[image: Balisage logo]Balisage: The Markup Conference

Life, the Universe, and CSS Tests
Tony Graham
Antenna House, Inc.

<tony@antennahouse.com>
<tgraham@antenna.co.jp>

Balisage: The Markup Conference 2017
August 1 - 4, 2017

Copyright © Antenna House, Inc. 2017

How to cite this paper
Graham, Tony. "Life, the Universe, and CSS Tests." Presented at: Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In Proceedings of Balisage: The Markup Conference 2017.
 Balisage Series on Markup Technologies vol. 19 (2017). https://doi.org/10.4242/BalisageVol19.Graham01.

Abstract
The W3C CSS Working Group maintains a CSS test suite already composed of more than 17,000
 tests and growing constantly. Tracking the results of running such a large number of tests
 on a PDF formatter is more than anyone could or should want to do by hand. The system needs
 to track when a test’s result changes so that the changes can be verified and the
 test’s status updated. Finding differences is not the same as checking correctness. An
 in-house system for running the tests and tracking their results has been implemented as an
 eXist-db app. Is it a masterpiece of agile development, or an example of creeping
 featurism?

Balisage: The Markup Conference

 Life, the Universe, and CSS Tests

 Table of Contents

 	Title Page

 	Introduction

 	Origins
 	Antenna House Regression Testing System (AHRTS)

 	Customized AHRTS Reports

 	CSS Test Suite Results
 	Localization

 	HTML Report

 	eXist-db

 	eXist-db Application
 	Loading

 	Summary view

 	Individual test results

 	Fatal Attraction

 	Import and Export
 	Export

 	Import

 	Running Jenkins from eXist-db

 	XForms or Bootstrap?

 	HTML Templating

 	‘=’ in file names

 	CSS Tests now Web Platform Tests

 	Localization

 	Dashboard

 	Conclusion

 	About the Author

 Life, the Universe, and CSS Tests

Introduction
"That’s right," shouted Vroomfondel, "we demand rigidly defined areas of doubt and uncertainty!"
— The Hitchhiker’s Guide to the Galaxy, Douglas Adams

This paper describes an internal project to develop a system for:

 	Running the CSS WG test suite of more than 17,000 tests on a CSS formatter;

	Producing PDF output; and

	Recording the status of the test results.

Just as importantly, the system needs to track whenever a test’s result changes so
 that the changes can be verified and the test’s status updated.
Finding differences is not the same as checking
 correctness. The first time that you look at a test’s result, you can (hopefully) tell if it
 is right or wrong. If the result changes, either because of changes in the formatter or
 because of changes in the test itself, you need to look at it again since:	The result could still be right;

	The result could still be wrong;

	The result could change from right to wrong; or, more preferably,

	The result could change from wrong to right.

Origins
In the beginning the Universe was created.
This has made a lot of people very angry and been widely regarded as a bad move.
— The Restaurant at the End of the Universe, Douglas Adams

The current system has multiple origins or predecessors:	Antenna House Regression Testing System (AHRTS) – Software for comparing two PDFs or
 images – or two whole directories containing PDFs or images – and producing
 an overview report and plus individual reports for each pair of files with
 differences.

	Customized AHRTS reports – Modifications and additions made to the default
 stylesheets for generating PDF of AHRTS reports from XML source.

	CSS Working Group test results – The CSS WG have their own format for recording the
 status of a browser’s results for the CSS WG tests.

	SVG and MathML test results – Previous tests of formatting of both SVG and MathML
 had their results recorded in a manually-maintained HTML file.

	XSL 1.0 Candidate Recommendation test results – The XML format for recording a
 test’s result allowed recording both an indication of the result’s state
 plus a comment about the test result.

	eXist-db demo application – The current eXist-db app started out by copying and
 modifying the demo app provided with eXist-db 3.0.0.

Antenna House Regression Testing System (AHRTS)
Out of the box, AHRTS makes a pixel-by-pixel, visual comparison of the differences
 between the PDF (or image) files in a ‘base’ directory against the same-named
 files in a ‘new’ directory. It produces an overview PDF report listing the state
 of each test file plus, for each test file with differences, an individual PDF report that
 contains some data about the ‘base’ and ‘new’ test files plus, for
 each page with differences, the individual PDF report has a page: showing the
 ‘base’ page; a composite of the ‘base’ and ‘new’ pages
 with the differences highlighted; and the ‘new’ page.
AHRTS can be run from a GUI or through the command line. As Figure 1 shows, its additional inputs are an
 ‘ahrts.properties’ file for controlling the operation plus the XSLT stylesheets
 for the overview and individual reports.
Figure 1: AHRTS block diagram
[image:]

Figure 2 shows part of an AHRTS overview report
 with its indications of which files showed differences.
Figure 2: AHRTS overview report (detail)
[image:]

Figure 3 shows one page from an
 individual report. The same page from the ‘base’ and ‘new’ files
 are shown on the left and right panels, respectively. The center panel is an overlay of the
 ‘base’ and ‘new’ pages with their differences highlighted.
Figure 3: AHRTS individual report differences page
[image:]

Figure 4 illustrates the overlaying of the
 ‘base’ and ‘new’ results and the highlighting of their
 differences.
Figure 4: AHRTS difference reporting
[image:]

Customized AHRTS Reports
When I started working with AHRTS, it was to check the effect of my changes to XSL-FO
 processing. I didn’t want to look through pages of results to spot the ones
 with differences, so I used AHRTS and I used the Jenkins Continuous Integration Server to automate the running of both the formatter and AHRTS.
AHRTS generates its listing of differences as an XML file, and its PDF reports are
 produced by using XSLT to generate XSL-FO that is formatted using a built-in version of AH
 Formatter. Since the presentation aspects come from the XSLT, I also made an alternative XSLT
 stylesheet that groups tests by their results. From there, it wasn’t much more effort to add
 counts of each result type.
Figure 5 shows a portion of the
 overview report produced using the ‘alternative’ stylesheet that is included
 with AHRTS 1.4.
Figure 5: Alternate AHRTS overview report (detail)
[image:]

With AHRTS 1.4, it’s now possible to include metadata from the ‘base’
 and ‘new’ PDFs in the individual report, as Figure 5 shows.
Figure 6: Alternate AHRTS individual report (detail)
[image:]

Setting the XSLT stylesheets to use is done in the AHRTS GUI’s ‘Settings’ tab, in the AHRTS properties file, or on the AHRTS command line.

