data, we need to translate it into XML so that we can load
 it into an XML database. To translate the data into XML,
 we need to design a target XML format.
This chicken-and-egg problem is easily recognized as a
 computational form of the hermeneutic circle, and we solve it
 in an analogue of the time-honored way: we make a few assumptions
 which seem sound, and see where they lead us; based on what we
 learn, we revise and expand our assumptions and repeat the process.
 Concretely, the first step towards the XML form of TLRR2 is a
 direct one-to-one translation of the Waterloo Script input to
 XML equivalents.

 <trial id="ZAA">
 <?WScript .sr ZAA = &chapter?>

 <?WScript .hi +2?>
 date: 149<en>On the date see Cic.
 <hp1>Att.</hp1> 12.5b.</en>

 <ix n="1" target="ZAA"><ital>quaestio extraordinaria</ital></ix>
 charge: <hp1>quaestio extraordinaria</hp1>
 (proposed)<en>See Douglas, <hp1>Brutus</hp1> p. 77.</en>
 (misconduct as gov. Lusitania 150)

 <ix n="2" target="ZAA">Sulpicius (+58), Ser. Galba</ix>
 defendant: Ser. Sulpicius Galba (58) cos. 144 spoke
 <hp1>pro se</hp1> (<hp1>ORF</hp1> 19.II, III)

 <ix n="3" target="ZAA">Fulvius (+95), Q. Nobilior</ix>
 advocate: Q. Fulvius Nobilior (95) cos. 153, cens. 136

 <ix n="4" target="ZAA">Cornelius (+91), L. Cethegus</ix>
 prosecutors:
 <?WScript .in +2?>
 L. Cornelius Cethegus (91)

 <ix n="4" target="ZAA">Porcius (++9), M. Cato</ix>
 M. Porcius Cato (9) cos. 195, cens. 184 (<hp1>ORF</hp1> 8.LI)

 <ix n="4" target="ZAA">Scribonius (+18), L. Libo</ix>
 L. Scribonius Libo (18) tr. pl. 149
 (<hp1>promulgator</hp1>)
 <?WScript .in?>

 outcome: proposal defeated
 <?WScript .hi off?>
 <?WScript .sk 1?>
 <p>
 Cic. <hp1>Div. Caec.</hp1> 66;
 <hp1>Mur.</hp1> 59;
 <hp1>de Orat.</hp1> 1.40, 227-28; 2.263;
 <hp1>Brut.</hp1> 80, 89;
 <hp1>Att.</hp1> 12.5b;
 Liv. 39.40.12;
 <hp1>Per.</hp1> 49;
 <hp1>Per. Oxy.</hp1> 49;
 Quint. <hp1>Inst.</hp1> 2.15.8;
 Plut. <hp1>Cat. Mai.</hp1> 15.5;
 Tac. <hp1>Ann.</hp1> 3.66;
 App. <hp1>Hisp.</hp1> 60;
 Fro. <hp1>Aur.</hp1> 1. p. 172 (56N);
 Gel. 1.12.17, 13.25.15;
 see also V. Max. 8.1. abs. 2;
 [Asc.] 203St;
 <hp1>Vir. Ill.</hp1> 47.7

 Ferguson (1921); see also Buckland (1937);
 Richardson (1987) 2 n. 12
 </p>
 <?WScript .sk?>
 </trial>

In this XML form, each GML tag from the Waterlook Script GML gdoc
 vocabulary has been translated into an equivalent XML tag. The simplest and most common
 Script instructions (.br for a forced line break and .ix for an
 index entry) have been represented by new XML elements named br and
 ix, respectively. The formatting function &'italic() has
 been translated into an ital element. Other Waterloo Script instructions have
 been represented by processing instructions labeled WScript. (In the ideal case, the
 processing instructions should not be needed and can be filtered out, but until it has been
 established that all the important information has been captured in XML elements and
 attributes, they should be kept around, in case they turn out to convey critical
 information, e.g. about element boundaries.)
This print-oriented XML format is not in itself very
 useful, but it allows XML tools to be applied: in particular,
 XPath, XQuery, and XSLT. Using a simple XSLT stylesheet it's
 possible to replicate the basic formatting of the printed
 TLRR1; the success of this effort helps to make plausible
 the proposition that the translation into XML has not lost
 any essential information. And using an interactive XQuery
 interface it's possible to query the data to find patterns
 and check our understanding of the patterns.
On the basis of that understanding, we can begin
 the design of an XML vocabulary.

The vocabulary design(s)
The development of the TLRR vocabulary is an iterative
 process. Starting from a given XML form, we examine the data
 looking for useful patterns visible in the data but not well
 captured by the markup. Given a potential pattern, we look
 for instantiations of the pattern and for counter-examples.
 Once a pattern is reasonably well understood, an XML
 representation for the pattern is designed and an XSLT
 stylesheet is written to translate from the previous XML
 form to the new XML representation.
Concretely, there have been several XML forms so
 far; we believe we are nearing an acceptable form, but at
 the time this paper was written, we had not yet arrived
 at that destination. The stages of stepwise refinement
 thus far visited are:
 	The gdoc XML
 form, that is the direct translation from
 Waterloo Script + GML into XML shown above.

	A fielded XML form,
 in which each labeled field in the input is enclosed in an
 XML element, as are the lists of ancient sources and
 of modern secondary literature.
This format (shown below) already makes possible
 more interesting query interfaces and displays.

	A named-entity form,
 in which all people and causes of action (charges,
 claims, legal proceedings) in the database are identified
 and represented in stand-alone XML documents with unique
 identifiers, and all references to them from trials are
 recognized and tagged as such. Since the references retain
 their full content in this form, this form has a good deal
 of redundancy. In fact it has even more redundancy than the original,
 since we have added the additional stand-alone representations
 of people and procedures.

	A normalized form,
 in which references to people and causes of action
 are reduced to their essential information, normally the
 unique identifier of the entity. In cases where the
 reference differs from the usual form, the historians in
 the project will need to decide whether the reference is an error
 or a context-dependent variation that is not an error.

Context-dependent variation can be handled by making
 the reference be either empty (in which case the form of
 reference is to be taken from the stand-alone document)
 or non-empty (in which case the content of the reference
 is taken to be a context-dependent variant of the usual
 form).[8]

	A form in which the fields which can contain lists of names are
 given markup that reflects the list structure.

Still to come at this writing, but expected to be in the past
 by the time of Balisage, are two further forms:
 	A form in which the date field is
 more highly structured than at present.
In TLRR1, any field whose information takes an
 unusual form can and does resort to English prose to
 describe the situation. This complicates both the
 editing of fields and the construction of a query
 interface. The goal of this form will be to represent
 the usual case with relatively structured XML elements,
 while still allowing unusual cases, which will be tagged
 differently, to allow special treatment in editors and
 queries.

