[image: Balisage logo]Balisage: The Markup Conference

The Secret Life of Schema in Web Protocols, API's and Software Type Systems
David Lee
CTO
Nexstra, Inc.

<dlee@calldei.com>

Balisage: The Markup Conference 2017
August 1 - 4, 2017

Copyright © David A. Lee, 2017

How to cite this paper
Lee, David. "The Secret Life of Schema in Web Protocols, API's and Software Type Systems." Presented at: Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In Proceedings of Balisage: The Markup Conference 2017.
 Balisage Series on Markup Technologies vol. 19 (2017). https://doi.org/10.4242/BalisageVol19.Lee01.

Abstract
In this publication, I describe some of the results of several years’ research and experimentation in the
 field of Web API Protocols (JSON/XML/Media over HTTP) and Software APIs tracing the migration of ‘Schema’ into
 software class definitions, annotations, formal and semi-formal markup document types describing their structure
 and usefulness. Using a specific use case as a representative example, I demonstrate the rationale, steps and
 results of an experimental proof of concept. The proof of concept utilizes a wide variety of easily available
 techniques and tools rarely used together in a work-flow to reverse engineer a REST API from its behavior. It
 involves coupled transformations of data, schema, and software, through multiple representations utilizing tools
 from otherwise disparate domains to produce a largely auto-generated application to aid in a real world business
 problems.

Balisage: The Markup Conference

 The Secret Life of Schema in Web Protocols, API's and Software Type Systems

 Table of Contents

 	Title Page

 	Human imposed limitations of computation

 	The fallacy of the obvious
 	The Presentation Layer view of the Data Model
 	A Software Buffet. Pivotal download center.

 	The Process and Data Model from the fulfillment perspective

 	The secret API
 	Implementation Details

 	Reverse Engineering a data model
 	Constraints

 	Components

 	Exploration Tool Example

 	Exploration
 	Analysis and Data Modeling

 	The Hidden life of Schema.

 	OpenAPI the “New WSDL”

 	Reverse Engineering an Open API Document
 	Validation

 	Refactoring JSON Schema via Java Class Representation

 	Refactoring by API Composition

 	End Application

 	
 Reverse Engineering, Refactoring, Schema and Data Model Transformation Cycle.

 	About the Author

 The Secret Life of Schema in Web Protocols, API's and Software Type Systems

Human imposed limitations of computation
The modern 'General Purpose Computer', the global internet, and the "Word Wide Web" have enabled almost
 all aspects of society, and domains of practice and theory, to directly express and automate
 the processing of pre-existing and newly-invented ideas, processes, methodologies, and communications both abstract and
 physical. The physical barriers to the communication of ideas and practice across geography and conceptional domains
 have been largely eliminated. However the conceptual barriers between domains often remain
 intact. It’s simply not obvious how concepts in one domain may relate to concepts in another domain. The
 specialization of domain specific languages and terminology can exacerbate this both by sharing common terms that
 have different meanings, and by using different terms for concepts with similar meaning. So
 while the ability to communicate ones ideas to others, and by implication the benefit of tools enabled by them, is
 ubiquitous; understanding, and hence application is limited by the degree to which one can recognize the similarity and
 applicability across domains. To demonstrate by example the practical consequences of this limitation, and the
 tangible benefits of recognizing and breaking down these barriers, what follows is a narrative that describes
 a real problem and the path taken to solve it.

