[image: Balisage logo]Balisage: The Markup Conference

SOCRview: a case study of RESTful service development for publishing
John Cooper
Senior Content Systems Analyst
SAGE Publications, London

<john.cooper@sagepub.co.uk>

Balisage: The Markup Conference 2017
August 1 - 4, 2017

Copyright © 2017 Sage Publications

How to cite this paper
Cooper, John. "SOCRview: a case study of RESTful service development for publishing." Presented at: Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In Proceedings of Balisage: The Markup Conference 2017.
 Balisage Series on Markup Technologies vol. 19 (2017). https://doi.org/10.4242/BalisageVol19.Cooper01.

Abstract
SOCRview is a RESTful HTTP service layer that exposes content--including transformed,
 packaged, listed or analyzed content--to other services, programmers writing ad hoc scripts
 and users through persistent, readable, meaningful and concise URI. Lessons learned from the
 first proof-of-concept allowed expansion to include customization layers for commonly used
 delivery formats.

Balisage: The Markup Conference

 SOCRview: a case study of RESTful service development for publishing

 Table of Contents

 	Title Page

 	Context and Goals
 	Motivation

 	Goals

 	XML Database Services

 	URI - Initial Analysis
 	SOCR already had RESTful access to content

 	Examples from other publishers

 	Core URI design

 	URI for all objects

 	SOCRview Proof Of Concept (POC)
 	POC URI processing

 	Production SOCRview using RXQ

 	Views
 	Standard extension based views

 	Deliveries: packages and report
 	Package delivery

 	Report Delivery

 	Filters
 	Multiple XSLT filters

 	XPath filters

 	Summary

 	About the Author

 SOCRview: a case study of RESTful service development for publishing

Context and Goals
SAGE is an academic publisher whose content is marked-up in XML and stored in an Content
 Management System (CMS) known internally as SOCR (SAGE Online Content Repository). Many types
 of content are stored in SOCR but this paper will focus on journals.
SOCR is a CMS with typical characteristics: content comes in (ingestion, validation), goes
 out (reports, searches, delivery) and is stored/archived. At its core SOCR consists of two
 applications: a front-end that provides user access and also contains a workflow engine; and a
 back-end XML database.
This paper will present how content goes out, is accessed through a
 service, SOCRview, running on an XML database; starting from initial motivations and an XML
 database: services, URIs, and a REST framework will be sequentially added to the mix.
Motivation
Content should not be hidden away, only accessible through expert database specialists.
 Storing content in a database system has advantages of consistency, scalability and security
 but often accessing the content requires special knowledge and privileges. Wouldn't it be
 nice if typical access could be provided in a simple and intuitive way using, say, HTTP and
 more advanced access made easier with a standardized configuration layer (ideally in
 XML?)

Goals
	Demonstrate the accessibility of content through a simple HTTP interface

	Design persistent, readable, meaningful and succinct URIs for content and use them
 to access content

	Use variations on the core URI, by adding extensions and postfixes, to access
 different views of the content including metadata, reports and
 transformations

	Create a customizable transformation layer to implement complex or non-standard
 views

Note
From the beginning, browser access was useful and important but the goal was not to
 create a web application. The goal was to provide simple and intuitive HTTP-URL based
 access to content that could be used by services, programmers writing ad hoc scripts or a
 web application. To date, there is no web application, just a very thin XSLT-to-HTML
 layer.

