[image: Balisage logo]Balisage: The Markup Conference

XML Applications on the Web
Implementation Strategies for the Model Component in a Model-View-Controller
		Architectural Style
Zahra Al-Awadai
Technical University of Munich (TUM)

<alawadai@in.tum.de>

Anne Brüggemann-Klein
Technical University of Munich (TUM)

<brueggemann-klein@tum.de>

Michael Conrads
Technical University of Munich (TUM)

<conrads@in.tum.de>

Andreas Eichner
Technical University of Munich (TUM)

<andreas.eichner@tum.de>

Marouane Sayih
Technical University of Munich (TUM)

<marouane.sayih@in.tum.de>

Balisage: The Markup Conference 2017
August 1 - 4, 2017

Copyright © 2017 by the authors. Used with permission.

How to cite this paper
Al-Awadai, Zahra, Anne Brüggemann-Klein, Michael Conrads, Andreas Eichner and Marouane Sayih. "XML Applications on the Web." Presented at: Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In Proceedings of Balisage: The Markup Conference 2017.
 Balisage Series on Markup Technologies vol. 19 (2017). https://doi.org/10.4242/BalisageVol19.Bruggemann-Klein01.

Abstract
How can we use XML, XQuery, and SCXML (State Chart XML) to implement the Model
				component in a Model-View-Controller web application? First we must be able to do
				function decomposition of XQuery functions that perform updates (a task rendered
				more complex by XQuery's restrictions on updating expressions). Then we would like a
				systematic method of using UML state diagrams in the design of the web application
				and of integrating an SCXML processor into the implementation of the Model
				component. A BaseX extension implementing the WebSockets protocol enables us to make
				the Model observable and thus to realize multi-player games that require server
				push. All these practices are compatible with domain-driven design and model-driven
				solutions; they pave the way for XML developers to create XML-based applications on
				the web.

Balisage: The Markup Conference

 XML Applications on the Web

 Implementation Strategies for the Model Component in a Model-View-Controller
 		Architectural Style

 Table of Contents

 	Title Page

 	Introduction

 	Architecture

 	Domain modeling and implementation strategy for Model

 	The Model component as an event-driven system

 	Outlook: multi-client web applications

 	Conclusion and future work

 	About the Authors

 XML Applications on the Web
Implementation Strategies for the Model Component in a Model-View-Controller
		Architectural Style

Introduction
As we have claimed before [B16], current XML
			technologies provide a full stack of modeling languages, implementation languages, and
			tools for web applications that is stable, platform independent, and based on open
			standards. A particular strong point of what we call the X stack is that data are
			encoded with XML end-to-end and that XML technologies can be used where-ever XML data
			need to be processed.
Following up on that work, in this paper, we take a closer look at implementation
			strategies: How can we use XML, XQuery, and SCXML to implement the Model component in a
			web application that is structured in the Model-View-Component architectural
			style?
After this introduction, in section “Architecture”, we propose a specific
			architecture for web applications that follows the Model-View-Controller architectural
			style and puts the heaviest demands on the Model component. Model components, even when
			running on the web, are basically conventional software components. Hence, they are
			fertile grounds for exploring how established software engineering modelling and
			implementation strategies transfer to the realm of XML technologies.
Then, in section “Domain modeling and implementation strategy for Model”, we get more technical in demonstrating how to
			do functional decomposition of XQuery functions that perform updates. Functional
			decomposition is necessary for XQuery to be a straight-forward implementation language
			for the typical object-oriented designs of a Model component. We also consider, which
			implications transaction management and database locking have for function calls.
Next, in section “The Model component as an event-driven system”, we investigate how to use UML state
			diagrams in the design of a Web application and how to integrate an SCXML processor that
			interprets and executes an SCXML encoding of the state diagram into the XML-based
			implementation of a typical Model component.
Finally, in section “Outlook: multi-client web applications”, we outline work in progress on a
			RestXQ extension for BaseX that implements the WebSockets protocol [WSM13]. This extension enables us to make a Model observable
			and, thus, to realize multi-player games that require server push.
We conclude with a number of discussion points and some final remarks.
The practices proposed in this paper are compatible with domain-driven design and
			model-driven solutions; they pave the way for XML experts to develop XML-based
			applications on the web.
Throughout the paper, we provide code to illustrate the techniques that we introduce.
			We have also applied our principles and strategies in a case study, the game Guess the
			Number (GN). which is documented in a separate document that is available on request.
			This case study is intentionally kept simple, so that we can focus on principles without
			being distracted by more complex XML processing. We have student projects for Blackjack
			and Mancala and the early GameX [SKB14] that follow the same
			principles as they evolved and that are technically more complex. The case studies
			demonstrate how end-user developers who are conversant with XML technologies can create
			their own web applications.