The fallacy of the obvious
The process of creating distribution media is fairly complex but well known and largely automated. The
 majority of the effort is describing the process details in a form that the both the people and the machines can
 replicate consistently. Physical digital media production (CDs, DVDs etc.) is similar to digital printing, sharing
 the same underlying technology and process. They also share the same problems. Unlike mechanical or photographic
 replication, the prototype to be replicated is not physical and may have never had a physical representation. The
 conceptualization is that the result is a copy or replication of some pre-existing object. But when there was never an original tangible object to
 compare, determining if the replication is accurate is subjective. For print, either books on
 paper or the color label on a CD, the relevant attributes of the production is tangible and largely objectively
 described and measured. For the digital content, the relevant attributes extend well beyond physical
 representation. It’s well known how to compare the contents of one CD to another, validate the physical process
 worked as intended. It’s not always obvious whether the intent is accurately fulfilled --
 i.e.. the set of files included, the directory structure and naming, spanning content across multiple CDs,
 usability in the intended environment.
The assumption that the representation of intent is obvious and objective is so common that it’s often
 inconceivable that may not be. In this case the intent is to produce media for a customer that contains the
 product that they purchased. It may be surprising that defining that intent in sufficient detail is not only
 difficult but the fact that it requires defining can be overlooked when the parties involved
 all individually have a clear but different understanding of what that means.
Nexstra, which provides digital fulfillment services for software companies, was hired by a software company
 who had acquired another company's inventory to produce and ship physical media for the customers who requested
 it. The people responsible were in the sales, and support department of the organization. The business concept of
 a "Product", while sharing the same term, has a completely different meaning and model then used by engineering
 including completely unrelated computer systems, software and models for managing, organizing, cataloging,
 supporting and selling “Products”. The only place the two models intersected was in the presentation layer. The
 website hosting the download center. Since that was the one and only one visible representation of the entire
 product catalog, the illusion that the web site was a presentation of an integrated data model rather than it
 being the only authoritative source of the data model itself was quite good. And for the most part didn’t matter
 because distribution was largely 'self serve'. After buying a "Product" a customer would then login and download
 the files they wanted, directed by textual clues and restricted by an entitlement mechanism. This didn’t require
 the ability to directly map the business concept of "product" to the specific list of files as long as the end
 result was that the customer could then use the product they bought. The process is a 'pull' mechanism and
 implicitly relied on out of band shared understanding, human judgement. Mistakes were resolved simply by logging
 in and trying again until you had successfully acquired the components needed.
For this scenario, a formal schema and logical data model of products is not a business requirement, it’s a
 major artificial constraint. Analogous to a Buffet Restaurant where the product sold and the pricing model is
 quite simple, but not formal or logical. All you can eat, selected from any item, for a fixed price. A more complex
 product definition can be useful, but not a more formal one. For example “one main course item, two sides and a
 dessert”. If there is a common agreement of intent, this works quite well.
Until you’re asked to deliver “dinner” to someone else. A ‘push’ distribution model that simply cannot satisfy
 the intent without a great deal more information.
It’s ‘obvious’ to a production vendor that in order to produce something the supplier needs to tell you exactly
 what it is. It’s equally obvious to the supplier that the fact that customers have for years successfully been able
 to easily login and download the files for a product that simply putting those onto a CD is purely a process of
 labor and hardware. The fact that they are both correct, and communicate with each other this shared understanding,
 simply makes it even more difficult to recognize the existence of hidden assumptions so obvious they were not
 considered.
In this case, that is exactly what happened. The extent this was problematic not recognized for quite some
 time.
The Presentation Layer view of the Data Model
The Pivotal Download center is a publicly accessible web application that allows browsing and downloading
 components of the product catalog.
A Software Buffet. Pivotal download center.
This is the presentation model the customer and the company see when browsing the product catalog before
 purchase as well as downloading entitled artifacts after purchase. You are shown all products to some level of
 detail whether or not you are entitled to them.

 Figure 1: Pivotal Download Center
[image:]
The visible entities are Product Lines, Product Families, Product Groups and Product Suites. They
 are identified by the brand name, title, or description. These may vary over time and language.

Figure 2: Product Detail
[image:]
A specific version, usually 'the latest', is pre-selected. For simple products the list of contained
 files is shown with description and links to download. Other include non-software files and components are
 shown on the sidebar at the right.

 Figure 3: Product Version List
[image:]
Other versions may be selected, changing the available components.

The Process and Data Model from the fulfillment perspective
A long process of meetings, calls, email exchanges, ‘poking around’ the website, guesswork, notes from
 conversations, etc. ultimately produced, in combination, a repeatable, largely manual, process that generally worked.
 Since there was no way to validate the results beyond ‘seems to be right’ and waiting for customer feedback about
 missing, wrong, or unrecognizable files and disks, it took a few months to get the process down.
But it was a very painful and tedious process. Since there was no automated notification of product releases,
 we didn’t know which products had been updated or if the same product ID and Version had changed what files it
 contained or the contents of the files. This meant every order required manually searching through the web site,
 subjectively determining what the “Latest” version for the customers entitlement, manually accepting the EULA,
 downloading the files, organizing and renaming them when there were conflicts, validating the checksums and
 sizes, partitioning to fit on the fewest CDs but not spilling over just 1 small README.txt to a CD on itself.
 That was pre-publication work and was significantly more than expected such that it cost significantly more in
 labor to produce per item then anticipated. The profit margin was near zero. We simply didn’t account for the
 amount of manual effort to translate an order into the set of artifacts, nor the time required to correct errors
 due to ill-defined and missing information.