CSS Test Suite Results
When it was time to check the CSS features defined in some of the newer CSS modules that
 were stable enough to be implemented, we looked again at how the CSS WG reports its
 results.
The CSS WG has a comprehensive test suite of about 17,000 test files (and growing) and has at
 least two test harnesses for looking at tests in a browser and reporting results. The test
 harnesses obviously aren’t unusable when producing PDF.
Figure 7 is a screenshot of a page from the CSS test harness in
 action. The buttons for selecting the status of the test result are highlighted.
Figure 7: CSS test harness
[image:]

The CSS WG reports test results as
 one of five categories css-test-levels:	pass
	Test passes

	fail
	Test fails

	na
	Test does not apply

	invalid
	Test is invalid

	?
	Can’t tell or don’t know

Since I was already using Jenkins to run both AH Formatter and AHRTS, rather than adding
 or writing yet another application, I wanted a simple way to use Jenkins to collect CSS test
 results. I made a version of the XSLT for individual reports that added a set of links, one
 for each CSS test result state plus a sixth that just copies the test’s PDF file. Each
 link triggers the same ‘testresult’ Jenkins job but provides different
 parameters, most noticeably the parameter indicating the test result.
Figure 8 shows a portion of an
 individual AHRTS report with the links for the test results highlighted.
Figure 8: AHRTS individual report with CSS result links
[image:]

The ‘testresult’ Jenkins job simply runs an Ant task that appends the
 supplied parameter values as a new line in a log file and also copies the test’s PDF
 to the test job’s ‘base’ directory[1]. The next run of the AHRTS job uses the log file information to display the
 test’s state alongside the indication of whether the current result is the same as the
 base. And, since I already had similar plumbing for counting tests with differences, the
 summary report also showed counts of the reports with each state.
Figure 9 shows a portion of an
 overview report showing both differences found by AHRTS and test result statuses.
Figure 9: AHRTS overview report with CSS status (detail)
[image:]

Localization
Along the way, I also implemented some localization functions in XSLT to make it easy to
 generate AHRTS reports in Japanese for use by colleagues in Japan. Figure 10 shows a similar portion of an
 overview report localized for Japanese.
Figure 10: Japanese AHRTS overview report with CSS status (detail)
[image:]

AHRTS is written in Scala, and it uses Java property files in either textual and XML
 format for run-time lookup of localized strings. AHRTS’s XML property localization
 files are installed with AHRTS, so it was easy to write XSLT that would work with
 them.
The localization XSLT functions support lookup of fixed strings:
 <fo:block>
 <xsl:value-of select="axf:l10n('Test set: ')" />
 <xsl:value-of select="overview/@test-set" />
</fo:block>

 which can be subverted to look up more that just the text that appears in the formatted output:
 <fo:simple-page-master
 master-name="report-page"
 page-height="{axf:l10n('-page-height')}"
 page-width="{axf:l10n('-page-width')}">

It also supports positional parameters for when the sentence structure differs between
 languages: <xsl:copy-of
 select="axf:l10n('Page %1 of %2',
 ($fo-page-number, $fo-page-number-citation-last))" />

HTML Report
However, and there’s always a ‘however’, I was now told that my
 colleagues in Japan wanted an HTML report. Producing an HTML version of the current overview
 report was straightforward, and it re-uses some of the existing XSLT modules that are more
 concerned with logic than with presentation. I was then told that they wanted a report in a
 format similar to that which had been used previously when testing SVG and MathML support,
 and they provided a copy of their current CSS test results.
Figure 11 shows a portion of the HTML
 report being produced by staff in Japan.
Figure 11: Manually produced HTML report (detail)
[image:]

Their report just recorded the state of the test as ‘OK’ or ‘NG’ (No Good). The real
 ‘however’, however, was the possible additional comment about the test, issue number, and
 status of the issue’s resolution.
Adding the extra fields to the PDF for an individual report was straightforward. Instead
 of using just links, the test results were captured using an Acrobat form.
So far, so good, but this had four problems:	I couldn’t find a PDF reader for Linux that would submit the form, so had to use
 Acrobat Reader on Windows.

	Acrobat could submit the form to Jenkins, and Jenkins could pass ASCII data to Ant
 okay, but Japanese text in the comment field was garbled in a way that I
 couldn’t decipher.

	Acrobat would store every HTTP response from Jenkins in a different temporary
 file, and, for every response, Acrobat would pop-up a dialog box asking permission to
 open the file. Acrobat Reader could be made to trust remote sites, but apparently it
 can’t be set to trust local files.

	Acrobat also views filling in the form as a change to the file, so it wasn’t
 possible to close the file without Acrobat prompting to save the ‘changed’ file. I’ve
 since been advised of a way to stop this, but by then I had already moved on to using
 eXist-db.

The encoding issue was the killer issue. It completely ruled out Jenkins for collecting
 test results, even though Jenkins was still wanted for compiling the code and running the
 tests. Collecting test results in a text file had always been a temporary solution. The
 intention had always been to move to using an XML database once the data was complex enough
 to justify doing so. The data still wasn’t particularly complex, but the need to preserve the
 Japanese text made a good reason to change.

eXist-db
So the project moved to using eXist-db 6. I chose
 eXist-db partly because I was more familiar with it than with BaseX, but also because I’d
 had more contact with the eXist-db developers so I knew who to ask if I had problems. I did
 have problems, but eXist-db has an active and helpful mailing list as well as developers who
 respond quickly to GitHub issues.
My approach to developing the eXist-db code was initially to copy and modify one of
 eXist-db’s demo apps. This worked, but the eXist-db documentation has evolved over time,
 and older documentation advises separate XQuery modules in the ‘modules’ collection, whereas
 newer documentation favors (almost) all XQuery code for the app in a single
 ‘modules/app.xql’ file.
Figure 12: App ‘About’ page and default page for a new application
[image:]

The initial attempt to use eXist-db was by inserting a link to the eXist-db ‘app’ in the
 PDF of an individual test result. I had also tried making eXist-db return a 206 HTTP
 response code and no response body (to avoid one of the problems with Acrobat) but I
 couldn’t get that to work.