Architecture
Any web application uses by definition a client-server architecture with the following
			characteristics:
	The client component runs in a web browser.

	The server component runs in a web server (Apache, Jetty).

	Client and server components communicate through HTTP requests and
					responses.

The implementation of the server component typically relies on a backend component
			such as a database system. Architecturally, the backend component is layered below the
			web server, and only the web server communicates with the backend component, using some
			kind of API. This leads to the typical 3-tier architecture of web applications with any
			number of web browsers that are dynamically instantiated on user request in Tier 1,
			a web server in Tier 2 and a backend system in Tier 3. The layering of the
			three tiers is guaranteed through the pattern of communication between the tiers. Only
			the two pairs of Tier 1 and 2 and Tier 2 and 3 communicate, the former through
			HTTP and the latter through some kind of API [F02].
Software engineering has settled on the Model View Controller (MVC) architectural
			style for systems with a user interface [BD09,F02]. As a first cut at an architecture for XML
			applications on the web, we decide on an MVC variant called Passive View [F02]. In this variant, the heavy-lifting processing is
			done by components that are run on the server. The classic benefit of this approach is
			testability. We choose the Passive View variant so that we can first focus our attention
			on the specific set of technologies, XML, XQuery, RestXQ and SCXML, that we use on the
			server.
In the Passive View architecture, there is a specific distribution of responsibilities
			and a specific communication pattern between the three components.
In Passive View, the responsibilities of the View component are elementary. View
			displays the state of the application as communicated by Controller and offers user
			interactions on Controller instruction. View notifies Controller of any user
			interactions and waits for new information from Controller. Thus, View delegates any
			real processing to the other two Components.
The Model component holds data and provides access to the data in the form of methods
			that manipulate the data. Model exposes its functionality through an interface or API.
			In the most simple cases of web applications, we have a passive model: Methods are
			called by the Controller of Model; state changes in Model always
			originate from methods that are called by its Controller.
			Particularly, there is only one Controller per Model.
Controller receives notification from any View about user
			interactions. It interacts with Model to handle the notification, converting information
			from Model into information for View (which data to display, which interactions to
			offer) and returning this information to View.
The hallmark of the Model View Controller architectural style is that it separates the
			user interface, represented by View, from the data and functionality of the application,
			represented by Model. A number of View components can work with the same Model
			component, mediated through Controller components, without Model having to know anything
			about the Views that are connecting to it, and each View may retain its own methods of
			presenting data and interacting with users without having to coordinate with any of the
			other components.
How can we map the three components Model, View and Controller onto the three tiers of
			a web application? It is tempting to paint with a broad brush and map Views to
			Tier 1, Controllers to Tier 2 and Models to Tier 3. However, in an
			XML-based web application, we implement both Controller and Model as XQuery modules that
			are run by a single backend XQuery processor in Tier 3. Following the MVC
			architectural style, Controller and Model are layers within Tier 3 that communicate
			through an API. The web server in Tier 2 acts as a generic component that handles
			network communication; that is, HTTP requests and responses from and to web clients. The
			HTTP requests are mapped to XQuery functions in Controller as defined by RestXQ
			annotations within Controller. Controller also constructs complete HTTP response data
			that are then just passed back as HTTP responses to the correct web client by the web
			server. Thus, Tier 2 runs no application-specific software. Both Controller and
			Model reside in Tier 3, which has to be split into two layers for the two
			components.
Currently, we use the XML database system BaseX [G17] as XQuery
			processor in our implementations. Any other RestXQ aware XML database system such as
			eXist or MarkLogic would work as well. We have chosen BaseX over eXist for its support
			of the W3C standard XQuery Update Facility, and we prefer BaseX over MarkLogic for no
			other reason than that it is free.
Figure 1: MVC mapped to 3-tier web application architecure.
[image:]