The secret API
There had to be a better way. I set out to see if I could do something, even very crude like screen scraping
 and simulating mouse clicks to reduce the effort and inevitable mistakes.
In the course of random exploration of the web site, to get a rough idea of the effort, we discovered that a REST API existed
 with the same catalog information publicly available but unknown by the people in the department with which we
 were working. It looked like such a well-designed and documented API that not only should we be able to automate
 most of the process but also learn something from it to use for future work. It also contained some information
 not displayed in the web site. This caused us to suspect that it might be a direct interface to the underlying data.
 That could solve
 the problem of having to guess to fill in missing data. It was one of the better REST API’s I’ve encountered ‘in the
 wild’: a true hidden treasure.
Figure 4: Example page from the Pivotal API online documentation.
[image:]
This shows a representative page from the public pivotal API[1] documentation. Note the detail in resource
 paths, response codes and HTTP HTTP Headers. An example JSON JSON format output is shown. Note also the absence of any
 description whatsoever of the semantics of the request URI or the result. No indication of structure type,
 allowed values, optional fields, key values, enumerations, variant structure. The presumption is that the
 single sample is sufficiently self-destructing. I.e. it’s "obvious".

Implementation Details
Soon into the process of writing what I expected to be a very simple application to query the product list,
 resolve the files, and download, them I discovered a fundamental problem that I have since found to be nearly
 universal. The HTTP layer of the API was very detailed. It described both the structure and semantics of the
 required headers and HTTP methods, and the semantics of HTTP response codes. It even included sample code (in curl, not shown).
 That allowed one to quickly test an example and validate it was working as expected. The structure and meaning
 of the requests and response body were documented by example only. For each API there was a short statement of
 its purpose, an example of a request and response, and nothing else. Absolutely no description, documentation,
 schema, structure or semantics of any kind. Since the API followed a consistent REST inspired pattern, the
 domain, data and naming conventions used were simple terms with assumed common meaning it was not at all obvious
 what was missing or the extent that it was problematic. But when used in a real program with real (not sample)
 data, the task of reliably constructing the right queries, interpreting the responses and validating that the
 results required comparing the results to the web site, separately for each query. The examples were good, but
 were they representative? Did they contain all of the optional fields ? What was the set of allowed values for
 each field and what did they mean exactly, and was there relationships between fields ? Relationships between
 resources was even more ambiguous. The fields consistently used common, generic terminology such as “_links”,
 “self” , “href” but frequently led nowhere - to a “404 Not Found”, an empty page or an anonymous empty object
 with a link to itself. The distinction between containment and reference was not explicit so there was no way to
 know if a referenced object was to be considered an included sub-resource, a shared reference to node in a multi-rooted
 tree or a structurally insignificant reference.
A few randomly chosen examples started to show a pattern indicating a kind of ‘hidden structure’ that could
 not be easily inferred accurately by a few examples. There was no way to be sure the interpretation was correct
 short of comparing every query against the web portal. Which was precisely the problem I was attempting to
 avoid. Even with that, there was no conceptual model to assume that the next new product could interpreted the
 same as the previous. Fortunately it was known that the set of products was small and had previously been given
 an estimate of the size of the total number of files. Assuming for the moment that nothing changed, we could
 simply download the entire data set, model it, and run an exhaustive search. The product line was mature enough
 that it’s likely all-important permeations were covered by existing data. Enough that the errors should be much
 less than the manual process produced.
It’s an interesting problem that’s related to a more general concept I’ve
 been working on for a few years – that a form of “schema” is implicitly contained in the structure of class
 definitions in statically typed programming language API's. That the implicit schema can be usefully extracted
 and used to model the API in general and leveraged to dynamically construct instances of class declarations
 suitable for existing data mapping tools and support type safe invocation of dynamically loaded API's in static
 languages from purely data oriented representation provided at runtime. In this case, the API has no programming
 language binding to begin with, meaning the process would need to start with data and end with a static API and
 schema. The result should would demonstrate a reversible transformation was equally viable.

Reverse Engineering a data model
The Pivotal API is a good candidate for a simple brute force approach at reverse engineering. It’s known that
 there is a manageable bounded set of data and it’s presumed that the API is idempotent and doesn’t itself produced
 new information. The examples show what appears to be a graph model with nodes and links. It is not known if the
 API is complete - if it exposes access to all the data available or needed, or if it’s discoverable – that all
 nodes in the graph can be reached from the set of known root nodes. The topology of the graph is not known, nor if
 the links are bidirectional. There are practical constraints that make exploration more difficult but also make it
 easier to reach a halting state.
Constraints
	Invoking the API is slow compared to the number of expected requests such that it is impractical to use it
 directly for exploration without optimizing redundant queries.

	The provided vendor account has access to only a subset of total products. The list of entitled products
 were identified by name not id or URI. This implies that we cannot distinguish between nodes that are
 inaccessible in the data model and nodes that are inaccessible only due to intermediate nodes being
 inaccessible.