eXist-db Application
Share and enjoy!
— Sirius Cybernetics Corporation motto

An XML database could solve the problem of how to store the data about the tests, but that didn’t solve the rest of the problems with the form in the PDF file. The usability breakthrough came when, instead of putting the form in the PDF, I put the PDF inside the form and created an eXist-db ‘app’ for reviewing test results in a web browser.
Figure 13 shows the first version of an
 individual report served from eXist-db, and Figure 14 shows a more recent version of an
 individual report.
Figure 13: Initial individual result page (reduced)
[image:]

Figure 14: Later individual result page (reduced)
[image:]

Loading
A sequence of Jenkins jobs runs the CSS formatter on the CSS tests then runs AHRTS to compare the latest result with a set of ‘base’ PDF files. The Jenkins job that runs AHRTS also uploads the AHRTS-generated XML files to eXist-db.
The XML for the overview report begins: <overview date="2017-05-05T20:36:42.638+01:00"
 overview-report-title="Vxx-ref-70-ahrts-csswg-test-pdf #252" test-set="reports">
 <compare name="WOFF2-UserAgent=Tests=xhtml1=available-001.xht" module="WOFF2-UserAgent"
 missing-input-file="false" error-detected="false"
 individual-report-unicode-safe-filename-pdf="000000001_97421a4c.pdf"
 fatal-error="false" difference-detected="true"
 individual-report-pdf="report-WOFF2-UserAgent=Tests=xhtml1=available-001.xht-97421a4c.pdf">
 <warn name="pdf-annotation">どちらのPDFにも注釈タグが含まれています。
 タグは、レポートに埋め込まれたPDFには表示されませんが、比較に含まれます。</warn>
 </compare>

This XML is augment before being uploaded to eXist-db to add the log from AH Formatter
 and to pre-compute some values.
The individual PDF files from AHRTS are also uploaded into the database. Storing PDF is arguably not a good use for an XML database, but it is much simpler than storing the PDFs elsewhere on the application server and then using URL rewriting to access them. My colleagues in Japan operate their own eXist-db instance, which was set up for them by their IT support staff with whom I have no contact. Since no-one in the Japan office had used eXist-db before, keeping the database installation as simple as possible is, for the moment, more important than shaving a few milliseconds off the time to serve a two-page PDF file.

Summary view
It is straightforward to generate a summary page from the overview XML. Early versions
 of the application generated a single HTML page with results for every test. Following a
 request by my colleagues in Japan, more recent versions present one module at a time, as
 shown in Figure 15:
Figure 15: Summary page
[image:]

In theory, every top-level directory in the CSS tests corresponds to a same-named CSS
 Recommendation or Working Draft. In practice, some of the directory names differ from the
 short name of the module they test. Also, CSS 2.1 has nearly 10,000 tests, so the
 subdirectories of the CSS2 directory – CSS2/colors,
 CSS2/fonts, and so on – are treated as separate modules just to keep
 things more manageable[2].

Individual test results
A sample testresults.xml file containing the information recorded about the
 results of a single test is shown below: <testresult date="20170630" ahf-version="AH Formatter Vx.x A0 for Linux64 : x.x.0.29482 (2017/06/27 09:25JST)">
 <d2/>
 <g4>OK</g4>
 <comment>r28137：NG（Letters of the "Don't Panic" aren't friendly enough.）
r29557：OK</comment>
 <issue>12345</issue>
</testresult>

The format of the XML was determined, firstly, by the information that was already being recorded by my colleagues in Japan (see section “HTML Report”) and, secondly, by needing a simple, ‘XForms-able’ form for the XML. eXist-db ships with two XForms implementations 7 – XSLTForms, which works client-side, and betterFORM, which works server-side. Indeed, the template XForms instance existed before the first results could be added to the database.
Once the XML format was fixed, however, two simple XSLT stylesheets were written to convert the pre-existing log file and HTML results into testresult.xml files that were then uploaded to eXist-db to bring the database up-to-date.

Fatal Attraction
Files with fatal errors are sometimes the most interesting tests. However, they’re rather less interesting if you don’t know why they failed, and are totally uninteresting if you don’t know that they exist.
AHRTS compares PDF output from the CSS formatter, but it has nothing to work with if the formatter aborts with a fatal error because of a problem in its source. Reporting files with fatal errors to eXist-db and including the logs from all tests required more interdependency between Jenkins jobs and between Jenkins and eXist-db.
Firstly, the Jenkins job that runs the formatter had to be modified to save the formatter’s log. Secondly, the Jenkins job that runs AHRTS was modified to add XSLT transforms that augment the AHRTS overview XML to add compare elements for tests with fatal errors and add log elements to (almost) every compare.
The first attempt at saving the formatter log saved the log from the entire test suite as one file and used XSLT to split the text when adding log elements to the overview XML. However, some of the tests generated control characters in the log – for example, the "\f" in \format is a hexadecimal character reference that produces a literal Ctrl-o in the log. That could be handled by switching the XSLT processing to use XML 1.1, which allows control codes in the form , etc. The literal control code wasn’t a problem for the unparsed-text() function, but even the unparsed-text() function and XML 1.1 couldn’t cope with an unpaired Surrogate Pair character code. To avoid a problem with one file affecting all logs, the current processing: saves the log from each test as a separate log file; prepends and appends markup to each log to make the log text be in a CDATA section in a log element; then accesses the XML logs from XSLT by using collection(). Tests with fatal errors now show up in the eXist-db app, and only a handful of tests don’t also have the log from running the test.
Making changes to the XML before uploading it to eXist-db is a slippery slope. The same Jenkins job now also runs more XSLT to group the compare elements by module and to pre-compute and annotate the compare elements with the result of a per-compare calculation that was previously done on-the-fly in eXist-db.[3]

Import and Export
As stated above, my colleagues in Japan also operate their own eXist-db instance with their own copy of the app. The Japan office maintains the master copy of the test results, so it was necessary to add a way to export results from my database for import into their database. eXist-db has XQuery functions for reading and writing Zip files 8, so this was quite easy.
Export
The web page for selecting the module or modules to export, and the date range of results from those modules, is shown below.
Figure 16: Export page
[image:]