Domain modeling and implementation strategy for Model
The Model component is a traditional software component that can be designed and
			implemented independently from its eventual deployment on the web. From a document
			engineering perspective, the Model component of a web application is typically seen as a
			repository of documents that is accessed through query and update functions. However,
			some types of web applications have state in the Model component beyond the state of a
			typical backend data layer. Specifically, they require several instances of
			sub-components that are dynamically instantiated and destroyed under user control. This
			has not been the case with our early case study GameX [SKB14],
			in which all players share a single map to play on, but it is the case with Blackjack,
			where each table of Blackjack requires its own instance of a Blackjack game to be
			created in the server component, even in the most simple single-player scenario. It is
			also the case with Mancala and Guess the Number, where several games can be played
			simultaneously.
More precisely, coming from an object-oriented modeling [BD09] and domain-driven perspective [E04], an application such as a Model component is typically modeled
			in the object-oriented style by a number of classes, with a class corresponding to a
			type of domain entity and defining which data an instance of the class (that is, an
			object), holds and which methods can be performed on these data. This approach is also
			appropriate for Model components that have state as described above.
When implementing the object-oriented model with an object-oriented programming
			language, the data of the component are often naturally organized into a number of
			interrelated objects, with methods that locally operate on the data of an object, using
			methods on other objects as services. This is the principle of encapsulation, a form of
			abstraction that together with information hiding and inheritance facilitates software
			qualities such as ease of maintenance and extensibility.
Our main idea for implementing a Model component with XML technology is to simulate
			the natural object-oriented implementation of its design in the following manner:
	Optional: Model the data part of a class with a class schema in XML Schema. We
					have demonstrated in earlier work, how to derive a schema from a data model that
					is expressed as an UML class diagram [BRHS12].

	Implement individual objects as XML elements that conform to their class
					schema. The object representations are stored in a repository of XML elements,
					in which they are identified and from which they can be retrieved via unique
					references (IDs). That corresponds to the heap memory of objects when running an
					object-oriented language.

	Implement methods as XQuery [R14] functions
					that have a reference to the object they are operating on as a "self" or "this"
					parameter. This approach mirrors directly common implementation practice for
					methods in object-oriented programming languages.

While this may sound like a reasonable strategy from a high enough vantage point,
			XQuery poses some challenges. XQuery by itself is a functional programming language,
			which means that its primary units of computation are functions that compute output
			values from input values without side effects. Functions can be composed and used with
			recursive schemes, so that XQuery is in fact Turing complete: any function that is
			computable according to any reasonable definition can also be expressed with
			XQuery.
XQuery by itself, however, has no means to effect change in some repository of data,
			so it cannot be used to update the state of objects as we would require. Here, the
			XQuery Update Facility [R11] comes to the rescue by
			extending XQuery with insert, delete and replace clauses that manipulate XML structures
			in data stores.
There are some inconvenient restrictions in the use of update clauses within XQuery
			expressions: They may only be used in the return clause of an XQuery FLWOR expression
			and a return clause must not mix an update clause and return of a value, thus severely
			limiting composability.
How does one, under these conditions, implement, for example, a constructor for a new
			object that needs
	to create an ID or reference for the new object,

	to instantiate the object data and to store them in a repository of objects,
					so that it can be retrieved by its ID later, and

	to return the new object ID to the calling function?

Unfortunately, the natural decomposition of a constructor into steps outlined above
			does not at all fit the restrictions of XQuery and XQuery Update Facility. We solve this
			problem by what we call split and delegation of function calls; that is, we replace a
			call to a functions that needs to update data and return a value with two HTTP requests,
			one to trigger updates in the object repository and one to trigger retrieval of the
			return value. The HTTP Client Module of EXPath [G10], that
			is supported by BaseX and other XML database systems, wraps an XML-encoded HTTP request
			into an EXPath function call that can be used in XQuery where-ever an XPath expression
			can be used and that returns the corresponding XML-encoded HTTP response as its value.
			Hence, HTTP requests are fully compositional and, being defined by an industry standard,
			are platform independent.
We have described how to represent the state of a Model component with XML documents
			in an XML database and how to implement the API that a Model component provides with XML
			and XQuery. Internal calls to XQuery functions can be expressed as HTTP requests that
			return values as HTTP responses to accomodate restrictions in composability. To
			elaborate, in the definition of the function, the triggering of a function via an HTTP
			request can be facilitated with RestXQ annotations. The function needs to return an
			XML-encoded HTTP response, wrapped into a rest:response element that ensures that the
			XML-encoded response is turned into an actual HTTP response message that is sent to the
			client that sent the original request.
To illustrate function call split and delegation, we provide a simple web app that
			maintains a counter on the server and lets clients advance and query the counter in a
			single request.
xquery version "3.0" encoding "UTF-8";