	We have authorization and a business need to use the API, but not to abuse it. The usage pattern of a simplistic exhaustive search has similar characteristics as
 a denial of service or penetration attack.

	There is internal state associated with the account. Access to some resources require a one-time
 ‘acceptance’ of the End User License Agreement (EULA). Since there is only indirect access to this state it’s
 difficult to know until after attempting a request if it required a prior acceptance. The EULA acceptance
 procedure is intended primarily for interactive use, but it can be achieved programatically (with a bit of
 reverse engineering).

	Early failure detection. It’s pragmatic to determine as early as possible if either theory or
 implementation is obviously wrong.

With these constraints and a limited time allocated for ‘experimentation’ I built a fairly simple framework
 with tools at hand and minimal effort. A consequence demonstrating that this type of approach can be easily
 implemented with commonly available tools and minimal domain expertise, i.e. that there is no part that could
 not be done in many other ways using other tools and much better by someone else.

Components
	A simple HTML browser based interface for interactive exploration

	Tools for invoking basic HTTP requests including access to ‘low level’ HTTP meta-data (headers, cookies
 etc). Something that could perform any of the needed REST calls and extract the results.

	Tools for query, creation, and transformation of the results into other formats.

	A ‘database’ capable of storing and accessing efficiently the original and transformed documents.

The ability to store and transform between multiple data formats is a significant enabling feature allowing
 use of tools that only operate on a specific format to be used in combination. Different formats and tools have
 evolved largely independently such that there are entirely independent sets of functionalities easily available
 for different data formats, markup and programming languages. This is precisely the problem that markup
 languages attempt to address, but are only successful to the extent that proliferation of markup and programming
 languages is constrained. Constraining invention has historically been demonstrated to be both impossible and
 undesirable for equally compelling reasons.
A common approach to overcoming interoperability in markup languages is data
 transformation. Analogous approaches in programming language data structures and API's is
 data mapping. I assert and intend to demonstrate that markup and transformation, data and
 software, are interchangeable in both a theoretical and practical sense.
The resultant tool demonstrates part of this as a side effect of being useful for exploration of the space
 exposed by an API.
For this API the direct formats used are Resource Paths (Uri’s constructed form composite strings), JSON,
 HTML and HTTP headers (name/value string pairs with predefined semantics). API request are composed of a
 Resource Path and HTTP Headers. The results are HTTP Headers and JSON documents for successful responses, and
 HTTP Headers and JSON or HTML documents for unsuccessful or indirect responses. The exploration tool stores
 these requests and responses directly as well as transformations to HTML, XML, and RDF. The database is used for
 both caching of responses and for query of individual documents and across documents.

Exploration Tool Example
Example of the a single API call to the root endpoint of the “products” API.
As much as practical the transformations are direct with no domain knowledge applied to specialize them. The
 intent being to enable exploration of the API itself in order to discover without prior-knowledge the underlying
 model. This took a few iterations to learn enough of the structure so that it could be displayed in a readable
 format but without losing information when encountering unexpected results.
For each representation the domain knowledge and assumptions are indicated.

 Figure 5: JSON
[image:]
The ‘raw’ result in the original JSON format transformed with a simple ‘pretty print’ for easier reading.

Figure 6: HTML
[image:]
JSON to HTML transformed by the following rules

 	Fields containing objects produce a new table with 2 columns [field , body] and a row for each
 child field.

	Fields containing arrays produce a new table with the same format as object but with the only the
 first row containing the parent field name.

	The “__links” field is handled specially collapsing the nested “href” into the same row as the parent
 and converting it an <a> tag displaying the original value but linking back to the application passing
 the href as an encoded uri query parameter.
	An indication of whether the link has been attempted to be indirected and cached along with its
 HTTP response code.

Figure 7: XML
[image:]
XML is produced with the marklogic json:transform-to-json() function, which implements a simple
 bidirectional transformation similar to other independently implemented algorithms such as JXON, JSONx, JXML
 etc. An open source compatible function is available in xmlsh 2.0.

Figure 8: HTTP Headers
[image:]
The request and response HTTP headers in XML format, unchanged from the output of the MarkLogic
 xdmp:http-get() and nested in a wrapping element so it can be stored as a properties document for
 convenience. This is used by the caching implementation as well as to debug problems with requests.

Figure 9: RDF
[image:]
A very simplistic production of RDF by applying a few basic rules to the JSON data.
Note: there are some known errors in the implementation that omit triples in some relations.