The fielded form
The first step past the gdoc version of the data
 in XML form is to recognize all field labels; because labels
 vary a good deal (singular, plural; different Latin terms
 for the role played, case-specific descriptions), this took
 several passes to get right. In the simple case, a simple
 regular-expression search in a text node will find the
 label. The first version of the stylesheet recognized all
 field labels spelled with a single word in Roman type, the
 most common italicized labels of a single word, and the most
 common multi-word labels; later versions added one by one to
 the collection of labels recognized.
Labels containing a mixture of roman and italic type
 required particular attention. In the end, it proved
 possible to look for yet-unrecognized labels by searching
 for text nodes which contained colons and which were not
 descendants of the en (end-note) element. This
 search uncovered the use of the labels witnesses (in
 first actio) and witnesses (to be heard
 in second actio) in trial 177.

In the course of this work, it became clear that in many
 trials, the sequence of fields given did not agree with the
 sequence described in the introduction to TLRR1. There, the
 list of fields gives the order date, charge or claim,
 defendant, advocates, prosecutor or plaintiff, presiding
 magistrate, jurors, witnesses, ... But in some trials, an
 advocate may be listed after, not before, the plaintiff; in
 some, a witness may be listed before the plaintiff. Upon
 inspection, it proved that TLRR1 places closely related
 fields together, to create larger (implicit) groups of
 fields. In particular,
 advocates and
 witnesses who appear specifically for the defendant
 are grouped with the
 defendant; if the plaintiff also has an advocate, it will be
 listed after the plaintiff, not before. (Prosecutors in
 criminal cases apparently never have advocates in this
 material, only plaintiffs in civil cases.)
 The implicit groupings of TLRR1 have been made
 explicit in the fielded XML by introducing the elements
 defGrp,
 ppGrp, and analogous grouping
 elements for other fields.

Since fields are marked in the input only at the
 beginning of the field and end when the next field begins,
 the XSLT 2.0 for-each-group construct proved very
 helpful here. In a first step, milestone elements were
 injected into the trial record to mark the beginnings of
 fields; in a second step, the material in a trial was
 grouped by milestone elements and the groups were tagged as
 fields. In a third step, sequences of related fields were
 grouped at a higher level; elements defGrp and
 ppGrp (defendant's group and plaintiff or
 prosecutor's group) were introduced to group all the members
 of an identifiable party in the case.

The indexing instructions (retained until the tagging
 has been further refined) proved to be a remarkable
 complication, since they often but not always precede
 rather than follow the label for the field to which they
 logically belong, and they clutter the XML.
The stylesheet is available for inspection on the
 project's web site; the fielded data which
 is the output of this pass on trial 1 is as follows.

 <trial id="ZAA" tlrr1="1" sortdate="">
 <date>149<en>On the date see Cic. <i>Att.</i> 12.5b.</en>
 <ix n="1" target="ZAA"><i>quaestio extraordinaria</i></ix>
 </date>
 <ccGrp>
 <charge><i>quaestio extraordinaria</i>
 (proposed)<en>See Douglas, <i>Brutus</i> p. 77.</en>
 (misconduct as gov. Lusitania 150)
 <ix n="2" target="ZAA">Sulpicius (+58), Ser. Galba</ix>
 </charge>
 </ccGrp>
 <defGrp>
 <defendant>Ser. Sulpicius Galba (58) cos. 144 spoke
 <i>pro se</i> (<i>ORF</i> 19.II, III)
 <ix n="3" target="ZAA">Fulvius (+95), Q. Nobilior</ix>
 </defendant>
 </defGrp>
 <advGrp>
 <advocate>Q. Fulvius Nobilior (95) cos. 153, cens. 136
 <ix n="4" target="ZAA">Cornelius (+91), L. Cethegus</ix>
 </advocate>
 </advGrp>
 <ppGrp>
 <prosecutor label="prosecutors">L. Cornelius Cethegus (91)

<ix n="4" target="ZAA">Porcius (++9), M. Cato</ix>
 M. Porcius Cato (9) cos. 195, cens. 184 (<i>ORF</i> 8.LI)

<ix n="4" target="ZAA">Scribonius (+18), L. Libo</ix>
 L. Scribonius Libo (18) tr. pl. 149
 (<i>promulgator</i>)
 </prosecutor>
 </ppGrp>
 <outcome>proposal defeated</outcome>
 <sources>
 <ancient>
 Cic. <i>Div. Caec.</i> 66;
 <i>Mur.</i> 59;
 <i>de Orat.</i> 1.40, 227-28; 2.263;
 <i>Brut.</i> 80, 89;
 <i>Att.</i> 12.5b;
 Liv. 39.40.12;
 <i>Per.</i> 49;
 <i>Per. Oxy.</i> 49;
 Quint. <i>Inst.</i> 2.15.8;
 Plut. <i>Cat. Mai.</i> 15.5;
 Tac. <i>Ann.</i> 3.66;
 App. <i>Hisp.</i> 60;
 Fro. <i>Aur.</i> 1. p. 172 (56N);
 Gel. 1.12.17, 13.25.15;
 see also V. Max. 8.1. abs. 2;
 [Asc.] 203St;
 <i>Vir. Ill.</i> 47.7
 </ancient>
 <modern>
 Ferguson (1921); see also Buckland (1937);
 Richardson (1987) 2 n. 12
 </modern>
 </sources>
 </trial>

The presence of explicitly marked fields in this
 form makes possible simple field-limited searches like
 find Sulpicius Galba as a defendant. It
 also makes it possible for a query interface to
 accept multiple search words and give priority to
 results in which all search words are found within
 the same field, over records in which one search
 term is found in one field, and another in a different
 field. In the query interface shown below, the
 fields are also color-coded; this may help experienced
 users focus more quickly on the part of the record
 they are most interested in at the moment, but its
 initial motivation was just making it easier to check
 whether the field boundaries produced by the
 XSLT transformation described above had produced
 the correct results or not.
 Figure 4
[image:]

Recognizing people and procedures
The next step is to prepare for normalizing the data by
 recognizing and tagging all references to persons and all
 references to legal charges, claims, laws, particular
 courts, or special legal procedures (all given, depending
 on the case, in the field normally labeled charge
 or claim, and grouped togther by the index in TLRR1
 under the umbrella term
 procedures).