Clicking ‘Next’ takes you to a page where you can review your selection
 before generating the Zip file to be downloaded. eXist-db provides a
 compression:zip() function that takes a sequence of sources to zip. The
 sources can either be an URI referring to a resource in the database or an
 entry element for adding content to the Zip file on-the-fly. The exported
 Zip file contains the test results plus manifests of what is being exported so that a
 person can make sense of what’s in each Zip file. In principle, multiple export Zip
 files can be unzipped into one directory with no overlap of their metadata files (other
 than export.xml) and the sum of the test results can then be uploaded
 manually using, e.g., eXist-db’s Java client. In practice, no-one has had to do
 that, since the import facility has yet to cause a problem.
let $job as xs:string := request:get-parameter("job", ()),
 $start-date as xs:string := request:get-parameter("start-date", ()),
 $end-date as xs:string := request:get-parameter("end-date", ()),
 $modules as xs:string+ := request:get-parameter("modules", ()),
 $all-modules as xs:string* := request:get-parameter("all-modules", ()),
 $comment as xs:string? := request:get-parameter("comment", ()),
...
 $tests-list-entry-name as xs:string :=
 concat("tests-", $basename, ".txt"),
 $tests-list-entry as element(entry) :=
 <entry name="{$tests-list-entry-name}"
 type="text" method="deflate">{
 string-join(($tests, ""), "
")
 }</entry>,
 $export-entry as element(entry) :=
 <entry name="export.xml" type="xml" method="store"><export
 version="{$export-format-version}"
 job="{$job}"
 start-date="{$start-date}"
 end-date="{$end-date}"
 modules="{$modules-list-entry-name}"
 tests="{$tests-list-entry-name}"
 comment="{$comment-entry-name}"
 /></entry>,
 $testresults as xs:anyURI* :=
 for $test in $tests return xs:anyURI(concat($compare-output-base-uri, $test, '/testresult.xml')),
 $version-entry as element(entry) :=
 <entry name="version.txt" type="text" method="deflate">{$export-format-version}</entry>,
 $zip-name as xs:string := concat($basename, ".zip"),
 $zip := compression:zip(($export-entry,
 $version-entry,
 $comment-entry,
 $modules-list-entry,
 $tests-list-entry,
 $testresults), true(), concat($ahrts-data-home, $job))
return (
 response:set-header("Content-Disposition", concat("attachment; filename=", $zip-name)),
 response:stream-binary($zip, "application/zip", $zip-name)
)
An example export.xml file is below:
<export version="0.1" job="Vxx-ref-70-ahrts-csswg-test-pdf"
start-date="20160101" end-date="20170506"
modules="modules-Vxx-ref-70-ahrts-csswg-test-pdf-css-counter-styles-3-20160101-20170506.txt"
tests="tests-Vxx-ref-70-ahrts-csswg-test-pdf-css-counter-styles-3-20160101-20170506.txt"
comment="comment-Vxx-ref-70-ahrts-csswg-test-pdf-css-counter-styles-3-20160101-20170506.txt"/>

Import
The web page for selecting an export Zip file to import is shown below:
Figure 17: Import form
[image:]

The only difficulty with importing test results is knowing what to do when the imported data has a result for a test that already has a result in the database. The form offers four alternatives:
 	Replace
	A result in the imported data replaces an existing result.

	Keep
	Do not import a result for which there is an existing result.

	Newest
	Use the newer of the imported or existing result for a test. When the date for both is the same, keep the existing result.

	Cancel
	Import the results from the import Zip file only if it has no duplicates with
 existing results.

Importing a zip file also shows a summary of the imported data and the result of any merges:
Figure 18: Import check page (detail)
[image:]

eXist-db also makes it easy to unzip files. The compression:unzip() function takes function arguments that are used, firstly, to filter out Zip-file entries that are not to be extracted – in this case, the export.xml and textual metadata files – and, secondly, to do the actual storing of extracted resources. Since the app shows a summary of the imported data and the result of any merges, this second function simply returns information about the resource. This information is to generate the table of results and is then reused to control the storing of the data.
declare function
local:filter($path as xs:string, $data-type as xs:string, $param as item()*) as xs:boolean {
 if ($path eq 'export.xml' or ends-with($path, '.txt'))
 then false()
 else true()
};

declare function
local:lookup($path as xs:string, $data-type as xs:string, $data as item()?, $param as item()*) {
 let $job as xs:string := $param[1],
 $merging as xs:string := $param[2],
 $existing-path as xs:string :=
 concat($ahrts-data-home, $job, '/', $path),
 $existing as document-node()? :=
 if (doc-available($existing-path))
 then doc($existing-path)
 else (),
 $action as xs:string :=
 if (exists($existing))
 then if ($merging eq 'replace')
 then 'replace'
 else if ($merging eq 'keep')
 then 'keep'
 else if ($merging eq 'newest')
 then if ($data/testresult/@date/string() > $existing/testresult/@date/string())
 then 'newest-replace'
 else 'newest-keep'
 else if ($merging eq 'cancel')
 then 'conflict'
 else 'error'
 else 'new'
 return
 [$path, $action, $data, $existing]
};

declare function
local:import-zip($file as element(file), $job as xs:string, $merging as xs:string) as item()* {
 let $filter := function-lookup(QName('http://www.w3.org/2005/xquery-local-functions','filter'), 3),
 $list := function-lookup(QName('http://www.w3.org/2005/xquery-local-functions','lookup'), 4),
 $results as array(*)* := compression:unzip($file, $filter, (), $list, ($job, $merging)),
 $html := local:results-to-html($results),
 $conflict as xs:boolean :=
 some $result in $results satisfies $result(2) = 'conflict'
 return
 (...,
 if ($conflict)
 then local:alert("Conflicts between imported and existing test results. Cannot continue")
 else (<p>{local:store-results($job, $results)}</p>,
 local:success("Inserted " || count($results[?2 = 'new']) || " results."),
 local:success("Replaced " || count($results[?2 = ('replace', 'newest-replace')]) || " results."))
)
};