 	Top level field names produce the triple [Subject , #is , #blank-node]

	Arrays produce a ‘#has’ relation with the triple [parent#blank-node , #has , entry#blank-node
]

	Fields containing atomic values produce the triple [#blank-node , #field-name , value]

Exploration
With the API Exploration tool, interactive browsing and database queries were possible. Interactive
 browser allowed for quick visual comparison of the data from the API compared to the download center web site.
 Since there was no documentation of data content, simply guessing based on the field names only somewhat
 successful. For example, was “product__files” a list of the files in the product? Surprisingly, not always.
 How about “file__groups”, should the link be dereferenced to get a list of groups of files ? What was the set
 of valid “release__type” values and was that relevant to determining if a release should be distributed ? For
 example “Beta Release” seems like something you wouldn’t ship to customers. More surprising than validating
 that guesses of the semantics were not always right was discovering that the presence of links had no
 relevance to if the resource it referred to existed.
For example, the following appears to indicate that there are resources associated with the properties
 self, eula__acceptance,product__files,file__groups,__user_groups.

Resolving the references led to surprising variants of “doesn’t exist”. Note that these endpoints were all
 explicitly listed as links in a successful response body.
eula_acceptance: HTTP Status 404
Resource does not exist at all
{
 "status": 404,
 "message": "no API endpoint matches 'products/dyadic-ekm-service-broker/releases/4186/eula_acceptance"
}

file_groups: HTTP Status 200
The resource ‘exists’ as a REST resource (a “file group” with no entries) and correctly links back to
 itself.
{
"file_groups": [],
 "_links": {
 "self": {
 "href":
 "https://network.pivotal.io/api/v2/products/dyadic-ekm-service-broker/releases/4186/file_groups"
}}}

user_groups: HTTP Status 403
Resource is not viewable. The account has the rights to view all resources in this product, unknown if the
 resource exists.
{
 "status": 403,
 "message": "user cannot view user groups for this release '4186
}

Without a larger sample, it’s not obvious if these cases are constant or depend on some property of the
 resource. Since the presence and syntax of a uri was clearly insufficient to determine its validity, every
 resource would require checking of every link to see if it was valid and used.
Another example is apparent overloading of the term “Release”. In the following, is the Release “Native
 Client 9.0.7” a different product or newer version of “9.0.4” ?
Which is represented in the API similarly.
{
 "releases": [
 {
 "id": 5376,
 "version": "9.0.4",
 "release_type": "Maintenance Release",
 "release_date": "2017-05-09",
...
 {
 "id": 5917,
 "version": "Native Client 9.0.7",
 "release_type": "Maintenance Release",
 "release_date": "2017-06-22",
...

To make sense of this, a larger sample set was needed. The solution was like a basic ‘Web Crawler’
 incorporating caching and network loop detection so it wouldn’t run forever or spawn too many threads. The
 resulting dataset could then be directly queried and used a meta-data cache. The binary resources (file
 downloads) were not downloaded at this point.

Analysis and Data Modeling
With the complete (accessible) data set in a database instead of a REST interface, queries could be done
 across the corpus efficiently. There was no intent at this point to use the database in production, rather
 for forensics and exploration to help determine the scope of the problem, basic ‘shape’ of the resources, and
 determine constant and variable feature. The source of the data could change at any time with no reliable
 notification mechanism so queries were inherently a point-in-time query with about a day lifespan at
 most.
Modeling the topology of the network (resource links) was needed to clarify what relationships were
 extensions or components of a single entity, what was containment of possibly shared entities and what were
 casual relationships. Simple statistics of unique attribute name and value distributions exposed where the
 same name was used in different types of entities, Co-occurrence queries validated which attributes were
 unique identifiers in what domain, which were optional, the complete set of attributes for each entity. The
 structure of the markup was regular and self consistent. It look like several
 commonly used REST and hypermedia conventions, but it wasn’t identical. It would have been useful to know
 which convention or framework was used for the implementation. An example is the JSON API specification (JSONAPI)
 which a very similar link and
 attribute convention but required attributes that did not exist such as ‘type’ Other similar examples include,
 JSON-LD. JSON-LD , JSON Hypertext Application
 Language (HAL) HAL
 Siren Siren
 Collection+JSON Collection+JSON
 . The answer to why many
 of the same names were used in different resources but with subsets of attributes was consistent with the
 “Expanded Resource” convention. Identifying those made the abstract model much simpler and allowed one to ‘see
 through’ the window of the API calls to the underlying model.