(:~
 : This app demonstrates how to do functional decomposition with
 : XQuery updates, using the split and delegate strategy.
 : Prerequisite: create a database counterStore in BaseX with a ressource,
 : whose top-level element is <counter>0</counter>.
 : Usage: URL .../counterApp/advanceCounter
 : Functionality: Advance the counter in the database and return the
 : updated counter in an XML format.
 : Author: Anne Brüggemann-Klein, TUM, 20170410
 :)

module namespace cntr = "brueggemann/counterApp";

declare namespace http = "http://expath.org/ns/http-client";
declare namespace rest = "http://exquery.org/ns/restxq";

declare variable $cntr:counter := db:open("counterStore")/counter;

declare
%rest:path("/counterApp/advanceCounter")
%rest:GET
function cntr:advanceAndWrapCounter() as element(counterInfo) {
(:~
 : The API of the app.
 :)
 <counterInfo>
 <updatedCounter>{cntr:advanceAndReturnCounter()}</updatedCounter>
 </counterInfo>
};

declare
function cntr:advanceAndReturnCounter() {
(:~
 : This function issues two requests, one to update the counter and one
 : to read the new value, returning the new value in the response
 : the second time.
 : That value is then returned as a return value of the function.
 :)
 (: build the XML representation of the update request :)
 let $requestUpdate :=
 <http:request method="POST"
 username="admin"
 password="admin"
 send-authorization="true"
 href="http://localhost:8984/counterApp/updateCounter">
 <http:body media-type="application/xml">
 <empty/>
 </http:body>
 </http:request>
 (: send the update request triggering a RestXQ annotation
 : and throw away the result
 :)
 let $_responseUpdate := http:send-request($requestUpdate)
 (: build the XML representation of the read request :)
 let $requestRead :=
 <http:request method="GET"
 username="admin"
 password="admin"
 send-authorization="true"
 href="http://localhost:8984/counterApp/readCounter">
 </http:request>
 (: send the read request triggering a RestXQ annotation
 : and save the body of the result
 : note that direct read with cntr:getCounter() leads to database deadlock
 :)
 let $responseRead := (http:send-request($requestRead))[2]
 return $responseRead
};

declare
%rest:path("/counterApp/updateCounter")
%rest:POST
%rest:GET
%updating
function cntr:updateCounter() {
(:~
 : Get the counter value and double-wrap the result
 : into a REST and an HTTP response element.
 :)
 let $oldCounter := cntr:getCounter()
 let $newCounter := xs:string($oldCounter + 1)
 return replace value of node $cntr:counter/text() with $newCounter
};

declare
%rest:path("/counterApp/readCounter")
%rest:POST
%rest:GET
function cntr:readCounter() {
 let $counter := xs:string(cntr:getCounter())
 (: construct a RestXQ response, consisting of an XML representation
 : of an HTTP response and a body
 :)
 let $response :=
 (<rest:response>
 <http:response status="200" message="">
 <http:header name="Content-Language" value="en"/>
 <http:header name="Content-Type" value="text/plain; charset=utf-8"/>
 </http:response>
 </rest:response>,
 $counter
)
 return $response
};

declare
%private
function cntr:getCounter() as xs:integer {
 xs:integer($cntr:counter/text())
};
Note that we can restructure the code for cntr:advanceAndReturnCounter so
			that only a single HTTP request, namely one to update, is needed, into steps that
	read the current value of the counter and compute the new value
					locally,

	send an HTTP request to update the database with a new value,

	return the locally computed value.

We have chosen to demonstrate a direct translation of the original functional
			decomposition into code. In practice, algorithms will be stratified to minimize the
			number of HTTP requests. A typical pattern is to call an updating function and then to
			perform a redirection to a query function to get the updated value.
When deciding which function calls to delegate to HTTP requests and which functions to
			call directly, one has to be aware of database locking mechanims. BaseX treats each
			XQuery method call as a transaction and aquires a database lock for the complete
			duration of the execution if it detects or suspects database access anywhere in the
			execution [E13].
The situation is demonstrated with the counter app. If we had called the method
				getCounter directly, without wrapping it into an HTTP request, BaseX
			would have locked the database for reading right at the beginning of execution of the
			calling method advanceCounter, leading to a deadlock when a request to
				updateCounter happens, because the updating method can aquire an update
			lock on the database only when all read locks have been released (two-phase commit
			protocol, [E13]).
One wishes that XQuery and the XQuery Update Facility would relax the constraints on
			updating functions that necessitate such awkward and costly procedures as described
			above. BaseX offers proprietary solution in its configuration parameter
			MIXUPDATES.