Running Jenkins from eXist-db
The eXist-db app copies a test’s PDF output to the appropriate AHRTS ‘base’ directory using the same ‘testresult’ Jenkins job that was used back when updating was done using links in the AHRTS individual report PDF files. This, too, is straightforward since the eXist-db app can make a HTTP request to Jenkins to remotely trigger execution of the Jenkins job.
(: Get Jenkins to copy the 'new' PDF to the 'base' PDF directory :)
declare function common:jenkins-update($job as xs:string, $test as xs:string) {
let $config-uri := concat($common:ahrts-data-home, $job, '/jenkins-config.xml'),
 $config as element(jenkins-config)? :=
 if (doc-available($config-uri))
 then doc($config-uri)/jenkins-config
 else ()
 return
 if (exists($config))
 then let $external-destination :=
 concat('http://', $config/host, ':', $config/port, '/job/',
 $config/updatejob, '/buildWithParameters'),
 $copy-uri := concat($external-destination,
 '?',
 'RESULT=copy&PDFDIR=',
 encode-for-uri($config/pdfdir),
 '&TESTNAME=',
 encode-for-uri($config/testname),
 '&EDITION=',
 encode-for-uri($config/edition),
 '&VERSION=',
 encode-for-uri($config/version),
 '&NEWPDF=',
 encode-for-uri($test),
 '.pdf'),
 $get := httpclient:get($copy-uri, false(), ())
 return $copy-uri
 else ()
};

XForms or Bootstrap?
"Wait a minute," shouted Ford Prefect. "Wait a minute!"
He leaped to his feet and demanded silence. After a while he got it, or at least the
 best silence he could hope for under the circumstances: the circumstances were that the
 bagpiper was spontaneously composing a national anthem.
"Do we have to have the piper?" demanded Ford.
"Oh yes," said the Captain, "we’ve given him a grant."
— The Restaurant at the End of the Universe, Douglas Adams

When developing an XML project that uses a web browser, it’s hard to avoid
 thinking that you should use XForms. eXist-db ships with two XForms implementations, and so
 the first versions of the eXist-db dutifully used XForms for collecting input. However,
 eXist-db also ships with the Bootstrap, which is the HTML, CSS, and JavaScript framework
 that provides the look-and-feel of a large proportion of sites on the Web. Two of the three
 provided templates for an eXist-db app install Bootstrap in the new app, and, as shown in
 Figure 12, this app’s pages that don’t need forms do use
 the Bootstrap-based eXist-db design. eXist-db also provides an "HTML Templating Module"
 11 that makes it easy to generate HTML pages, but
 none of the XForms examples in the documentation use it.
Bootstrap can also style HTML forms 12. Partly to provide a consistent ‘look’ for the app, but mostly because the XForms pages looked dated compared to the Bootstrap pages, all but one of the original XForms in the app have been replaced by HTML forms that are styled using Bootstrap. Can you pick which of the preceding screen shots uses an XForm?[4]
It is possible to achieve a ‘mostly-Bootstrap’ appearance by combining
 Bootstrap classes for structural elements with XForms markup for the form fields, for
 example: <div class="form-group">
 <label class="col-xs-2 col-sm-2 control-label">Import File</label>
 <div class="col-sm-10">
 <xf:upload id="upload1" ref="file"
 mediatype="application/x-zip-compressed"
 accept="application/x-zip-compressed">
 <xf:filename ref="@filename"/>
 <xf:mediatype ref="@mediatype"/>
 <xf:size ref="@size"/>
 <!--<xf:send ev:event="xforms-value-changed" submission="save"/>-->
 </xf:upload>
 Select the test results export file to import.
 </div>
</div>
but the end result is still unsatisfactory since some parts of the form
 don’t quite line up correctly and some aspects of the styling, such as the appearance
 of the buttons, can’t be worked around, as shown in the following figure.
Figure 19: Bootstrap and XForms ‘Import’ buttons
[image:]

HTML Templating
The HTML templating mechanism 11 is separate from Bootstrap. It provides a convenient mechanism for generating HTML pages since:
 	The bones of a class of pages can be provided by a single structural template HTML file.

	An individual HTML page contains the HTML markup for just the part of the template – e.g., a div in the body – that are specific to that page.

	That HTML markup can include data-* attributes to specify XQuery functions and function parameters. The result of an XQuery function can replace or be wrapped by the markup in the HTML file. Alternatively, the XQuery function can add values to an XQuery map that is available to all XQuery functions that are called for elements nested within the current HTML element.

	The framework also handles HTML parameters, which means less house-keeping code in your XQuery.

The theory, from the documentation, is that:
 Ideally people should be able to look at the HTML view of an application and modify its look and feel without knowing XQuery. The application logic - written in XQuery - should be kept separate. Likewise, the XQuery developer should only deal with the minimal amount of HTML which is generated dynamically.

My practice, however, has tended towards putting a minimum in the HTML:
 <div xmlns="http://www.w3.org/1999/xhtml" data-template="templates:surround"
 data-template-with="templates/report-page.html" data-template-at="content">
 <div class="col-md-12" data-template="app:individual">
 <div class="row">
 <div class="col-xs-10 col-sm-10">
 <h1 data-template="app:individual-title">Generated page</h1>
</div>
<div class="col-xs-2 col-sm-2">

</div>
 </div>
 <div data-template="app:individual-form"/>
 <div data-template="app:individual-nav"/>
 <div data-template="app:individual-pdf"/>
 <div data-template="app:individual-log"/>
 </div>
</div>
and doing more in the XQuery:
 (: Populate $model for an individual page. :)
declare
 %templates:wrap
function app:individual($node as node(), $model as map(*), $job as xs:string, $test as xs:string) {
 let $report as element(report)? :=
 doc(concat($app:data-home, $job, '/compareOutput/', $test, '/base_vs_new.xml'))/report,
 $result := $report/analysis/result,
 $base as xs:string? := $result/inputfile[@version = 'base']/string(),
 $new as xs:string? := $result/inputfile[@version = 'new']/string(),
 $compare := doc(concat($app:ahrts-data-home, $job,
 '/reports/digest_vs_reports.xml'))/overview/compare[@name eq $test],
 $prev as xs:string? := $compare/preceding-sibling::compare[1]/@name/string(),
 $next as xs:string? := $compare/following-sibling::compare[1]/@name/string(),
 $pdf as xs:string? := $compare/@individual-report-pdf/string(),
 $log as element(log)? := $compare/log
 return
 map { "report" := $report,
 "compare" := $compare,
 "prev" := $prev,
 "next" := $next,
 "pdf" := $pdf,
 "log" := $log }
};

(: Page title for an individual page. :)
declare function app:individual-title($node as node(), $model as map(*), $job as xs:string, $test as xs:string?) {
 let $report := $model("report")
 return
 (<h1 class="main-title">{$config:expath-descriptor/expath:title/text()}</h1>,
 <h3 class="report-title">
 {
 if (exists($report))
 then $report/@overview-report-title/string()
 else $job
 }
 </h3>,
 if (exists($test)) then <h2>{translate($test, '=^', '//')}</h2> else ())
};

I find that the templating mechanism works quite well and is easy to use once you get
 the hang of it. One problem, however, is that the keys of the map entries are not validated,
 so a typo where the key is defined or anywhere where it is referenced can lead to a
 mysterious empty sequence simply because the keys don’t match.