 [image:]

Note: that except for “self” there is no markup, naming convention, type or other indication to
 determine if a link refers to another entity, a separate contained entity or an expanded entity. The intent of
 this structure is to model one specific user interaction and presentation, one single instance of the class of
 Web Browser HTML Applications. Comparing individual REST requests to the equivalent HTML page shows an exact
 correlation. Tracking of the JavaScript HTTP request show the same.
From the perspective of a document or markup view, the API's present a data centric structured view, but
 from the perspective of the underlying resources the API's expose a presentation view. There are very good
 practical reasons for this design and it’s a common concept to have a summary and detail interface. But
 without some kind of Schema there is little clue that what your looking at is
 a page layout resource that aggregates, divides and overlays the entity resource making it quite obscure how
 to query, extract and navigate the dataset as entities. The REST API provides another method to address and
 query the resources once you have their unique id by exposing several other top level API's corresponding to
 the sub-resources. However, it’s the same endpoints (URI's) as in the links and the only way to get the ids is
 by querying the parent resource.
In theory , denormalizing or refactoring the data structure into a resource or document model should
 produce a much better abstraction for resource centric queries and document creation largely independent of
 the REST abstraction or the database, query or programming language and tool-set.
It should be a simple matter of extracting the schema from the REST model, then refactoring that into a
 document or object schema. In order to make use of the new model, instances of the source model need to be
 transformed into instances of the data model using an equivalent transformation as the schema. Separately
 these are common tasks solved by existing tools in many different domains, markup and programming languages.
 Unfortunately, the REST and JSON domain doesn’t have a proliferation of compatible tools, standards,
 libraries, or conventions for schema and data transformations. XML Tools can do much of this easily but lack
 good support for schema refactoring and little support for automation of the creation of transformations.
 Modern programming languages, libraries and IDE's have very good support for class and type refactoring
 including binding to software refactoring, code generation from schema, schema generation from code and data
 mapping to a variety of markup languages. There is enough overlap in functionality and formats that combining
 the tools from multiple domains has more then enough functionality. In theory. With the right theory, it
 should be practical and useful yet I have not yet discovered implementation, proposals, designs, or even
 discussion about how to do it, why it’s easy or difficult or that the problem or solution exists.
I assert that terminology, domain specialization, and disjoint conceptual abstractions obscure the
 existence of a common design ­­ a model that could be put to good use if recognized.

The Hidden life of Schema.
I am as guilty as any of assuming that my understanding of terminology is the only one. Reluctant to use
 the term “Schema” because it has such a specific meaning in many domains but lacking a better word I
 resorted to actually looking up the word in a few dictionaries. WD
	a diagrammatic presentation; broadly : a structured framework or plan : outline

	a mental codification of experience that includes a particular organized way of perceiving
 cognitively and responding to a complex situation or set of stimuli

Oxford Dictionary: OD
	technical. A representation of a plan or theory in the form of an outline or
 model.

	‘a schema of scientific reasoning’

	(in Kantian philosophy) a conception of what is common to all members of a
 class; a general or essential type or form.

With these concepts in mind, looking for “schema” and “schema transformations” in other domains,
 particularly object oriented programming languages and IDE's finds schema everywhere under different names and
 forms, some explicit and some implicit. Starting with the core abstraction of object oriented programming –
 the Class.

A Concrete Class combines the abstract description of the static data model, the
 static interface for behavior, and the concrete implementation of both. This supplies the framework for both
 Schema and Transformation within that language.
Annotations provide for Meta-data that ‘cross-cut’ class systems and
 frameworks such that you can overlay multiple independent or inconsistent views on types, classes and methods.
Serialization, Data Mapping and Transformation frameworks make heavy use of a combination of the
 implicit schema in static class declarations and annotations to provide customization and generation of unique
 transformations with minimal or no change to the class itself.
Multiple domains of programming language, markup and data definition languages have followed a similar
 path starting from a purely declarative document centric concept of Schema to ‘Code First’ programming
 language centric model and eventually introducing some form of annotation that augments the data model schema
 or the transformation. The ability to directly associate meta-data representing semantics to targeted
 locations and fragments of implementation allows for general purpose IDE's , static refactoring, dynamic
 generation and transformation tools to preserve the semantics and relationships between schema, transformation
 as a ‘free ride’, agnostic to specialized domain knowledge.
I set out to validate that this was not only a viable theory but that it would work in practice, using
 commonly available tools and general knowledge.