The Model component as an event-driven system
The Model component is basically a set of services that are called by Controller. We
			can view it as an event-driven system whose top-level activities are triggered by events
			that happen to be represented by function calls, most commonly originating from user
			actions that are passed on by Controller. Typically, there are constraints to the legal
			sequences of events, and the specific activity that is triggered may be dependent only
			on a specific pattern in the history of previous events. The classical tool to model
			such abstract “behaviour” of an event-driven system is statecharts.
			Statecharts have been first introduced by Harel as documented in a book [HP98] he co-authored with Politi. They have later, in
			the object-oriented variant of state diagrams, become part of UML2; see [SSHK15] for a textbook introduction and [H99] for an extensive discussion of the use of
			statecharts in software engineering. Statecharts can help to cut the complexity of a
			model. When modeling a Model component such as a lounge where players for new games are
			matched, a single main statechart can be used to control the Model itself. In addition,
			dynamically instantiated statecharts can be used to control the behaviour of a complex
			object such as a single game during its lifetime.
Most recently, with SCXML [B15], an XML encoding
			language for statecharts has been standardized, bringing statecharts into the realm of
			XML technologies. A number of research papers discuss use of SCXML in particular, among
			them the Bachelor Thesis of Roxendal [R10], invited
			expert to the W3C committee that defined SCXML.
There are even projects that implement SCXML processors with XQuery, thus bringing not
			only the description but also the execution of statecharts into the realm of XML
			technology [TODO SCXML processor for MarkLogic, S15].
			Consequently, a statechart that defines the behaviour of a Model component can be
			encoded in SCXML and can then be run seamlessly by the server-side XQuery processor, for
			example by BaseX.
The SCXML processor SCXML-XQ [S15] is an XQuery module
			that provides a method
selectTransitions($configuration as element()*,
 $dataModels as element()*, $event as xs:string) as element()*
that computes the transitions that are triggered by event $event when a statechart is
			in some state configuration $configuration in the presence of some datamodels
			$datamodels. A complementary function
computeEntrySet($transitions as element()*) as element()*
takes a configuration and a number of transitions as input and computes the next
			configuration that is reached when the transitions are executed.
N.B.: When pondering the signatures of these functions, note that a state XML
			structure is hosted by its statechart structure and that a transition XML structure is
			hosted by its source state structure.
To demonstrate how SCXML-XQ can be used, we have wrapped it with a rudimentary SCXML
			interpreter with a REST interface that locates a statechart and a state configuration in
			a database and replaces the state configuration by the next configuration that the
			statechart will be in after processing some event.
xquery version "3.0" encoding "UTF-8";

module namespace scI = "brueggemann/scxmlXqInterface";
import module namespace sc='http://www.w3.org/2005/07/scxml';

declare namespace http = "http://expath.org/ns/http-client";
declare namespace rest = "http://exquery.org/ns/restxq";
declare variable $scI:scxmlRuns := db:open("scxmlRuns")/scxmlRuns;

(:~
 : Get a statechart and a run (configuration) from the database
 : "scxmlRuns" and record
 : the state that is reached for a specific event in the run.
 : Assumptions: No parallel states in the statechart,
 : hence a run consists of
 : a single state, statechart and run are a legitimate
 : combination and the event has a transition in the statechart.
 : No error handling.
 :
 : Precondition: The database scxmlRuns has a ressource with
 : top-level element scxmlRuns,
 : which has encodings of statecharts and state configurations.
 :
 : Usage: URL
 : .../scxmlXqInterface/nextState/statechart/
 : {$statechart}/run/{$run}/event/{$event}
 : Functionality: Update $run for $statechart after processing $event.
 : Author: Anne Brüggemann-Klein, TUM, 20170410,
 : following ideas of Andreas Eichner.
 :)

declare
%rest:path("/scxmlXqInterface/nextState/statechart/
 {$statechart}/run/{$run}/event/{$event}")
%rest:GET
%updating
function scI:nextState($statechart as xs:string,
 $run as xs:string, $event as xs:string) {
 (: get current state $_state from $statechart and $run :)
 let $_statechart := $scI:scxmlRuns//sc:scxml[@name=$statechart]
 let $_run := $scI:scxmlRuns//scxmlRun[@name=$statechart and @id=$run]
 let $_stateID := $_run/state/text()
 let $_state := $_statechart//sc:state[@id=$_stateID]
 (: get transition $_transition to be executed from $_state :)
 (: result is empty if there is no transition :)
 (: datamodels (second argument for sc:selectTransitions() is empty :)
 let $_transition := sc:selectTransitions($_state, (), $event)
 (: get ID $_nextStateID of nextState from $transition :)
 (: TODO: set $_nextStateID to $_stateID if there is no transition
 : for $event (SCXML requires that there is no state change in that case!)
 :)
 (: assume that sc:computeEntrySet returns a single state :)
 let $_nextStateID := xs:string(sc:computeEntrySet($_transition)/@id)
 return replace value of node $_run/state/text() with $_nextStateID
};
<?xml version="1.0" encoding="UTF-8"?>
<!-- This database collects a number of statecharts,
 identified by their name,
 and runs of statecharts that are represented by their current state.
	 In this version, statecharts have no parallel states,
	 so the run of a statechart
	 is adequately represented by a single state.	
	