XML Database Services
To set the stage for what follows it necessary to understand a little about services
 written in XQuery. A minimum configuration can consist of specifying a port and location for
 XQuery files. The examples below demonstrate a simple content query and how to access the
 requesting URL.
A service is written like an XQuery program where the input context is all the documents
 in the database, as if the database was one giant root document and each actual document a
 child of the root document. This example illustrates a service running on port 8123 that
 returns an arbitrary article. The following is placed in a file, one-article.xqy:
 (/article)[1]
 Opening the following URL in a browser will
 return one article http://localhost:8123/one-article.xqy

 Returns <article article-type="research-article" dtd-version="1.1d1" r:rsuiteId="6536723" xml:lang="EN">
 <front>
 <journal-meta>
 <journal-id journal-id-type="publisher-id">EPM</journal-id>
 ...
</article>

There was one word excluded from the stated goal of accessing content using URIs:
 "directly." We want to use the URI directly and not as a unique id in a parameter.
Not like this:
 http://localhost:8080/goGoGadget.xqy?uri=/a/b/c

Yes, like this: http://localhost:8080/a/b/c

This can be achieved by configuring the service to redirect requests. Below is an example
 of redirecting all requests to XQuery file simple-service.xqy that contains the following:
 let $url := xdmp:get-original-url()

return
 if ($url eq '/one-article') then
 (/article)[1]
 else
 fn:concat("URL: ",$url)

 To return one article: http://localhost:8080/one-article

 Otherwise, just echo the request URL:
 http://localhost:8080/a/b/c
 Returns
 URL: /a/b/c

The XQuery program above, simple-service.xqy, shows how an HTTP service can interpret a
 request URL and access content. The next step would be to use regular expressions to match the
 request URL, isolating the object URI from modifiers that will indicate which aspect of the
 object is to be returned: (e.g. the object itself, its metadata, a transformed version of the
 object, etc.)

URI - Initial Analysis
The catalyst for introducing URI design for journals came from a 2012 MarkLogic Users
 Group London (MUGL) meeting where Jeni Tennison presented her technical approach and
 architecture for UK legislationMUGL2012; in particular
 the utility of meaningful persistent URIs and how modifiers could be applied to view different
 aspects of an object. This presentation at MUGL led to combining an analysis of our journal
 content and examples of how other systems provided URI-based access to journal content into an
 initial URI design.
SOCR already had RESTful access to content
http://localhost:8080/rsuite/rest/v1/content/38024?skey=1345
RSuiteAPI Each document has a unique positive integer
 that works well to identify content when a CMS is generalized to store anything. But it is
 not meaningful and the id is not persistent; if you delete a document and add it again it
 would get a new, different id.

Examples from other publishers
Legacy academic publishing, organized by volume and issue and published in print as well
 as online, lends itself to hierarchical URIs. An hierarchical URI can be seen on HighWire in
 example below: article on page 395 of journal aas, volume 25, issue 4. This is meaningful
 but not at the article level as the page number is less meaningful than an article DOI and
 also tied to a particular PDF
 rendering.http://aas.sagepub.com/content/25/4/395

All SAGE journal articles are identified with a Digital Object Identifier (DOI)
 DOI. HighWire used DOIs as an alternate for directly
 accessing articles. Below shows the HighWire URL for accessing journal aas, article DOI
 10.1177/009539979402500401.http://aas.sagepub.com/lookup/doi/10.1177/009539979402500401

Some online-only journals use the DOI as the primary identifier to access content.	BioMed Central, "Big Data Analytics" DOI 10.1186/s41044-017-0021-9
 https://bdataanalytics.biomedcentral.com/articles/10.1186/s41044-017-0021-9

	Public Library of Science, "PLOS ONE" DOI 10.1371/journal.pone.0127502
 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127502

Core URI design
Given that articles can be uniquely identified through a DOI, why not stop there? Why
 include journal, volume and issue identifiers? 	In SOCR the DOI is not unique because we have parallel versions. For example when
 an article first enters the system it is in the form of an Accepted Manuscript which
 has not been assigned a volume or issue. There is a requirement to keep the Accepted
 Manuscript separately and not as a version of a single article.