In unrestricted prose text (or even in prose with
 highly conventional idioms like Wall-Street-Journal stories),
 named-entity recognition is a very challenging undertaking.
 It should be less daunting here,
 since the input contains indexing instructions
 for persons and procedures. The ix elements
 tell us what named entities have already been registered
 here; all we have to do is find them in a the text.
 We can search the relevant fields
 for occurrences of the character string in question and
 tag it as a person or a procedure.
The first wrinkle here is that the text uses
 the conventional order for the parts of a name:
 praenomen, nomen,
 cognomen (e.g. Q. Fulvius Nobilior (95)),
 but the index uses an inverted order
 nomen,
 praenomen,
 cognomen
 (Fulvius (+95), Q. Nobilior)
 in order to obtain the desired alphabetical sequence of names.
 But it is straightforward to read the index instruction,
 identify the parts of the name, reorder them, and
 look for the resulting character string in the data.
 At least, that is, for men of the upper classes, with
 conventional names. There prove to be a number of
 exceptions to the rule that every Roman has
 a nomen and praenomen
 and that almost every Roman has a cognomen,
 and the name parsing routines must be adjusted to account
 for them.
After a first round of named-entity recognition,
 trial 1 is marked up as follows:
<trial id="ZAA" tlrr1="1" sortdate="-0149">
 <date>149<en>On the date see Cic. <i>Att.</i> 12.5b.</en>
 <ix n="1" target="ZAA"><i>quaestio extraordinaria</i></ix>
 </date>
 <ccGrp>
 <charge>
 <i><procedure pid="c-quaestio_extraordinaria" lang="lat"
 >quaestio extraordinaria</procedure></i>
 (proposed)<en>See Douglas, <i>Brutus</i> p. 77.</en>
 (misconduct as gov. Lusitania 150)
 <ix n="2" target="ZAA">Sulpicius (+58), Ser. Galba</ix>
 </charge>
 </ccGrp>
 <defGrp>
 <defendant>
 <person pid="pSulpicius58Ser.Galba"
 ix="Sulpicius (+58), Ser. Galba"
 >Ser. Sulpicius Galba (58)</person> cos. 144
 spoke <i>pro se</i> (<i>ORF</i> 19.II, III)
 <ix n="3" target="ZAA">Fulvius (+95), Q. Nobilior</ix>
 </defendant>
 </defGrp>
 <advGrp>
 <advocate>
 <person pid="pFulvius95Q.Nobilior"
 ix="Fulvius (+95), Q. Nobilior"
 >Q. Fulvius Nobilior (95)</person> cos. 153, cens. 136
 <ix n="4" target="ZAA">Cornelius (+91), L. Cethegus</ix>
 </advocate>
 </advGrp>
 <ppGrp>
 <prosecutor label="prosecutors">
 <person pid="pCornelius91L.Cethegus"
 ix="Cornelius (+91), L. Cethegus"
 >L. Cornelius Cethegus (91)</person>

 <ix n="4" target="ZAA">Porcius (++9), M. Cato</ix>
 <person pid="pPorcius9M.Cato" ix="Porcius (++9), M. Cato"
 >M. Porcius Cato (9)</person> cos. 195, cens. 184
 (<i>ORF</i> 8.LI)

 <ix n="4" target="ZAA">Scribonius (+18), L. Libo</ix>
 <person pid="pScribonius18L.Libo" ix="Scribonius (+18), L. Libo"
 >L. Scribonius Libo (18)</person> tr. pl. 149
 (<i>promulgator</i>)
 </prosecutor>
 </ppGrp>
 <outcome>proposal defeated</outcome>
 <sources>
 <ancient>
 Cic. <i>Div. Caec.</i> 66;
 <i>Mur.</i> 59;
 <i>de Orat.</i> 1.40, 227-28; 2.263;
 <i>Brut.</i> 80, 89;
 <i>Att.</i> 12.5b;
 Liv. 39.40.12;
 <i>Per.</i> 49;
 <i>Per. Oxy.</i> 49;
 Quint. <i>Inst.</i> 2.15.8;
 Plut. <i>Cat. Mai.</i> 15.5;
 Tac. <i>Ann.</i> 3.66;
 App. <i>Hisp.</i> 60;
 Fro. <i>Aur.</i> 1. p. 172 (56N);
 Gel. 1.12.17, 13.25.15;
 see also V. Max. 8.1. abs. 2;
 [Asc.] 203St;
 <i>Vir. Ill.</i> 47.7
 </ancient>
 <modern>
 Ferguson (1921);
 see also Buckland (1937);
 Richardson (1987) 2 n. 12
 </modern>
 </sources>
 <revisionHistory>
 <change date="2016-02-13T19:18:15.929-07:00"
 who="CMSMcQ"
 >extract this entry from entity-tagged version of TLRR1</change>
 </revisionHistory>
</trial>

The second wrinkle (not visible in the example shown)
 is that in a surprising number of cases (surprising to the
 programmer, at least) the string search fails to locate
 the appearance in the text of the person or procedure
 named in the index entry. Analysis of some cases (aided
 by a simple search for all records containing an
 unmatched-index-entries element) shows
 a variety of causes.
 	Trials may involve individuals not mentioned in
 RE. In trial 372, for example, the index
 entry whose string value is Octavius (not in RE)
 is not found in any single text node, because the name
 is marked up as Octavius (not in
 <i>RE</i>).

	In many criminal cases, it's clear that the charge
 was electoral corruption (ambitus),
 but there may be some uncertainty as to whether the
 charge was laid under the lex Cornelia de ambitu,
 the lex Servilia de ambitu, the
 lex Calpurnia de ambitu, etc.
 In other cases, the specific law is known.
 When the specific law under which the charge was brought
 is identifiable from the sources,
 TLRR1 provides index entries both for the specific
 law and for the general concept
 of ambitus. The nominative form
 ambitus found in the index entry does not
 occur in the names of laws (where it is inflected as the
 object of the preposition de), so the
 string search fails.
The same issue arises for several other common
 charges.

	When the precise law appealed to is uncertain,
 the text often indicates it with a question mark; the index
 entry lex Cornelia de aleatoribus,
 for example,
 corresponds to
 the textual entry lex Cornelia? de aleatoribus;
 the question mark in the text defeats a straightforward
 string search.

	Sometimes the textual entry gives two RE
 numbers, not just one. In Trial 369, the person indexed as
 Cornelius (194), L. Lentulus is referred to in the
 text as L. Cornelius Lentulus (194,
 cf. 195).

	The relation between the text form of a name
 and the index form is sometimes complicated, and the
 algorithm generates the wrong form to search for. In
 trial 150, the person indexed as Staienus (1), C.
 Aelius Paetus is not named in the text as C.
 Staienus (1) Aelius Paetus (as the normal parsing
 algorithm would expect) but as C. Aelius Paetus
 Staienus (Staienus [1]). It is currently unclear
 whether this reflects a more subtle but still
 algorithmic pattern or whether this and other cases are
 simply exceptions that need to be handled
 individually.

	When ancient sources identify a person using
 two name forms, TLRR1 typically indexes both; in trial
 376, the text refers to Cn. Decidius (or Decius?), Samnis (1),
 who is indexed under both possible forms of name
 (Decidius (1), Cn. Samnis,
 Decius (1), Cn. Samnis); neither
 index form appears literally in the text.