 Author: Anne Brüggemann-Klein, TUM, 20170410
	 -->
<scxmlRuns>
 <!-- A statechart that accepts the event sequences of language a* b.
 Events that do not match with a transition do not change state. -->	
 <sc:scxml xmlns:sc="http://www.w3.org/2005/07/scxml"
 name="aStarB" version="1.0" initial="init">
 <sc:state id="init">
 <sc:transition event="a" target="init"/>
 <sc:transition event="b" target="final"/>
 </sc:state>
 <sc:state id="final"/>
 </sc:scxml>

 <!-- A run of a statechart identified by name is represented
 by its current state. -->
 <scxmlRun name="aStarB" id="runA">
 <state>init</state>
 </scxmlRun>
 <scxmlRun name="aStarB" id="runB">
 <state>init</state>
 </scxmlRun>
</scxmlRuns>

From this example, it is easily conceivable how a system written in XQuery can use
			SCXML-XQ to create statecharts dynamically and to carry out independent executions of a
			state chart by keeping track of dynamic information such as state configurations and
			possibly datamodels in the database, in combination with object information.
Unfortunately, SCXML-XQ has no documentation. It appears to be able to handle
			composite states including parallel states and possibly conditional transitions. There
			is no evidence that it handles final states, assignments to data in a datamodel or
			method invocations when following a transition or when entering and exiting a state.
			These features are essential when using statecharts to control even such a simple
			application as Guess the Number.
One co-author of this paper, Andreas Eichner, has implemented some of the features
			that are missing from SCXML-XQ [S15] as part of his master
			thesis [E17]. This implementation has all the features in
			place that are necessary to control a game of Blackjack.

Outlook: multi-client web applications
In our current architecture, Model is passive and not generally observable; that is,
			Model changes state only on client request, and the updated state is only of interest to
			the client that instigated the change. The MVC architectural style in its most general
			form has an active and “observable” Model component.
An active Model can change its state in response to an outside event such as sensor
			input or to a request from one of many clients; there might even occur spontaneous
			change of state within Model. In that case, clients that have not explicitly requested
			the state change, will need to be informed about the updated state.
Therefore, in the MVC architectural style, Model makes itself
			“observable”; that is, it allows interested parties to register themselves
			for update notifications that will be broadcast to all of them when a relevant state
			change occurs in Model without clients having to explicitly request it on a case-by-case
			basis. Hence, MVC in its general form comprises the Observer pattern [BD09], which structures a system in such a way that the
			Observable component (the Model) and the Observer components (the Views or Controller(s)
			on behalf of the Views, depending on the specific variant of MVC in use) are properly
			decoupled.
In the web context, this boils down to the requirement that a client and a server are
			enabled to establish a bi-directional communication channel over the Internet, through
			which the server can send messages to the client without being prompted by the client
			(server push). A server who keeps track of all the channels that are currently
			established with clients is then able to broadcast update notifications by sending some
			message to each of the clients.
How is this relevant to the class of XML-based web applications that we have
			considered? The current architecture and implementation strategies cover multi-player
			games such as Mancala or Blackjack only if all players play through a single browser.
			The situation changes completely if we want to support a truly distributed game in
			which, for example, each player at a Blackjack table plays through their own browser but
			needs to see actions of the other players at the table. Server push capability is needed
			when the results of one player's action is to be made visible to all players in their
			own browsers.
How can server push be implemented in the Internet? Communication between components
			over HTTP is restricted by the request-response rhythm of the protocol. A server
			component may only speak to a client after being requested to by the client, and then it
			is only allowed a single response message.
There are ways to emulate the server-push or server-broadcast communication pattern
			over HTTP by using so-called busy polling or long polling
			techniques in combination with AJAX-like requests. In fact, our browser game GameX uses
			busy polling to propagate changes in the map that were caused by one player to all other
			players. However, these solutions are not stable, and they do not scale. HTML5-based
			architectures go beyond the request-response cycle of the HTTP protocol towards server
			push solutions by supporting APIs such as Server-Sent Events and WebSockets [WSM13] in the client. These APIs are matched by server-side
			implementations, most commonly in Node.js [HW12]. The
			first message that is sent in the WebSockets protocol is an HTTP request with an upgrade
			flag that imdicates that the WebSockets protocol is to be used with further messages;
			these are then in a specific binary WebSockets protocol format.
One co-author of this paper, Michael Conrads, has brought server push into the realm
			of XML technologies in his master thesis [C17]. As an
			outlook, we sketch the two approaches that he has investigated; they will be further
			described in a later paper.
The first approach uses a Node.js server as routing middleware. When a client loads a
			Web page, a Javascript component establishes a WebSocket connection to the Node.js
			server. An HTTP request to this server is forwarded to the XML server and the reponse is
			returned to the client. When the client issues a ressource-modifying request (for
			example using HTTP methods POST or PUT), the response from the server is returned not
			only to the requesting client but also to all connected clients via their WebSocket
			connections. Messages between server and client that go through the WebSocket connection
			can be encoded in XML. Clients can apply XSLT transformation using the Javascript
			XSLTProcessor object to massage the XML data into custom formats, most probably into
			HTML.
A second and more elegant approach ditches the Node.js server and extends BaseX so
			that it can understand and process a new type of RestXQ annotation, %rest.WEBSOCKET.
			This annotation is similar to an annotation with an HTTP method such as GET or POST. It
			signals which format the messages that are exchanged need to have. The annotation still
			needs to be extended by a naming or grouping mechanism that determines the target
			clients for broadcasts. The new RestXQ annotation as a server-side interface is in
			perfect alignment with the REST philosophy [F00].
Both approaches rely on client-side Javascript to send messages over a WebSocket and
			to handle the incoming messages. Message formats can be in some encoding of XML data.
			The client-side communication components can be generic, so that they only need to be
			configured but not programmed for a specific application. The Node.js router in the
			first approach just forwards all requests; it does not require any custom programming
			either but only configuration of host and port data.