	There is structure in the database for navigating journal content -- journal,
 volume, issue and article container objects and these also must have URI

	There is content at the issue level (e.g. cover images)

	It is useful to apply metadata at the journal, volume, issue and article levels
 (e.g. if you want act on an issue as a whole)

	Finally, even if it was not necessary to have identifiers above the article level,
 it is meaningful to able to know where an article belongs based on its URI

So, given the examples above a reasonable base URI for a journal article might be:
 /AAS/25/4/10.1177/009539979402500401

Except we want to use a normalized DOI where forward slash (and most non-alphanumeric
 characters) is replaced by underscore:
 /AAS/25/4/10.1177_009539979402500401

Normalizing was a naturally step since the input files are named using the DOI. Later,
 when creating SOCRview, using normalized DOI will simplify the regular expressions that
 parse the URI. Also, we have DOI like this:
 10.1597/1545-1569(1995)032<0206:pfaoat>2.3.co;2

Although this paper is focused on journals, there are other types of content in SOCR and
 in order to unambiguously interpret the URI--especially in a service as described above that
 will want to respond differently based on matching URI with regular expressions--a
 namespace-like prefix will indicate that this is a journal URI:
 /journal/AAS/25/4/10.1177_009539979402500401

URI for all objects
A journal consists of one or more volumes, a volume of one or more issues, an issue of
 one or more articles and an article of at least the article XML with optional PDF and
 images. Below shows the hierarchical structure of content stored in SOCR. Though not
 complete the listing below shows a nested series of containers and objects. Each node is an
 XML document: a container contains references to its children; graphics and PDF contain
 references to files on a file system.	journal AJS /journal/AJS
	volume 44 /journal/AJS/44
	issue 9 /journal/AJS/44/9
	issue cover image
 /journal/AJS/44/9/AJS_44_9_cover.tif

	article 10.1177_0363546515618372
 /journal/AJS/44/9/10.1177_0363546515618372
	article XML
 /journal/AJS/44/9/10.1177_0363546515618372.xml

	article PDF
 /journal/AJS/44/9/10.1177_0363546515618372.pdf

	article graphic
 /journal/AJS/44/9/10.1177_0363546515618372-fig1.tif

URI for objects inside an article container: why exclude the article container level
 from the
 URI?/journal/AJS/44/9/10.1177_0363546515618372.xml
rather
 than
 /journal/AJS/44/9/10.1177_0363546515618372/10.1177_0363546515618372.xml
One
 of the goals was to have succinct URI without unnecessary repetition. Taking advantage of
 restricted naming conventions, requiring all objects belonging to an article to start with
 the normalized DOI, allowed the former approach, not unnecessarily repeating the DOI. If
 this restriction was not present then the latter approach would have been used
 /journal/AJS/44/9/10.1177_0363546515618372/foobar.xml

The initial set of URI implemented in the first version of SOCRview also had modifiers
 on the core URI to provide transformations and different views (e.g. /journal/AJS/44/9.zip
 would return a zip file of all content in the issue); this will be explored later when
 discussing the current version of SOCRview.

SOCRview Proof Of Concept (POC)
Full details of the POC would show little but two aspects have bearing on what follows:
 most importantly it successfully accomplished most of the stated goals and demonstrated what
 was possible in a way that words by themselves did not; the approach taken to matching an
 parsing URI was not ideal.
POC URI processing
The approach taken to processing the URI consisted of tokenizing the URI and then making
 decisions based on the decomposed parts of the URI (i.e. journal, volume, issue, article,
 extension, etc.) The service worked and was performant but it was difficult to understand
 and maintain; each additional endpoint to the service increased the complexity of the code.
 Also, the approach was contrary to the spirit of having persistent URI for objects. There is
 a different philosophy/approach in play when matching an URI with a given pattern but
 subsequently treating it as a single identifier.