	In a few cases, the index form does appear
 literally in the text, but is interrupted by a footnote.
 In trial 318, for example, Titus Fadius is indexed as
 Fadius (9), T. and the text's reference to him
 reads:
 <defGrp>
 <defendant>T. Fadius<en>His
<i>cognomen</i> is probably not ‘Gallus’;
see Shackleton Bailey (1962)
and <i>Studies</i> 38,
and <i>MRR</i> Suppl. 89.
</en>
(9) tr. pl. 57<en>Shackleton Bailey,
<i>CLF</i> 1.350 suggests that
he became aedile and/or praetor
55-53.</en>
 </defendant>
 </defGrp>

At the current writing, names and procedures
 presenting the problems just listed have not yet been
 successfully recognized and tagged. (In the case
 of generic procedures like ambitus, it's
 not yet clear whether they should be, or whether the
 additional index entry for ambitus should
 be handled by information in the procedure records for
 the individual laws in question.) It should be possible to
 recognize them by moving beyond a string
 search in a single text node to a more complicated but
 also more powerful matching method loosely based on
 Brzozowski derivatives, which uses a recursive function
 which keeps track of what has been matched and what
 remains to be matched and which can skip over footnotes,
 question marks, and start- and end-tags for italics.
 That should handle many, though not all, of the cases
 thus far identified.

Normalization
The next step foreseen (not yet performed) is to
 normalize the data further. As can be seen in the examples
 given so far, references to persons normally are
 accompanied by information about the offices they held
 (either at the peak of their political career or at the
 time of the trial). Specifying twice that Servius
 Sulpicius Galba served as consul in 144 is an unnecessary
 redundancy; normal database design would seek to reduce
 that redundancy by recording it just once, in a record
 devoted to the individual, and then referring to that
 record from both trials (1 and 10) in which he
 appears.
In the current design of the database, the
 person record for Ser. Sulpicius Galba
 should look like this:
 <person id="pSulpicius58Ser.Galba">
 <nomen>Sulpicius</nomen>
 <RE>58</RE>
 <praenomen>Ser.</praenomen>
 <cognomen>Galba</cognomen>
 <rs/>
 <indexform>Sulpicius (+58), Ser. Galba</indexform>
 <textform>Ser. Sulpicius Galba (58)</textform>
 <offices>cos. 144</offices>
 <revisionHistory>
 <change date="2016-02-13T18:48:41.296-07:00"
 who="CMSMcQ"
 >extract this entry from entity-tagged version of TLRR1</change>
 <change date="2016-02-13T17:12:06.567-07:00"
 who="CMSMcQ"
 >analyse name parts using pattern re-person in tlrr.ner.xsl</change>
 </revisionHistory>
</person>

 (In the current state of the database, it should be noted,
 the offices element is empty, because the
 redundancies have not yet been successfully removed.)

Similarly simple stand-alone records will be provided
 for procedures (charges, claims, and laws), courts
 (e.g. the quaestio extraordinaria shown
 in the examples above)[9], ancient sources,
 and modern (secondary) sources.

The result is that the overall design of the XML database
 will resemble that shown in the figure used above to
 illustrate a potential relational model for the material. It
 does not currently appear that the six-way join made
 necessary by this normalization will pose performance issues
 on so small a database; it remains to be seen how badly it
 will complicate the construction of queries.
It might prove more convenient to embrace the redundancy
 shown (subject to some revision of the markup structures, as
 described below) and control it by making it easy, when
 consulting the record for an individual person, law, court,
 etc., to see exactly the terms in which it is referred to
 from records for trials; this should make it easier to keep
 all references consistent, while still allowing queries for
 trials to return trial elements without having to
 transform them by expanding the references to persons,
 courts, etc.

Editing interface(s)
One of TLRR's key points of interest for practitioners of
 XML technology is that it allows the direct comparison of
 several different approaches to the distributed collaborative
 editing of XML documents. The consistent structure of trial
 records in the database make a forms-based approach to editing
 (not at all unusual for relational databases) an obvious
 choice. An obvious candidate for the implementation of that
 interface (particularly given the requirement for distributed
 editing, which in practice means Web-based editing) is XForms.

The current plan for TLRR is to use XForms to make it
 possible for the historians in the project to edit records in
 the database. The shared hosting environment within which we
 operate offers Subversion repositories as a standard feature
 and allows Subversion to be configured to accept requests
 using a WebDAV (Web distributed authoring and versioning)
 interface, notably including PUT requests, which
 are straightforward to make from XForms. (The situation varies
 from server to server, of course, but software which supports
 WebDAV appears to be one of the most straightforward ways of
 making a Web server accept PUT requests.)
The current form of the editor for trials shows all
 of the existing data in the trial in read-only form, with
 buttons for editing an existing field or for adding a
 field not yet present.[10]
 Figure 5: XForm for trials
[image:]

XForms can readily handle many of the obvious constraints
 in the normalized design of the database. At a first
 approximation, these include:
 	The date element can take
 any of several forms: a simple date, a terminus
 ante quem (before X), a terminus
 a quo (after Y), a date range. Dates may be
 uncertain (e.g. marked with a ?), and about
 one date in four will have a footnote.

	The charge or claim element
 should contain a reference to a procedure record,
 possibly accompanied by an end-note.

	The defendant, prosecutor /
 plaintiff, advocate, judge,
 juror, and witness elements should contain
 one or more references to persons.

	The lists of ancient sources and modern
 scholarly literature should consist of a series of references
 to known sources.

XForms can easily allow selection from controlled
 lists of values (e.g. names of courts for which the database
 has a court record, names of persons for which
 we have a person record, ...). This reduces
 the need to retype names and references, and helps
 reduce the incidence of typographic error. XForms can
 also exploit various inter-element dependencies (in
 a criminal case, with a prosecutor, any
 advocate will have spoken for the defense; the prosecutor
 serves as his own advocate).
But there are of course complications. Dates can take a
 bewildering variety of forms. As the examples above show,
 references to individuals may have additional case-specific
 information. (Trial 1 has simple unadorned references to the
 advocate Quintus Fulvius Nobilior and the prosecutor Lucius
 Cornelius Cethegus. But the reference to the defendant is
 accompanied by the notation spoke pro se
 (ORF 19.II, III), which tells us that
 Sulpicius spoke on his own behalf and that at least parts of
 his speech are preserved and have been published in the
 collection Oratorum Romanorum Fragmenta
 (Fragments of Roman orators); the prosecutor M.
 Porcius Cato has a similar notation. And the prosecutor L.
 Scribonius Libo is noted to have served in a specific legal role
 (promulgator) in this case.