Conclusion and future work
In this paper, we have laid out a coherent and coordinated set of practices for
			developing XML-powered web applications. The practices draw on previous work and have
			been and are being vetted with case studies.
One source of inspiration have been proven principles and practices from software
			engineering.
	We have demonstrated how the principle of encapsulation can be emulated with
					XML technology by mapping objects and methods operating on objects to XML
					elements and XQuery-encoded activities that are parameterized with the
					object-element they are supposed to operate on as a "self" or "this" parameter.
					We have solved the technical problem of functional decomposition for XQuery with
					updates, and we have investigated how our split and delegate technique interacts
					with transaction processing and database locking.

	We have mapped a variant of the MVC architectural style to the web, decoupling
					the user interface in web browsers from the other components of an application.
					RestXQ annotations of XQuery functions enable us to rely on pure HTTP
					communication between clients and servers (no frameworks!).

	The complexity of event-based systems such as Model components can be brought
					down by introducing the concept of behaviour that is modelled by statecharts. We
					have demonstrated how SCXML-encoded statecharts can be dynamically instantiated
					and executed with XML technology.

	Finally, we have outlined how to adapt the concepts of pipes&sockets and
					the Observer pattern that have been established in the engineering of
					distributed systems to XML-based web applications.

All solutions are based on W3C or industry standards and use freely available software
			components.
One motivation for this line of work has been to support XML experts as end-user
			programmers, which in sequence has led to the idea of domain modelling, object-oriented
			design, object-oriented implementation and eventually XQuery tweaks.
It is an open question if it is possible to use XQuery in the spirit it was invented,
			as a functional programming language, for implementing XML-based web applications. There
			are very few and not very refined software engineering methodologies for functional
			programming which could lead to a more natural way of using XQuery.
In teaching a lab course on XML technology, we have made the experience that no-frills
			web apps, reduced to essentials, which do not require any frameworks, are a useful and
			appreciated pedagogical approach for teaching computer science students.
Areas for future work are:
	Richer views / user interfaces.

	Aspects of privacy and security. In the small: information hiding.