‘=’ in file names
AHRTS can currently only compare files in two directories, and it does not look into
 subdirectories. Most test suites – including the CSS test suite – have files
 arranged in subdirectories. To get around this difference, the Jenkins job that runs the
 formatter would write the PDFs to file names where ‘=’ – which does not
 appear in any test file names – was used in place of the directory separator. This
 worked fine before eXist-db was used. However, ‘=’ needs to be escaped in
 parameters in URLs, and the ‘=’ in file names exposed multiple bugs in eXist-db.
 For example, collections with names containing ‘=’ can’t be opened in the
 eXide editor’s ‘Manage’ interface, and the only way found for deleting
 them is by using eXist-db’s Java interface.
To their credit, the eXist-db developers responded quickly to the initial bug reports,
 but fixing them all will take time. It was simply be more reliable to just use a different
 separator character sequence, but doing that required a lot of renaming of files on
 Jenkins’s file system and renaming resources in eXist-db. Since the PDF files
 couldn’t be renamed programmatically, the collection that contained them had to be
 deleted and a whole new set of PDFs uploaded.

CSS Tests now Web Platform Tests
In the first half of 2017, the CSS Working Group migrated from their tests from their
 own GitHub repository to being under a subdirectory of the Web Platform Tests project.
 Several of the modules were renamed during the migration, so it was necessary to migrate the
 corresponding test results to new URIs to match.
It is unlikely that export files from before the changeover will ever be needed again
 but, just to make sure that nothing is lost, the code for importing test results now handles
 both old file names containing ‘=’ and old, pre-WPT module names and maps them
 to current usage.

Localization
The practical upshot of this is that if you stick a Babel fish in your ear you can
 instantly understand anything said to you in any form of language.
— Hitchhiker’s Guide to the Galaxy, Douglas Adams

The current ‘app’ is almost completely localized for both English and
 Japanese. Some localization into English was necessary because the ‘D2’ states
 were initially only provided as Japanese text. Some of the localizations into Japanese were
 rolled back at the request of my colleagues in Japan because they found the English easier
 to understand than the notionally equivalent nouns and verbs that I’d plucked from an
 online English–Japanese dictionary.
eXist-db has a localization library 13 that uses files with a format that is very similar
 to Java XML property files.
<catalogue xml:lang="ja">
 <msg key="Comment">コメント</msg>
 <msg key="Date">日</msg>
 <msg key="Diff">相違</msg>
 <msg key="Issue">発行</msg>
 <msg key="Test">テスト</msg>
</catalogue>
Localizations are applied using i18n:text elements
 in a mechanism similar to the HTML templating mechanism:
<tr>
 <th><i18n:text key="Test">Test</i18n:text></th>
 <th><i18n:text key="Diff">Diff</i18n:text></th>
 <th>D2</th>
 <th>G4</th>
 <th><i18n:text key="Comment">Comment</i18n:text></th>
 <th><i18n:text key="Issue">Issue</i18n:text></th>
 <th><i18n:text key="Date">Date</i18n:text></th>
</tr>
This works well enough, but language selection (in my opinion) is not straightforward,
 and the standard library does not provide the option of selecting the language from the
 browser’s Accept-Language header. At present, the app uses its own
 version of the i18n library that is based on a versoin 14 by
 Wolfgang Meier, one of the eXist-db developers. This version can use either the
 Accept-Language header or a language setting configured in the app.
Using elements to handle localization isn't helpful for localizing attribute values and
 the functions provided for use from XQuery require specifying both the path to the
 localization files and the current language, plus repeating the text in the
 i18n:text element’s content and its key attribute seemed
 redundant, so I made some convenience functions that wrap the regular i18n processing, work
 in attribute values, get the localization files’ path and language from the
 app’s configuration, and require only one copy of the text, for example:
<input type="text" class="form-control" name="issue" id="issue"
 placeholder="{common:i18n-text('Issue numbers')}"
 value="{$testresult/issue/string()}" accesskey="i"/>
No way has yet been found to localize the messages popped up by the BetterForms XForms
 implementation.

Dashboard
As stated previously, the mass of tests is divided into modules to make the work more
 manageable. Information about the modules and their relative priorities was initially
 maintained as a wiki page, but that was later migrated to a spreadsheet. When my colleagues
 in Japan wanted to also see the priorities in the eXist-db app, I both added a mechanism to
 paste tab-delimited text from the priorities spreadsheet into the app and provided a
 dashboard summarizing the results for each module and each priority level.
Over time, however, my colleagues in Japan have requested additional information on the
 dashboard for combinations of test result status values that are useful to them, as shown in
 Figure 20.
Figure 20: Dashboard
[image:]

And despite their being the impetus for dividing the summary view by module, they also
 request views of all tests with particular status combinations, as shown in Figure 21.
Figure 21: New summary views
[image:]

Conclusion
Feedback from colleagues in Japan has been uniformly positive. The effort required to
 correct problems and fill in comments is about the same as for the previous HTML form, but the
 advantages that they stated include:	Using AHRTS for automatically identifying changed test results is a big
 advantage.

	Managing the tests is much more effective than with the HTML report.

	Having the test result status, comment, AHRTS report, and AH Formatter log on one
 page is useful.

	The extra functionality added during the course of the project has made it even more
 useful.

	The system has saved time and effort.

Developing a system for checking the results from 17,000 CSS tests has had a few twists and turns, but the current implementation as an eXist-db app fits the requirements as they have developed over time, is proving useful, and has made the task much easier.