OpenAPI the “New WSDL”
REST based Web Services and JSON grew from a strong “No Schema” philosophy. A reaction and rejection of
 the complexity of the then-current XML based service API's. The XML Service frameworks (WSDL, SOAP, JAXB,
 JAXP,J2EE [2]) had themselves started humbly as a simplification of the previous generation’s binary protocols.
 XMLRPC [3], the grandfather of SOAP is a very similar to REST in may respects. The schema for XMLRPC defines the
 same basic object model primates, integers, floats, strings, lists, maps with no concept of derived or custom
 types. XMLRPC, as the name implies, models Remote Procedure Calls while REST, as originally defined [reststyle], models Resources and representations. XMLRPC is a concrete specification of the
 behavior and data format. REST, on the other hand, is an Architectural Style, “RESTful”
 or “RESTful-style”, a set of design principals and concepts -
 without a concrete specification. So while an implementation of an XMLRPC service and a RESTful
 service may be equivalent in function, complexity , data model and use, they are entirely different abstract
 concepts. XMLRPC evolved along a single path into SOAP and branching into a collection of well defined albeit
 highly complex interoperable standards. “REST”, the Architectural Style, has inspired implementations and
 specifications but is as ephemeral now as it ever was. As the current predominate style of web services,
 nearly universally with the term “REST” applied to an implementation, there is little consensus as to what
 that specifically means and much debate as to whether a given API is really “RESTful” or not. Attempts to
 define standards and specifications for “REST” is oxymoronic leading to the current state of affairs expressed
 well by the phrase The wonderful thing about standards is that there are so many of them to choose [4] So while the eternal
 competing forces of constraints vs freedom play on, the stronger forces of usability, interoperability and adoption led a path of rediscovery and reinvention.
The Open API Initiative was formed and agreed on a specification for RESTful API's that is quietly and
 quickly gaining adoption. The Open API specification is explicitly markup and implementation language
 agnostic. It is not vendor or implementation based, rather it’s derived from a collection of open source
 projects based on the “Swagger” SG01 specification. A compelling indicator of mind-share adoption is the number of
 “competing” implementations, vendors and specifications that support import and export to Open API format but
 not each other. While Open API has the major components of a mature API specification – schema, declarative,
 language agnostic, implementation independent – its documentation centric focus and proliferation of
 compatible tools in dozens of languages attracts a wide audience even those opposed to the idea of standards
 and specifications, schema and constraints. OpenAPI is more of an interchange format
 then normative specification. Implementations can freely produce
 or consume OpenAPI documents and the API's they describe without having themselves to be based on OpenAPI.
Figure 10: The OpenAPI Ecosystem
[image:]
The OpenAPI Specification is the formal document describing only the OpenAPI document format itself.
 The ecosystem of tools and features are not part of the specification nor is their functionality.

The agility to enter or leave this ecosystem at will allows one to combine with other systems to
 create work-flows and processing pipelines otherwise impractical. The Java ecosystem has very good support for
 data mapping, particularly JSON to Object mapping, manipulation of Java artifacts as source and dynamically
 via reflection and bytecode generation at runtime. The JSON ecosystem has started to enter the realm of schema
 processing, typically JSON Schema [5]JSCH1. Not nearly the extent of XML tools, there are very few
 implementations that make direct use of JSON schema, but there are many tools that can produce JSON Schema
 from JSON Documents, produce sample JSON Documents from JSON Schema, and most interesting in this context
 produce Java Classes from JSON Schema and JSON Schema from Java Classes.
Combined together, along with some manual intervention to fill in the gaps and add human judgment, a
 processing path that spans software languages, markup and data formats, behavior, along with the meta-data and
 schema that describe them. Nowhere close to frictionless, lossless or easy – but it’s becoming possible. If it’s shown to be useful as well then
 perhaps motivation for filling the remaining holes and smoothing the cracks will inspire people to explore the
 possibilities.
 Standard OpenAPI Tools
Figure 11: Swagger Editor
[image:]
Swagger Editor with the standard "Pet Store" API. http://editor.swagger.io
The left pane contains the editable content, the OpenAPI document in YAML format. As you edit the
 right pane adjusts to a real-time documentation view composed solely from the current document content.
 Note the native support for XML and JSON bodies. The sample shown is generated from the schema alone
 although it can be augmented with sample content, an optional element of the specification for any type
 description.
Included in the editor is the "Try it out" feature which will invoke the API as currently defined in
 the editor returning the results.
Code generation in several dozen software languages for client and server code is included as part
 of the open source "Swagger Coden" libraries and directly accessible from the editor. This ranges from
 simple stub code, Documentation in multiple formats and a few novel implementations that provide fully
 functional client and server code dynamically generating representative requests and responses based on
 the OpenAPI document alone.

Figure 12: Swagger UI
[image:]
The Swagger UI tool provides no editing capability rather it is intended for live documentation and
 exploration of an API. A REST endpoint that supplies a definition of its API in OpenAPI Format can be
 opened, viewed and invoked interactively from this tool. There is no requirement that the API be
 implemented in any way using OpenAPI tools, the document could simply be a hand made static resource
 describing any API implemenation that can be described, even partially, by an OpenAPI document. Both
 Swagger Editor and Swagger IO provide both sample and semantic representations of the model.