Bibliography
[B15] Jim Barnett (Editor-in-Chief). State
				Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C
			Recommendation 1 September 2015. [online]. [cited 11 April 2016].
				http://www.w3.org/TR/2015/REC-scxml-20150901/.
[B16] Anne Brüggemann-Klein. The XML
				Expert's Path to Web Applications: Lessons Learned from Document and from Software
				Engineering. In Proceedings of XML In, Web Out:
				International Symposium on sub rosa XML. Balisage Series on Markup
			Technologies, vol. 18 (2016). [online]. [cited 22 July 2017]. doi:https://doi.org/10.4242/BalisageVol18.Bruggemann-Klein01.
				https://www.balisage.net/Proceedings/vol18/html/Bruggemann-Klein01/BalisageVol18-Bruggemann-Klein01.html.
[BD09] Bernd Brügge; Allen Dutoit.
				Object-Oriented Software Engineering Using UML, Patterns, and Java.
			Prentice Hall, 2009.
[BRHS12] Anne Brüggemann-Klein; Jose Tomas
			Robles Hahn; Marouane Sayih. Leveraging XML Technology for Web
				Applications. In Proceedings of Balisage: The Markup
				Conference 2012. Balisage Series on Markup Technologies, vol. 8
			(2012). [online]. [cited 22 July 2017]. doi:https://doi.org/10.4242/BalisageVol8.Bruggemann-Klein01. Updated version available on request from
			brueggemann-klein@tum.de.
[C17] Michael Conrads.
				Multi-Client Web Applications with XML Technologies. Master Thesis
			Technical University of Munich, 2017.
[E04] Eric Evans. Domain-Driven Design:
				Tackling Complexity in the Heart of Software. Addison-Wesley,
			2004.
[E13] Jens Erat. Fine Granular
				Locking in XML Databases. Bachelor Thesis University of Konstanz,
			2013.
[E17] Andreas Eichner. SCXML in
				Web-Based Applications. Master Thesis Technical University of Munich,
			2017.
[F00] Roy Thomas Fielding.
				Architectural Styles and the Design of Network-based Software
				Architectures. PhD Thesis University of California, Irvine
			2000.
[F02] Martin Fowler. Patterns of
				Enterprise Application Architecture. Addison-Wesley, 2002.
[G10] Florent Georges. HTTP Client
				Module. [online]. [cited 3 April 2017].
				http://expath.org/spec/http-client.
[G17] Christian Grün and Team. BaseX. The XML
				Database. [online]. [cited 28 March 2017].
				http://basex.org.
[H99] Ian Horrocks. Constructing
				the User Interface with Statecharts. Addison-Wesley 1999.
[HP98] David Harel; Michal Politi.
				Modeling Reactive Systems with Statecharts: The STATEMATE Approach.
			McGraw-Hill, 1998. [online]. [cited 19 2016].
				http://www.wisdom.weizmann.ac.il/~harel/reactive_systems.html.
[HW12] Tom Hughes-Croucher; Mike Wilson.
				Node: Up and Running: Scalable Server-Side Code with JavaScript.
			O'Reilly 2012.
[R10] Johan Roxendal. Managing Web
				Based Dialog Systems Using StateChart XML. Bachelor Thesis University of
			Gothenburg 2010.
[R11] Jonathan Robie et al. (Editors).
				XQuery Update Facility 1.0. W3C Recommendation 17 March 2011.
			[online]. [cited 22 July 2017].
				https://www.w3.org/TR/xquery-update-10/.
[R14] Jonathan Robie et al.
				(Editors). XQuery 3.0: An XML Query Language. [online]. [cited
			22 July 2017]. https://www.w3.org/TR/xquery-30/.
[S15] Christoph Schütz. An SCXML Interpreter
				in XQuery. [online]. [cited 7 April 2017].
				https://github.com/xtoph85/SCXML-XQ.
[SKB14] Marouane Sayih; Martin Kuhn; Anne
			Brüggemann-Klein. GameX — Event-Based Programming with XML Technology. In
				Proceedings of Balisage: The Markup Conference
				2014. Balisage Series on Markup Technologies, vol. 13 (2014). [online].
			[cited 20 April 2016]. doi:https://doi.org/10.4242/BalisageVol13.Bruggemann-Klein01. 				http://www.balisage.net/Proceedings/vol13/html/Bruggemann-Klein01/BalisageVol13-Bruggemann-Klein01.html.
[SSHK15] Martina Seidl; Marion Scholz;
			Christian Huemer; Gerti Kappel. UML@Classroom. An Introduction to Object-Oriented
				Modeling. Springer-Verlag 2015.
[WSM13] Vanessa Wang; Frank Salim; Peter
			Moskovits. The Definite Guide to HTML5 WebSocket. APress 2013.

Balisage: The Markup Conference

XML Applications on the Web
Implementation Strategies for the Model Component in a Model-View-Controller
		Architectural Style
Zahra Al-Awadai
Technical University of Munich (TUM)

<alawadai@in.tum.de>

Anne Brüggemann-Klein
Technical University of Munich (TUM)

<brueggemann-klein@tum.de>

Michael Conrads
Technical University of Munich (TUM)

<conrads@in.tum.de>

Andreas Eichner
Technical University of Munich (TUM)

<andreas.eichner@tum.de>

Marouane Sayih
Technical University of Munich (TUM)

<marouane.sayih@in.tum.de>

Balisage: The Markup Conference

content/images/Bruggemann-Klein01-001.jpg
Tier 1

Tier 2

Tier 3

Web
browser

Web
browser

Web
browser

HTTP

Y

Web server

AAP\

k2

Backend system

View

View

View

HTTP

Y

Web server

A Resixa)

A 4

Controller

— T —

Model

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