Production SOCRview using RXQ
An alternative approach to matching and parsing URIs presented itself at another MUGL
 where meeting where Jim Fuller presenting his RESTXQ library which use XQuery function
 annotations to expose RESTful services in MarkLogicMUGL2014. Jim's RESTXQ library is based on Adam Retter's RESTXQ draft RESTXQspec presented at XML Prague 2012XMLPrague2012.
The RXQ library makes use of XQuery annotationsXQuery3 on function declarations. Every entry point (endpoint) of the service
 will have function declared as in the example below. This example shows the default behaviour
 when no URI is provided, the root URI '/', return a static table of contents XML document:
 declare
%rxq:produces('text/xml')
%rxq:GET
%rxq:path('/')
function toc() { static:toc() };
The
 above example shows three annotations used in SOCRview; this paper will focus on the rxq:path
 annotation containing a regular expression string.
Before showing the %rxq:path annotations that would match URI, as proposed
 above, it is necessary to explain an enhancement made to RXQ. As ubiquitous and powerful as
 regular expressions are they can be cryptic--especially for complex patterns--and difficult to
 understand or modify; more, a programmer should be able to look at a regular expression in an
 annotation and understand the URI it is intended to match. An abstraction layer was added to
 add symbolic patterns/pattern variables. Pattern variables are defined in a
 map:let $m := map:map()
let $_ := map:put($m,'$doi','(10\.\d{4,5}_[^/]+)')
let $_ := map:put($m,'$tla','([A-Z]*)')
let $_ := map:put($m,'$vol','([^/]+)')
let $_ := map:put($m,'$iss','([^/]+)')
let $_ := map:put($m,'$obj','([^/]+\.$objext)')
let $_ := map:put($m,'$objext','([a-z]+)')
...
Changes
 were made to the RXQ library to resolve these variables. Finally the variables are used in a
 function declaration. The following function will match any of the above object URI and return
 the
 object:declare
 %rxq:GET
 %rxq:path('(/journal(/$tla(/$vol(/$iss)?)?)?(/$obj|/$doi)?)($filter)?')
function jrnlObject(
 $socrUri, $_1, $_tla, $_2, $_vol, $_3, $_iss, $_4, $_obj, $_objext, $_doi, $_5, $filter
)
{ uf:applyFilters($filter,_getObject($socrUri)) };

In the above function declaration: 	$tla - Three Letter Acronym - a journal code (e.g. AJS = "The American Journal of
 Sports Medicine")

	$vol - volume

	$iss - issue

	$obj - an object name - a file name

	$doi - DOI

	$filter - to be explained later

Parentheses in regular expressions are used to isolate sub-expressions and capture text.
 These capture groupsRegular Expressions are assigned to a
 corresponding variable in the declared function. In the example most of the capture patterns
 are not used; only the URI and filter are used. A future enhancement could implement
 non-capture groups so that only required capture groups are assigned to variables. A future
 enhancement might also disallow capture groups inside pattern variables so that what is
 captured can be understood just from reading the %rxq:path.
Using RXQ allows for better organization and maintenance of service endpoints. Functions
 that match URI with complex patterns can be created that act upon the URI, applying any
 modifiers.

Views
So far all examples of URI and corresponding endpoints have corresponded to objects
 (container, non-XML or XML nodes); views are anything the can be derived
 from an URI and some modifying suffixes. Here are some examples of views: 	metadata associated with object

	zip file containing all content in an issue

	the most recent cover image for a journal

	transformed XML

Standard extension based views
Simple file extensions (e.g. .html) are used to show structural aspects of
 an object. Structural aspects mean either 	resolving the internal integer-based linking to SOCR URI to allow for simple
 rendering and navigation in a browser

	resources, metadata or the raw integer based linking from container to child –
 mostly used by administrators or developers

To illustrated typical structural views, below are 4 views for a container node: 	resource metadata -- every object (container, XML or non-XML) has a corresponding
 resource / metadata document that can be access by appending a .res
 extension
/journal/AJS.res

	raw XML document container -- contain numerical ids pointing to its
 children
/journal/AJS

	XML document listing the children where the children are referenced by URI
/journal/AJS.lst