Bibliography
[1] https://lists.w3.org/Archives/Public/public-css-testsuite/2010Aug/0020.html, Implementation Report Template for CSS2.1 Test Suite
[2] https://www.antennahouse.com/antenna1/antenna-house-regression-testing-system/, Antenna House Regression Testing System
[3] https://www.w3.org/Style/XSL/TestSuite/tools/testsuite.dtd, XSL 1.0 Test
 Suite DTD
[4] https://www.w3.org/Style/XSL/TestSuite/index.html, XSL 1.0 Test
 Suite
[5] https://test.csswg.org/harness/test/compositing-1_dev/single/background-blend-mode-gradient-image/
[6] http://exist-db.org/exist/apps/homepage/index.html, eXist-db
[7] http://exist-db.org/exist/apps/doc/xforms.xml, eXist-db ‘XForms Introduction’
[8] http://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/compression&location=java:org.exist.xquery.modules.compression.CompressionModule, eXist-db Compression module
[9] http://localhost:8080/exist/apps/doc/build/doc-0.4.8/triggers.xml, eXist-db "Configuring Database Triggers"
[10] http://getbootstrap.com/, Bootstrap
[11] http://exist-db.org/exist/apps/doc/templating.xml, eXist-db "HTML Templating Module"
[12] http://getbootstrap.com/css/#forms, Bootstrap Forms
[13] http://exist-db.org/exist/apps/demo/examples/special/i18n-docs.html, eXist
 i18n XQuery Module Documentation
[14] http://markmail.org/message/l7x6bfyyg3ohwlna, Re: [Exist-open] I18n and
 'Accept-Language' header?

[1] Ant works the same on both Linux and Windows, so using Ant avoids having to write
 both a Linux-specific and a Windows-specific version of the same script.
[2] With 1,332 CSS2/borders tests and 1,119 CSS2/tables tests,
 ‘manageable’ is a relative term.
[3] I had previously tried the same sort of grouping and pre-calculation after uploading by using a trigger in eXist-db 9. The trigger worked with eXist-db on Linux but not with eXist-db on Windows, so I did not continue with it.
[4] It’s Figure 17. It still uses an XForm since I had trouble when submitting an uploaded file plus other parameters to eXist-db.

Balisage: The Markup Conference

Life, the Universe, and CSS Tests
Tony Graham
Antenna House, Inc.

<tony@antennahouse.com>
<tgraham@antenna.co.jp>
Tony Graham is a Senior Architect with Antenna House, where he works on their XSL-FO and CSS formatter, cloud-based authoring solution, and related products. He also provides XSL-FO and XSLT consulting and training services on behalf of Antenna House.
Tony has been working with markup since 1991, with XML since 1996, and with XSLT/XSL-FO since 1998. He is Chair of the Print and Page Layout Community Group at the W3C and previously an invited expert on the W3C XML Print and Page Layout Working Group (XPPL) defining the XSL-FO specification, as well as an acknowledged expert in XSLT. Tony is the developer of the ‘stf’ Schematron testing framework and also Antenna House’s ‘focheck’ XSL-FO validation tool, a committer to both the XSpec and Juxy XSLT testing frameworks, the author of “Unicode: A Primer”, and a qualified trainer.
Tony’s career in XML and SGML spans Japan, USA, UK, and Ireland. Before joining Antenna House, he had previously been an independent consultant, a Staff Engineer with Sun Microsystems, a Senior Consultant with Mulberry Technologies, and a Document Analyst with Uniscope. He has worked with data in English, Chinese, Japanese, and Korean, and with academic, automotive, publishing, software, and telecommunications applications. He has also spoken about XML, XSLT, XSL-FO, EPUB, and related technologies to clients and conferences in North America, Europe, Japan, and Australia.

Balisage: The Markup Conference

content/images/Graham01-021.png
AHRTS Test Results

VI-ref-70-ahrts-css-wpt-pdf #38
20 for Linuxs 9.0.25634 Q01710718 16:30J57)

pp—

Hodule
css1@

csst

2@

) ()
= s
E—

pigans (7]
E—
[
)
|
E—
et 19
e—
e

sl - |

Bortrs e wosar.
Too much space between ttrs.
e pp—
Too much space between ttrs.
e pp—
Too much space between ttrs.

[USEre———

Too much space between ttrs.

Toc-

content/images/Graham01-020.png
AHRTSHEREER

VE-ref-70-ahrts-css-wpt-pdf #38
Dashboard

B e

0 o

B s

» s

|

Priority Count Tested

©

o

.

00

s

"o

7

"

s

content/images/Graham01-003.png

content/images/Graham01-002.png
AHRTS Overvew Report

Koss uriing-modes- 3=bidi-embed-001 html
Koss uriing-modes- 3=bidi-embed-002 html
¥ css-writing-modes-3=bidi-embed-003 himl
¥ css-writing-modes-3=bidi-embed-004 himl
¥ css-writing-modes-3=bidi-embed-005 himl
¥ css-writing-modes-3=bidi-embed-008 him!
¥ css-writing-modes-3=bidi-embed-007 himl
¥ css-writing-modes-3=bidi-embed-008 himl
¥ css-writing-modes-3=bidi-embed-008 himl
' css-witing-modes-3=bidi-embed-010.htm|

Page tor3

content/images/Graham01-001.png
- ﬁ - ﬁ J
zhns properties

Y e
e,

Overview Individual
report » reports
N
3 N

ReportXSLT

content/images/Graham01-007.png
|Home RunTests TestCase | | Login |

ad
%" Compositing and Blending Lev... Resuts: [5imk] [Edga] [Tiigent] [WebKit|

Test 1 of 1: “blending between mutiple backgrounds (gradient and image) Format. HTML | XHTHL | XHTHLPint
using background-blend-mode”
Test Case: backaround-blend-mode gradient-image == background-blend-mode-gradient-image-ref

Testing: Compositing 1§ 3.4.3BRAF]

“This test must be comparedto one or more reference pages. Reportssue

Test Case || == Reference Page Auto Cycle []

This page must be compared to the Reference Page

Test passes if there is no red square on the screen.
You should see a black square.