So a simple pull-down menu from which the user can choose the name of a known person will
 not suffice for TLRR2. And in any case, a simple pull-down menu with 700 entries may not be as
 helpful as one would wish.
And as has been mentioned, any field in the database may need annotation; in markup terms,
 the element en can appear pretty much anywhere, sometimes multiple times in a
 field, when it is clearly attached to a particular portion of the value for the field and not
 necessarily to the value as a whole.
The presence of additional information and notes is not a
 problem from the XML point of view. We can say simply that the
 values of TLRR fields are prose, and prose is easily represented
 by mixed content in XML. Retrieval will be aided by allowing
 specialized markup like person and procedure
 in the mixed content, but not much more need be done, surely.
The major complication here is that there is no simple,
 obvious, and completely satisfactory way of dealing with mixed
 content in XForms. Content models of elements allowed in mixed
 content are often recursive; XForms provides no standard
 recursive structures. Conventional editing interfaces for mixed
 content make sub-elements flow with the character data;
 XForms generally treats any text-entry widget as a block
 for layout purposes. The structure of mixed content tends to
 vary a great deal from element instance to element instance;
 XForms (like relational database tables) is easiest to use when
 structures are simple and regular.
We are experimenting with several ways of addressing these
 issues.
First, while XForms does not have standard recursive
 patterns for dealing with recursive data, it does support
 iteration over a node set specified using XPath. And the XPath
 descendant axis is essentially the transitive
 closure over the (recursive) child axis. So while
 we cannot conveniently say in standard XForms display the
 children of the defendant element, and for children
 of defendant apply this same pattern recursively,
 we can say something that comes close to the same
 thing, namely display all descendants of the
 defendant element, using this pattern. If we
 prefix each node with a label indicating its depth in the tree
 (the count of its ancestors), we can make the tree structure
 of the field visible. Within limits, that is: as the reader
 can perceive,
 in the current implementation
 the varying length of the labels does not
 produce varying indentation of the actual text widgets, and
 the document-order presentation of all descendants gives us no
 hook for marking the ends of elements. So while
 the beginnings of the i, procedure, and
 en elements are clearly marked, it is not visually
 obvious where they end.
 Figure 6
[image:]

In this form, the XForms label for a text node is
 calculated as shown below; this illustrates the method
 used for varying the label with the element's depth in the
 tree.
 <xf:input ref=".">
 <xf:label>
 <xf:output value="concat(substring(
 concat('· · · · ',
 '· · · · ',
 '· · · · ',
 '· · · · '),
 1,
 2 * count(ancestor-or-self::*)),
 ' # ',
 name())"/>
 </xf:label>
</xf:input>

A different approach to the absence of recursion in
 standard XForms would be to use the (not yet standard)
 subforms mechanism for recursion. Subforms are common
 in existing browser-based XForms implementations, because
 they help keep the forms lighter-weight and improve
 response time and memory usage. Since they are loaded
 dynamically, and may be loaded at more than one location
 in the parent form at the same time, the IDs on elements
 in the subform must be adjusted at load time.
A subform for an element which displays editable
 widgets for the element's text-node children, and
 provides buttons for each child element which cause
 the same subform to be loaded again, recursively,
 for the child element, may produce a more plausible
 indentation-based display of the XML document's tree
 structure. On the negative side, it may require more clicking
 to open subforms than users will be happy with.

A third approach, again non-standard but widely supported
 by existing implementations, is to use a rich-text
 editor as an XForms widget, to provide an interface
 for editing mixed content. All of the existing widgets for
 this purpose known to the author started life as in-browser
 HTML editors, and it is in most cases not immediately obvious
 from the documentation how to adjust them so that instead of
 allowing children named b, i, ul,
 and ol they should allow children named
 procedure, title, en, and so on.

A fourth option would be to use a simple text widget,
 with wiki-style markup for sub-elements. An early prototype
 of this approach shows the basic idea.
 Figure 7
[image:]

 Here, [[...]] marks end-notes,
 (^ ... ^) marks references to secondary literature,
 (* ... *) marks all italics (both book titles and Latin
 legal terms),
 (+ ... +) marks references to persons, and so on.
 One advantage of such a wiki-style text widget over
 a real wiki is that the markup it
 uses is not tied to that of any existing wiki product
 and can be project-specific (and documented in the
 XForms interface itself). One drawback is that there
 is no obvious way to support pull-down menus for
 references to persons, ancient sources, or modern
 secondary literature in a wiki context. The cost of
 developing translations from the XML form used by the
 project to a wiki-style markup and back has not yet
 been estimated; in XSLT 2.0, the grouping constructs
 and the xsl:analyze-string instruction
 would make it easy, but the only XSLT readily available
 in an XForm today is XSLT 1.0; recursive template calls
 will be more cumbersome than XSLT 2.0 grouping.
 Fortunately, the strings to be parsed will never be
 very long.
Yet another approach would be to use an alternative to
 XForms and exploit the customization frameworks available
 for some XML editors, such as Oxygen's Author mode.
In the interests of allowing head-to-head comparison, we
 expect to develop several of these approaches. In the short
 term, however, the priority is on getting one of
 these working sufficiently well that the historians are
 willing to use it.

Query interfaces
The query infrastructure used by TLRR is based on a sharp
 boundary between the front end, which handles the user
 interface, and the back end, which handles queries and returns
 XML elements. The idea of such a sharp boundary has a long
 history (see Borenstein 1991 for a well formulated
 case) and was recently reiterated by the digital humanist
 Peter Robinson
 in the context of reuse of
 data by others, using the
 memorable slogan Always remember that your user interface
 is everyone else's enemy.[11] A sharp boundary is not the only way to
 proceed; a great deal of interesting recent
 work on the RESTXQ interface relies on close integration
 of front end and back end.
In TLRR, the sharp boundary between front and back end is
 enforced by having them written in different languages and
 running on different machines. The front end is an XForm
 (concretely a mixture of standard XHTML, CSS, and XForms
 elements). The back end is written in XQuery. The front end
 communicates with the back end by sending HTTP requests, or
 would do so if browsers did not forbid this by enforcing the
 so-called same-origin rule. In our case
 the effect of the same-origin rule is that an XForm loaded
 from the TLRR web site cannot make an HTTP request from the
 different server where the XQuery engine is running. So we use
 a relatively thin PHP shim on the TLRR server; it accepts
 requests from the front end, sanity checks them, and passes an
 HTTP request to the back end using the REST interface defined
 by the BaseX XQuery engine. (Nothing essential depends on the
 choice of the REST interface; the same effect could be
 achieved by using the RESTXQ interface, or doubtless other
 interfaces specified by other XQuery engines.) The XQuery
 engine responds to requests by running the indicated
 predefined query with the parameters supplied by the front
 end; all queries return XML documents, which are displayed by
 the XForms front end with the help of an XSLT stylesheet
 (using the transform() function, an as-yet
 unstandardized extension to XForms supported by XSLTForms).