	HTML view child list
/journal/AJS.html
this view converts document list above into HTML by adding a processing
 instruction that will run an XSLT 1.0 program, pretty.xsl, in a browser:
<?xml-stylesheet type="text/xsl" href="/xslt/pretty.xsl"?>

	Map - this is an XML representation of the database structure starting at the
 given URI:
/journal/AAN/25/3/10.1177_0218492315603212.map
<container name="10.1177_0218492315603212" type="rs_ca" socrUri="/journal/AAN/25/3/10.1177_0218492315603212" id="167632462">
 <title>10.1177_0218492315603212</title>
 <meta name="tla">AAN</meta>
 <meta name="volume">25</meta>
 <meta name="issue">3</meta>
 <meta name="year">2017</meta>
 <meta name="doi">10.1177/0218492315603212</meta>
 <meta name="articleType">case-report</meta>
 <object name="10.1177_0218492315603212-fig2.tif" type="nonxml" socrUri="/journal/AAN/25/3/10.1177_0218492315603212-fig2.tif" id="167632519">
 <title>10.1177_0218492315603212-fig2.tif</title>
 <meta name="tla">AAN</meta>
 ...
 <meta name="md5sum">4882ffc15e361c9bd5737ba1c5855372</meta>
 <created>2017-03-21T16:04:59.004Z</created>
 <modified>2017-03-21T16:04:59.243Z</modified>
 </object>
 <object name="10.1177_0218492315603212.xml" type="article" socrUri="/journal/AAN/25/3/10.1177_0218492315603212.xml" id="167632474">
 <title>Angina in left main coronary artery occlusion by pulmonary artery aneurysm</title>
 <meta name="tla">AAN</meta>
 ...

Deliveries: packages and report
SOCR has over 100 delivery targets the vast majority of which are simple: a zip file of
 some or all of the content of a journal issue. There also some highly customized deliveries
 (e.g. Epub). Naturally there are deliveries that fall somewhere in between and the challenge
 was to push as much of these onto production where they only need copy a configuration file,
 change a few ids, and perhaps add or override XML transformations. But always new
 requirements kept pushing the complexity of transformations specified in the delivery
 configuration file: multiple transformations; conditional transformations; etc. XProc was
 considered but was not a natural fit; XSLT was a natural fit; each delivery has two levels
 of configuration requiring 2 levels of expertise: an XML delivery configuration file
 customizable by production users and an XSLT packaging program requiring a developer.
Deliveries are views where the URL consists of an object URI, a
 delivery identifier and an extension .rpt, .dlvr or
 .zip. For example, the following creates a zip file of all content belonging
 to an issue: /journal/AJS/44/9/localDelivery.zip

The delivery identifier is "localDelivery"; every delivery identifier must resolve to a
 deliver configuration XML fragment; SOCRview will first look for the configuration in an
 static variable, for standard system deliveries, or an external document that can be
 customizable by users, for bespoke deliveries. localDelivery is system
 delivery with the following configuration:
 <deliveryConfig id="localDelivery">
 <pkgList type="xslt" uri="/deliver/localDelivery.xsl"/>
</deliveryConfig>

Package delivery
A package delivery assumes the content exists, constructs a map of the content
 structure rooted at the given URI (see Standard extension based views, above), runs an
 XSLT to transform the map into a package specification (XML) that is then interpreted to
 constructed the final package, usually a zip file.
Map -> Packaging XSLT -> Package Specification -> Package
A request URL of /journal/AJS/44/9/localDelivery.zip

 will process a map as listed above through an XSLT
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">

 <xsl:template match="container">
 <transform type="zip">
 <xsl:apply-templates select=".//object"/>
 </transform>
 </xsl:template>

 <xsl:template match="object[@type ne 'nonxml']">
 <transform name="{util:getObjName(.)}" type="xqyfn" fn="serialize">
 <param name="addHeader"/>
 <param name="removeRsuite"/>
 <object uri="{@socrUri}"/>
 </transform>
 </xsl:template>