[Pass11] [Fail(2] | [cannotteli(al | [skip(41] Ao Submit (]

content/images/Graham01-006.png
Indiicual Report For Comparison: report-css-writing-modes-3=bidi-embed-001 html-87421a4c paf

‘Base Document: Sjenkins_homslcssug-tesiocs poficss-wriing-modes-3=bid-smbec-001 i (1 page)

New Document: & fnkins._homelossug-estocahVo4-piicss-urting modes-3=hiciambec-001 i po(1 page)
Page tor1

“The following pages have visual difersnces: (111)
T

Baze New

Tile | arecioniunicode e span direction . directionlunicode-bid: span diecton .
uncoda-bid embed (2] icode-bii embed (1)

GRRSIBEIN AH Fomatier V8.4 AO for Windows (x64): AH Formater V8.4 AD for Windows (x64)
64025035 (2016108127 18:33.5T) 64.025035 (201808127 18:335T)

Producer | Arienna House PDF Output Lixary 84511 Antenna House PDF Output Library 84811
(Windows (64) (Windows (:64)

[Creation | 2016-07-15721:06:32.000+01:00 2016.07-15721:08:32.000401:00

content/images/Graham01-005.png
AHRTS Overview Report

Test set: pezpatirecioiss 2017-05-05-18-07-50
Testdate: 2017-05-05T18.08:13.427+01.00

NN X seing e
o

X Fatalerrors:0
X Missing input es: 0

X Nonfataterrrs: 2.
X csswritng modes-3=bis-embed-001 i
X csswrtng modes-3=bis-embec-002 i

 Nosrrors: 77
o/ csswriting modes- 3= embed-003 himi
o/ css-writing modes- 3= embed-004 i
'/ css-writing-modes-3=bidi-embed-005 htmi

X Non-fatal errors

Page tor3

/ Noermors

content/images/Graham01-004.png
Base

Test passes ifthe two boxes are identical

> TIIN < dcba
>xyzzy

> T3ON < dcba >

>

Differences

Pt £ e

>

New

Test passes ifthe two boes are identical

> 2N < dcba >

> TN < dcba >

content/images/Graham01-009.png
ahvtscasugtestlocal pdt V64 £33 Page 1or7

[—
e ——
PG Mg ot e [NG S o/ Nosrrs
0 g %
pm XEs Cenan ekt oA
" B : § b
—
Soreay et
© Sy cotmance
Sorted by name
J——
e XEs CUcenan skt oA
" B g ? b

 cosuing moses3 bidkembed 001_Hind
/ cosuting odes3_bidkembec 002_himi

content/images/Graham01-008.png
Individual Report For Comparisan: repart cas-wring:modss-3_bidk ovemide-001_hml 97421 a4c pct
ot B 51 s e o 4 e o 58)
Page 1ol

Th oloving pages have i dfersnces: 11)

Buse New
SN cectoninicode b spa drscion 1 b declontncods b pan drsction , b
FGTSMBEIN A Fomster V6. A0 o Widows (164): A Fomater V&4 A o Windows 4
54025964 (010905 1332,57) 54025964 (20160908 1332151)
IPRUERES) Ao Houso POF Oulut Loy 4332 ArtenaHouse PDF Ouput Loary 64832
Crestion 2016.05.137175720 0004010 2016.05.1471535:14 0001010
e

content/images/Graham01-010.png
Vi-dev-csswg-test local-ahrts-pdt #4343

7abes b repons
F3va 2017 6 0zriras18 3240100

BBEII- X An77ALHBY X EARTEVII= OTI-EL
T

ORx xo=an o TEmE (FM L EETSERA
) G o o

©ame—
© ERTE<m
© mbmcaeEr
ZMTY—

css-countr-styles-3/

css-counter-styles-318n

ORx U X7ean AR CRE L mRTSEEA
o o o o

BLOT L DS AR 2.

O css3 counterstyles 008 i
O css3-counter-tyles-008 html

content/images/Graham01-014.png
AHRTSHEREER

css-counter-styles-3/i8nicss3-counter-styles001.html | css | ©

AH Formatier VI AD for i : .0 25624 GD17/07108 18:50J5T)

OB ORNTE O ERR

o omars o

ErNe)

mE0 | wnEs
ae-

o

o 22

ERN—Y1 (1/0)
L\ (84.0.29634)

Test passes if the two columns are the same. IGNORING the suffix

[Fvariericns A Formarien 54t AHF G x 4 varilenicns/oss-aprunk/oss/oss counter 5tyles 3115055 coutersyles 01 bl o varibiankins | &
PSR r2-20 2wt oo e o5 sounaroty £5-3_i16n_oe5E-soutar.2tyeE 00153 e ver PDF17 4 v enkns oba Vet S0 cs gt
|orkspacerantsetings nt
|AHFCrma - A Formater VI A0 for Linoxed : 14.0.25834 (201710708 18:5015T)

‘Copyrht (8 19952017 Anterna House, Ic.

content/images/Graham01-013.png
css-writing-modes.3/bidi-embed-007.htmi - VA#-dev-cssw-test-local-ahrts-pdf #255

AR OB reportcev-wrin-Tmodes- 3= embaF007 RILO74Z1a4 Pt

A . esouy et oo S e 31k e 0071l o (1 X—2)

LR e o e St s e 8 -5
peeIvay

Fon-sEEAREREBYET : (1/1)

s
4073010 QOIOYZSI6SIST 6.4227235 GOLTOLDS 10395

iyt £ W)

content/images/Graham01-012.png

content/images/Graham01-011.png
GCSS Cascading and Inheritance Level 3

« ossme-test-master/oss-ossoste=3/
[o——y—
« cssme-testmaster/oss2 1 /cssosde-import/

GCSS Conditional Rules Module Level 3

« ssswe-test-master/oss-sondtionsl-3/

csswg-test-master/css—cascade-3/

o2 |64 comment tesue | date
BOBABREENAL. 05T H
prop-001 htmi A E 20170208
12812 (3200 Unknown proparty:
FEOEANEEEND. ATIT
ne | mEm 20170208
12812 (3200 Unknown property: s
o 20170008
backsround-001 html

content/images/Graham01-018.png
AHRTS Test Results
sttt R1
Import
Importing into V#-dev-csswg-testlocakanris-pdf
Merging newest
Import file Vil-ref-70-arts-csswg-test-pdf-css-counter-styles-3-20160101-20170506.zip.
Mediatype applcationix-zip-compressed
Length o208

Test

[— I-I—--

o0 himi

e — I I—--

content/images/Graham01-017.png
AHRTS Test Results
Vi dev-csswa-test local-anrts-pdf #343

Import

[S T———
import e ([Bowame] No i seeie.

‘Slec hetest esuls export i 1o import

content/images/Graham01-016.png
AHRTS Test Results
[RT,

Export

sanowe | moro | eaowe | mmomo g

Comment | Comment

= R

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Graham01-015.png
AHRTSHERESR
A —— R1,
e s o e

[B

w oo a a
[s
[[aons
[——— s
e e l EIE e — p—
ey
TERS
[RUS—— e | s
e i,

content/images/Graham01-019.png
Bootstrap XForms

oore