Making XQuery run successfully in a shared hosting
 environment proved more challenging than had originally been
 hoped. One complication is commercial: low-end shared Web
 hosting providers like the one used by the TLRR project don't
 allow users to run Java servers, or indeed any servers other
 than those like MySQL run by the provider itself. For that, it
 is necessary to seek a Java hosting provider, in a distinct
 (and somewhat more expensive) market. Such Java hosts may
 provide a choice of servlet containers such as Tomcat,
 Glassfish, or JBoss; it proves possible to configure a
 Java-based XQuery engine like BaseX to run in Tomcat, though
 the experience is far from painless for the user who has no
 aspirations to be a Java developer and no great interest
 in Java as a technology.
The more interesting challenges of the query interfaces
 to TLRR lie not in the infrastructure but in the complexities
 of TLRR's data.
As an example, let us consider the date of a trial.
 If a user asks to see all the trials from the 80s BC
 (i.e. between 89 BC and 80 BC, inclusive), what should
 the results be?
The date element may, as noted above, take several
 forms. The most common forms include these:
 	In simple cases, the date element may
 contain a date in the database's coverage range (149 to
 50). For example, trial 235, dated 62.

	In some cases, the date is more precise (e.g.
 trial 116 late 87 or trial 351 Sept.
 50).

	In another common case, it may contain a date
 range (e.g. trial 372 between 81 and
 43).

	A date range can be full (both a start- and an
 end-date) or partial (a terminus ad quem or a
 terminus a quo). For example, trial 362
 (by 91), trial 122 (83 or after).

	The end-points of a full or partial date range may
 be either dates in the range
 (e.g. trial 373, dated between 81 and 43)
 or references to other trials
 (e.g. trial 288, dated before case #289).
Sometimes the end-point is explained tersely
 (e.g. trial 249 before Cicero’s exile in 58,
 trial 146 before 74 (the date of Cotta’s command)).

	The date range may be qualified
 (e.g. trial 370, long before 69;
 trial 125, fifteen years before case #166).

	Any date or date-range end-point can be uncertain
 (e.g. trial 47, 112?;
 trial 160 between 74? and 70).

	A partial date range may be given for the time
 of year (e.g. trial 221 63, after trial #220;
 trial 153 74, end of year, before Dec. 10).

	Sometimes specific milestones in the trial are
 given, as well as or instead of a general date
 (e.g. trial 284, 54, verdict reached on July 4,
 or trial 346 50, charge laid by Aug. 8).

	Sometimes more than one possible date or range may
 be given
 (e.g. trial 371, 80s? 60s?).

When the trial is assigned a single date, not marked as
 uncertain, then it's fairly clear that the trial should be included in
 the results for a search for trials in the 80s if and only if the date
 of the trial lies between 1 January 89 and 31 December 80. That
 takes care of the first two cases.
When the trial has a date range, and the date range lies
 entirely with the range 89-80, then again the trial should
 clearly be included. If the date range lies completely outside
 the range 89-80, it should clearly be excluded. When the range
 of dates given for the trial overlap with the range given in
 the search, then we know that the trial could
 have occurred in the queried time span, but also that it may
 have occurred outside it. Perhaps the best thing to do is to
 adopt a kind of fuzzy logic and assign to such trials a real
 number between zero and one, indicating the degree to which
 they fall into the class of trials described in the query. Or,
 assuming (without any evidence for or against) that all dates
 within the date span assigned to the trial are equally likely,
 we can measure the probability that the trial occured within
 the time span in the query. Trial 372, dated between 81 and
 43, would have on this account a 5.26% probability (2 chances
 out of 36) of falling within the 80s. A trial dated to between
 91 and 76 would have a 62.5% probability (10 chances out of
 16) of falling in that range. Conceptually, fuzzy logic and
 probability are rather different, but in this application
 the arithmetic turns out to be largely the same.

In cases with only a half-closed range (terminus a
 quo or ad quem), we can use the same
 logic as for closed ranges if we can supply a default starting
 date and a default ending date for trials. For trials believed
 to have taken place under the Roman republic, the traditional
 end date of the republic (27 BC) can serve a a terminus
 ad quem; a plausible terminus a quo is
 harder to find, but if we find nothing else we can always use
 the traditional starting date for the republic (509 BC). For
 trials of completely unknown date, we can use both the default
 and the default end to define their date range.
One consequence of this approach is that we can then return
 results sorted by probability (in descending order). Trials
 known to have occurred in the 80s have probability 1.0 and
 come first; trials with a high likelihood but no certainty of
 falling in the range come next; trials with a semi-closed
 range will tend to have a very low probability, but those
 whose fixed point is closest to the 80s will score highest.
 Trials of completely uncertain date will have the largest
 range of possible dates and so the lowest probability of
 having occurred in any given span of years.
Trials whose date is uncertain (e.g. 80? for trial
 130) must be assumed to have less than 100% probability of
 occurring in the year indicated, and a correspondingly
 non-zero probability of having occurred in some other year. It
 is not clear what probability should be assigned to the given
 year, nor how to allocate that probability among other years.
 As a starting point, to keep things simple (and mindful of the
 inherent imprecision of any estimates of probability for such
 cases), we assume for now that any date marked ? has a
 50% chance of being right and a 50% chance of being wrong, and
 that the latter is spread unevenly among the five nearest
 years on each side (9%, 7%, 5%, 3%, 1%). If this leads to
 results that repeatedly strike historians as odd or
 unexpected, we will try to produce other estimates.
Trials with multiple possible date ranges (e.g. trial
 254 66? 65? 58?, or 371 80s? 60s?)
 will be treated as having a discontinuous range; the
 probability calculation is essentially the same.
Trials dated solely with respect to other trials will
 need to have their date ranges calculated by reference
 to those of the other trials in question. So trial 287
 (before cases #288 and #289) and
 299 (before case #289) will be assigned a
 terminus ad quem from trial 289
 (summer 54, in progress on July 27). Trial
 125 fifteen years before case #166
 will have a date range calculated on the basis of
 that for trial 166 (between 76 and 68,
 making the range for 125 be between 91 and 83).