 <xsl:template match="object[@type eq 'nonxml']">
 <object name="{@@name}" uri="{@socrUri}"/>
 </xsl:template>

</xsl:stylesheet>

 to create a package
 specification<transform type="zip">
 <object name="10.1177_0218492315603212.pdf" uri="/journal/AAN/25/3/10.1177_0218492315603212.pdf"/>
 <object name="10.1177_0218492315603212-fig3.tif" uri="/journal/AAN/25/3/10.1177_0218492315603212-fig3.tif"/>
 <object name="10.1177_0218492315603212-fig2.tif" uri="/journal/AAN/25/3/10.1177_0218492315603212-fig2.tif"/>
 <transform name="10.1177_0218492315603212.xml" type="xqyfn" fn="serialize">
 <param name="addHeader"/>
 <param name="removeRsuite"/>
 <object uri="/journal/AAN/25/3/10.1177_0218492315603212.xml"/>
 </transform>
 <object name="10.1177_0218492315603212-fig1.tif" uri="/journal/AAN/25/3/10.1177_0218492315603212-fig1.tif"/>
</transform>

 which will return a zip file, localDelivery.zip
 Archive: localDelivery.zip
 Length Date Time Name
--------- ---------- ----- ----
 17111 07-09-2017 17:42 10.1177_0218492315603212.xml
 1737310 07-09-2017 17:42 10.1177_0218492315603212-fig1.tif
 303239 07-09-2017 17:42 10.1177_0218492315603212.pdf
 5352824 07-09-2017 17:42 10.1177_0218492315603212-fig2.tif
 1612126 07-09-2017 17:42 10.1177_0218492315603212-fig3.tif
--------- -------
 9022610 5 files

Report Delivery
A SOCRview report simply runs an XQuery function passing the URI
 and a report id; there are no other restrictions and URI does not have to resolve to
 existing content.
Example below returns list of all journal issues where provided DOI is used, excluding
 provided URI; if DOI is unique then list will be empty; if DOI is not unique it will
 return URI where already used.
A request
 URI,/journal/AAN/25/3/10.1177_0218492315603212/uniqueDoi.rpt
,
 will use internal delivery
 configuration,<deliveryConfig id="uniqueDoi">
 <report>
 <function
 fnName="uniqueDoi"
 fnNamespace="http://sagepub.org/socrview/report"
 fnLocation="/modules/report.xqy"/>
 </report>
</deliveryConfig>
,
 run following XQuery
 function,declare function uniqueDoi(
 $socrUri as xs:string
, $refxml as node()
)
{...};

 and return following result,<socrUris/>
 indicating
 that DOI is unique.

Filters
The final type of view is a filter: a sequence of one or more XSLT,
 XQuery or XPath expressions run on the content obtained from an URI or URI
 view. Multiple filters can be executed, left to right. XSLT or XQuery
 expressions will resolve to program files that form part of SOCRview code. XPath expressions
 can be ad hoc and reference any namespaces or functions declared or visible in the code
 context where the filter is evaluated. Parameters can be used and will be supplied to every
 XSLT or XQuery module referenced in the filter; if the parameter is not declared it simply
 be ignored.
Multiple XSLT filters
Example below will apply 2 XSLT filters to an XML object
wrapper-one.xsl
 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xlink="http://www.w3.org/1999/xlink"
>

<xsl:template match="*">
 <wrapperOne>
 <xsl:copy-of select="."/>
 </wrapperOne>
</xsl:template>

</xsl:stylesheet>

wrapper-id.xsl
 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xlink="http://www.w3.org/1999/xlink"
>

<xsl:param name="id" select="'Default'"/>

<xsl:template match="*">
 <xsl:element name="{concat('wrapper',$id)}">
 <xsl:copy-of select="."/>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

Applying wrapper-one.xsl
 /journal/AAN/25/3/10.1177_0218492315603212.xml/__filter/xslt/wrapper-one.xsl

 returns
 <wrapperOne>
 <article article-type="case-report" dtd-version="1.1d1" r:rsuiteId="167632474" xml:lang="en">
 <front>
...

Applying wrapper-one.xsl, then wrapper-id.xsl
 /journal/AAN/25/3/10.1177_0218492315603212.xml/__filter/xslt/wrapper-one.xsl/xslt/wrapper-id.xsl?id=Two&dummy=Null

 returns
 <wrapperTwo>
 <wrapperOne>
 <article article-type="case-report" dtd-version="1.1d1" r:rsuiteId="167632474" xml:lang="en">
 <front>
...
Notice
 that parameter id was applied but the non-existent parameter, dummy, was ignored.

XPath filters
Example, md5sum for an image:
 /journal/AAN/25/3/10.1177_0218492315603212.pdf/__filter/xdmp:md5(binary()).xpath
12130105eaeaf74a21cbe457b8b70bd0

Example, byte count for XML:
 /journal/AAN/25/3/10.1177_0218492315603212.xml/__filter/xdmp:binary-size(xdmp:unquote(xdmp:quote(.),(),"format-binary")/binary()).xpath
17061

Example, abstract from article XML:
 /journal/AAN/25/3/10.1177_0218492315603212.xml/__filter/descendant::abstract.xpath
<abstract>
 <p>A 51-year-old woman with exercise angina and a history of pulmonary artery hypertension ...</p>
 <p>After a multidisciplinary evaluation,...</p>
</abstract>

Summary
The initial motivation of exposing SAGE's journal content through a simplified interface
 and the goals of building this interface through an HTTP service utilizing persistent,
 readable, meaningful and succinct URI was achieved. The usefulness of approach has so far
 mostly been seen in redesigning SOCR as multiple services but the browser interface has also
 proven popular and useful for technical users in our publishing systems group--who created
 and maintain SOCR--and the production group--who use SOCR. There has also been a gradual
 increase content accesses through scripts (e.g. data scientists using Python). URI design for
 journals has met all stated goals but URI design for non-journal content has been less
 satisfying because of tendency to view content base on its form (i.e. markup – e.g. TEI,
 DocBook, etc.) rather than its function (e.g. a book)--a salutary lesson that the time spent
 thinking about journal URI design was well spent. The use of RXQ has allowed easy additions
 of new, non-journal, content types. Having multiple levels of configuration for deliveries
 has allowed simple new deliveries to be created without the intervention of a developer or
 administrator and complex deliveries, requiring development, to be created faster.

References
[RSI 2017]
 RSuite REST API Reference Version 1 (3.7.x, 4.1.x, 5.x)

[wikipedia DOI]
 Digital Object
 Identifier

[Retter 2016]
 RESTXQ 1.0: RESTful Annotations for XQuery

[Retter 2012]
 XML Prague 2012: RESTful XQuery - Standardised XQuery 3.0 Annotations for REST

[w3c 2014]
 XQuery 3.0: An XML Query
 Language - Annotations

[Tennison 2012]
 May 22, 2012 MarkLogic User
 Group London: Jeni Tennison
 Jeni's slides

[Fuller 2014]
 MarkLogic Users Group
 (MUGL) meeting, April 19, 2014 RXQ v1.0 - RESTXQ for MarkLogic MarkLogic Users Group (MUGL)
 meeting, April 19, 2014 RXQ
 RESTXQ for MarkLogic on GitHub

[wikipedia regex]
 Regular Expressions

Balisage: The Markup Conference

SOCRview: a case study of RESTful service development for publishing
John Cooper
Senior Content Systems Analyst
SAGE Publications, London

<john.cooper@sagepub.co.uk>
John has been working with structured text since 1994. Since then he has worn multiple
 hats: conversion programmer to OmniMark solutions architect, systems integrator,
 consultant. He has an Honours BSc in Physics and Computer Science from the University of
 Toronto.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