It will be evident both that calculating an effective date
 range for trials whose date range is given only implicitly or
 indirectly would complicate queries quite a bit; all of the
 calculations for the effective date range can be performed in
 advance and stored in the database. Some mechanism will be
 needed to invalidate the calculations when the content of the
 date element is changed, so that they can be
 refreshed. (Fortunately, this is not a real-time system,
 and field values are not expected to change multiple times
 per second.)
The attentive reader may have been saying for some time now
 that this appears to be basically the same idea as relevance
 ranking in information retrieval; the attentive reader is of
 course right. At the crucial level of abstraction, both
 relevance ranking in information retrieval and the search
 procedures for dates outlined above shift from Boolean logic
 to fuzzy logic. Instead of assigning to every record in the
 database a Boolean value for the proposition This record is
 in the class described by the search, these approaches
 assign a real number between 0 and 1 to each record, with
 higher numbers indicating greater likelihood of being of
 interest to the user. The specific mechanisms used in IR for
 calculating relevance results, on the other hand, appear not
 to be very helpful for TLRR's data. (And the term
 relevance does not seem at all a good
 description of what is being calculated, unless it is taken to
 denote the property of being of interest to the user, rather
 than being relevant to a particular subject or topic assumed
 to be the target of the query.)

Future work
The participants in TLRR have (at least) two distinct
 goals. For the historians, the key goal is to develop an
 updated version of the database and to publish it. The
 participants have expressed a strong preference for print
 publication if at all possible. For the technical partner,
 the first goal of TLRR is to assist the historians in
 achieving their goals; in the short term, that means providing
 usable editing and query interfaces, and in the longer term
 seeing to print formatting and for the eventual migration of
 the data from the TLRR server to a digital archive capable of
 caring for it long term. A secondary goal is to investigate
 different ways of solving the challenges posed by the project.
 For that reason, we expect to implement multiple XForms front
 ends (and, time permitting, eventually probably also an Oxygen
 front end, and possibly others) for editing the data. We may
 implement a SQL version of the database (just to show how
 unmanageable it will be, if the data are reduced to third
 normal form, or possibly to be surprised
 by the discovery
 that it is manageable
 after all). We expect to implement multiple query interfaces,
 varying both in the user interface and in the target database.
 Each of the various XML forms described above should be made
 searchable, in order to illustrate on one concrete example how
 better markup makes it easier to do more useful queries, and
 how poor markup makes useful queries harder to formulate.
 And when the time comes to produce printed output, it
 may be feasible to make head-to-head comparisons among
 different tools for the job: TeX, XSL formatting objects,
 XHTML plus CSS, or other XML-capable layout tools.
If the secondary goal is well achieved, the TLRR
 database may be of interest to other XML practitioners
 as a way of showing clients and potential users the kinds
 of difference markup choices can make.

References
[Alexander 1990]
 Alexander, Michael C.
 Trials in the Late Roman Republic 149 BC to 50 BC.
 Toronto: University of Toronto Press, 1990.
 (= Phoenix, Journal of the Classical Association of Canada /
 Revuew de la Société canadienne des études classiques,
 Supplementary volus / Tome supplementaire XXVI)

[Borenstein 1991]
 Borenstein, Nathaniel S.
 Programming as if People Mattered:
 Friendly Programs, Software Engineering, and Other
 Noble Delusions.
 Princeton, N.J.: Princeton University Press, 1991.

[Lubell 2014]
 Lubell, Josh.
 XForms User Interfaces for
 Small Arcane Nontrivial Datasets.
 Presented at Balisage: The Markup Conference 2014,
 Washington, DC, August 5 - 8, 2014.
 In
 Proceedings of Balisage:
 The Markup Conference 2014.
 Balisage Series on Markup Technologies, vol. 13 (2014).
 doi:https://doi.org/10.4242/BalisageVol13.Lubell01.
 On the Web at
 http://www.balisage.net/Proceedings/vol13/html/Lubell01/BalisageVol13-Lubell01.html.

[Pauly/Wissowa 1894-1980]
 Pauly, August Friedrich von,
 Georg Wissowa,
 et al.
 Real-Encyclopädie der classischen Altertumswissenschaft.
 Stuttgart: Metzler, 1894-1980.

[1] Trial numbers are given so that readers interested in inspecting the data in
 context can consult either the PDF of TLRR1 or the current form of the database,
 both available from the project's web site at http://tlrr.blackmesatech.com/.

[2] In the words of the classicist Jocelyn Penny Small, It is not the job of
 the classicist to clean up our messy information in order to put it into a
 database; it is the job of the database to preserve the
 mess.As this is written, it remains to be seen whether we will satisfy this
 requirement completely.

[3] The
 specification of a format for a relational database will take the form of an
 entity-relationship diagram or something similar; a format for an XML database will be
 specified in the form of sample documents and/or notes for a document type definition or
 other XML schema. Trying to express the crucial information without any commitment to an
 underlying technology will only result in descriptions so vague and abstract that they
 prove unhelpful. Experience in many projects suggests that even
 then, the highly abstract descriptions risk turning out to involve a lot of commitments to
 particular technology, which have been carefully disguised and thus not exposed to
 discussion, which not been systematically checked for mutual consistency, and which make
 it difficult to implement the design in a natural way in any
 technology.
[4] Those with sufficiently long memories may regard wiki markup as nothing but the
 resurrection of the SGML SHORTREF feature, only with less documentation and freed of any
 requirement for interoperability. But the existence of SHORTREF as a feature does
 establish that the basic features of wiki markup are not incompatible with SGML or
 XML.
[5] There may be other
 ways to avoid the inconveniences described here.
 Some SQL users appear resigned to working with data
 that are not in fact in third (or even first) normal form.
 But since that destroys the consistency-checking
 apparatus of the relational model, working with
 non-normalized data also seems unattractive.

[6] The Real-Encyclopädie der
 klassischen Althertumswissenschaft by August
 Friedrich von Pauly, Georg Wissowa, and others is
 frequenty referred to as Pauly/Wissowa or just
 RE. Pauly's first edition began to
 appear in 1839 and was completed in 1852 (after Pauly's
 death). A second edition was begun by Georg Wissowa in
 1890; the first volume appeared in 1894, the final volume
 in 1978, and the index volume in 1980.
[7]
 Waterloo Script was similar in style and behavior to
 IBM's Document Composition Facility (DCF) Script,
 and Waterloo GML was an independent implementation
 of GML, using Waterloo Script as the implementation
 language.

[8] I acknowledge the influence
 here of the technical-term mechanism used in some
 XML-encoded W3C specifications, in which local content
 can be used to override the standard spelling of a technical
 term, which simplifies the use of technical terms at the
 beginnings of sentences and their use in plural or other
 inflected forms.
[9] Unlike
 TLRR1, TLRR2 will distinguish between laws or charges
 like ambitus and courts or venues
 like the quaestio extraordinaria in the
 example. Alexander puts them all into the same
 field, perhaps because when one is known, the other
 is often not known.
[10] At the moment, two editing interfaces are available on the public web site; others will be
 made available as time permits (including false starts that did not work out, as a way of
 helping other people avoid similar false starts). The public versions will not, of course,
 be able to save data to the database. The interfaces available now differ slightly from
 those shown below, partly because the images here show earlier versions and partly because
 the images here show the project-internal page styling, not the public page
 styling.At this point it should also be noted that the
 NB, not yet seen in any examples, holds
 information sometimes given at the head of a trial
 display, such as trial only threatened
 (trials 13, 103, and others) or
 = ? case #133 (trial 132).

[11] By this I understand Robinson to mean that
 many re-users of our data will have goals different
 from those assumed by any user interface we may have
 developed, and that having to get at data through a
 user interface instead of an
 application programming interface
 is guaranteed to make reuse harder. (He also meant,
 I believe, that user interfaces age much faster than
 data or even than good APIs.)

Balisage: The Markup Conference

Trials of the Late Roman Republic
Providing XML infrastructure on a shoe-string for a distributed academic project
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

C. M. Sperberg-McQueen is the founder and
 principal of Black Mesa Technologies, a consultancy
 specializing in helping memory institutions improve
 the long term preservation of and access to the
 information for which they are responsible.
He served as editor in chief of the TEI
 Guidelines from 1988 to 2000, and has also served
 as co-editor of the World Wide Web Consortium's
 XML 1.0 and XML Schema 1.1
 specifications.

Balisage: The Markup Conference

content/images/Sperberg-McQueen01-007.png
Date:

uncertain[[(AFraccaro (1912) 349-50A) argues that the fragments preserved
are more likely to refer to the warfare of the defendant’s praetorship

(145) than to the tranquillity of his consulate. Therefore, a date

of 144 would be likely. Note, however, that a comitial trial for

extortion would be somewhat odd (though not impossible) when

a (*quaestio®) for the crime had already been established.

Perhaps, as Fraccaro notes, the trial pertained to his unsuccessful
candidature in 142 for the consulate of 141.

See (AGruen, (*RPCC*) 56 n. 54A).]]

charge
(*iudicium populi®)

defendant

(+C. Laelius Sapiens (3) cos. 140+), spoke
(*pro se¥)

((*ORF*) 20.11)

content/images/Sperberg-McQueen01-006.png
ccGrp.

Editing charge element.
(charge)

»

(procedure)

uaestio extraordinaria
(proposed)

‘See Dougias,

Brutus

.77

(misconduct as gov. Lusitania 150)

0

Sulpicius (+58), Ser. Galoa

Done

content/images/Sperberg-McQueen01-005.png
TLRR trial record editor D (v0.01)

18 February 2016, rev. 25 March 2016

N.B. This version of tis form is a place-holder. It Is being elaborated step by step (5o It snould be expected
o change In the course of the next few days); after a sufficent number of terations, It should achieve a
workable form.

A description of this form, Its current state, and Its expected future direction s given at the bottom of the.
page.

Trial 1D ZaA (1)

N8
AddNB
date
date: 1491
ccGrp.
charge: quaestio extraordinaria (proposed)! (misconduct as gov. Lusitania 150) charge
defGrp
Gefendant: Ser. Sulpicius Galoa (59) cos. 144 spoke pro se (ORF 19.11, 111) | Edit defendant
Add advocate
Add witness
PpGrp.
prosecutors: L. Comelus Cethequs (
. Porcius Cato (9) cos. 195, cens. 184 (ORF 8.1)
L Seribonius Lino (18) . pl. 149 (promulgator) | Edit prosecutor
Add plaintiff
Add advocate
partiesGrp
Add partiesGrp
advGrp

advocate: 0. Fulvius Nobllor (95) cos. 153, cens. 136 | Edit advocate

content/images/Sperberg-McQueen01-004.png
600 TLRR - Trials in the Late Roman Republic: 149 BC to 50 BC

[« [»] [:2] [+ [Dntte:/1ocalhost/~cmsmea/tirr.blackmesatech.com/2016/01 /balbus.xhtml ¢ J(Q- sing)
e m DuckDuckGo WorldCat ~ Los Alamos Library Wikipedia Apple Yahoo! Google Maps YouTube Popular~ News (122)+
7| TLRR - Trials in the Late Roman f

Trials in the Late Roman Republic [H

Project home TLRR query tool B (v0.01)

About 15 January 2015
People Type in a search string and click the 'Search' button.
TLRR (st edition) ey
Technical info Search
Contact Results 1 to 10 of 22
(Forward)
Login
Show XML © [l Ze

Ezact match: witnesses
Ezact match: witnesses

date: 13821
charge: lex (Calpurnia?) de repetundis (misconduct as consul and proconsul in Hither Spain)2

defendant: Q. Pompeius (12) cos. 141, cens. 131 (ORF 30.11)

witnesses: L. Caecilius Metellus Calvus (83) cos. 142
Q. Caecilius Metellus Macedonicus (94) cos. 143, cens. 131
Cn. Servilius Caepio (46) cos. 141
Q. Servilius Caepio (48) cos. 140

outcome: A

Cic. Font. 23, V. Max. 8.5.1
Cichorius, Untersuch. Lucil. 139 n. 1

N

content/images/Sperberg-McQueen01-003.png
1

date: 1491
charge: quaestio extraordinaria (proposed)? (misconduct as gov. Lusita-
nia 150)
defendant: Ser. Sulpicius Galba (58) cos. 144 spoke pro se (ORF 19.11,
I
advocate: Q. Fulvius Nobilior (95) cos. 153, cens. 136
prosecutors:
.L. Cornelius Cethegus (91)
M. Porcius Cato (9) cos. 195, cens. 184 (ORF 8.LI)
L. Scribonius Libo (18) tr. pl. 149 (promulgator)
outcome: proposal defeated

Cic. Div. Caec. 66; Mur. 59; de Orat. 1.40, 227-28; 2.263; Brut. 80, 89; Att.
12.5b; Liv. 39.40.12; Per. 49; Per. Oxy. 49; Quint. Inst. 2.15.8; Plut. Cat.
Mui. 15.5; Tac. Ann. 3.66; App. Hisp. 60; Fro. Aur. 1. p. 172 (56N); Gel.
1.12.17, 13.25.15; see also V. Max. 8.1. abs. 2; [Asc.] 203St; Vir. Ill. 47.7
Ferguson (1921); see also Buckland (1937); Richardson (1987) 2 n. 12

1 On the date see Cic. Att. 12.5b.
2 See Douglas, Brutus p.77.

content/images/Sperberg-McQueen01-002.png
Prosecutor /
Plaintiff

Advocate

by

Trial

Witness

Other

Describes

n|

Discusses

n|

Ancient_Source

Modern_Source

Tries
accusationof

Law

content/images/Sperberg-McQueen01-001.png
Defendant

Trial

Prosecutor /
Plaintiff

Advocate

Magistrate

Person

Juror /Witness)Other

Charge /

Cause of action

Source

Source

Law

Ancient_Source

Modern_Source

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