Figure 13: Restlet Studio
[image:]
Restlet Studio [6] is a proprietary application from Restlet with a free version. It uses its own proprietery
 formats not based on OpenAPI, but provides import and export to OpenAPI with a good but not perfect
 fidelity. Restlet Studio was used during the early schema refactoring due to its support for editing the
 data model in a more visual fashion.
A powerful refactoring feature is the ability to extract nested anonymous JSON Schema types into
 named top level types. This facilitated a very quick first pass at extracting common types from multiple
 resources.
Having named top level types instead of anonymous sub types translated into Java Classes
 cleanly.

Reverse Engineering an Open API Document
It would have been very convenient if the pivotal API exposed an OpenAPI interface, the tool-kits used
 most likely have the capability, or a OpenAPI document manually created. This would have provided generation of
 documentation for the API including the complete schema for the data model as well as enabling creation of
 client API's in nearly any language by the consumer.
Instead, I attempted an experiment to see how difficult it is to reverse engineer an open API document
 from the behavior of the API. From that, the remaining tasks would be fairly simple.
To construct an Open API document requires a few essential components.
Declaration of the HTTP endpoint, methods, resource URI pattern and HTTP response.
 These were all documented to sufficient detail to easily transcribe into OpenAPI format.
	A JSON Schema representation of the object model for each endpoint. The specifications allow this to
 be omitted by simply using ANY.
But the usefulness of ANY is None.

	 A shared ‘definition’ schema to allow for reuse of schema definition within a single endpoint and
 across endpoints.

The representation of JSON Schema in OpenAPI is a subset of the full JSON Schema plus a few optional
 extensions. Otherwise it can literally be copy and pasted into a standalone JSON Schema document, or you can
 reference an external JSON Schema. There are several good OpenAPI compatible authoring and design tools
 available, open source and commercial. These can be used for authoring JSON Schema directly.
The Open API Document format itself is fully supported in both JSON and YAML formats. This allows you to
 choose which format you dislike least. The transformation from JSON to YAML is fully reversible, since JSON is a
 subset of YAML and OpenAPI only utilize JSON expressible markup. Available tools do a fairly good job of this,
 with the exception of YAML comments and multi-line strings. The former have no JSON representing so are lost and
 the later have to many representations so get mangled. That can be worked around by adding comments later or by
 a little human intervention.
To validate that there was no hidden dependence on specific implementation and that it didn’t require a
 great deal of software installation or expert knowledge, I picked a variety of tools for the purpose ad-hoc
 and generally used web sites that had online browser based implementations.
The Pivotal api has several useful top level endpoints exposing different paths to the same data. To reuse
 the schema across endpoints and to reduce redundancy within an endpoint, the definitions feature of OpenAPI
 was used. This required assigning type names to every refactored schema component. Since JSON document
 instances have no type name information in them, every extracted type would need to be named. Using the
 OpenAPI editors, some amount of refactoring was possible, producing automatically generated names of dubious
 value since there is no constraint that the schema for one fields value is the same as another filed of the
 same name. Identifying where these duplicate schema components could be combined into one and where they were
 semantically different was aided by the prior analysis of the data set.
I made use of several API IDE’s that were not OpenAPI native but did provide import and export of Open
 API. There was some issue with these where the import or export was not fully implemented. For example the
 extend type annotations in OpenAPI were unrecognized by the tools and either discarded or required changing to
 the basic JSON Schema types or their proprietary types. Enumerations and typed strings were the most
 problematic. I have since communicated with the vendors and some improvements been made. I expect this to be
 less of an issue over time.
The availability of tools that can convert between JSON Schema and Java Classes allows for the use of Java
 IDE’s to refactor JSON Schema indirectly.
Of course all the representations of data, schema, java source and API Specifications were in plain text,
 which any text editor accommodated.
The result was an interactive process of exploration and convenience switching between different editing
 environments fairly easy. Use of scripting and work-flow automation would have improved the experience, but was
 not necessary.
Validation
There are multiple OpenAPI Validation implementations. There is no specification of validation itself in
 OpenAPI which lead to differences in results. Difference in indication of the exact cause and location
 varied greatly. Some tools support semantic validation as well as schema and syntax validation.
The ability to directly execute the API from some tools is a major feature that allowed iterative
 testing during editing and refactoring.

Code Generation
Code generation of client side API invocation in multiple languages provided a much better validation
 due to the data mapping involved. An incorrect schema would usually result in an exception parsing the
 response into the generated object model instances. Scripting invocation of the generated application code
 allowed testing across a large sample set then easily done interactively.
Particularly useful was the ability to serialize the resulting object back to JSON using the generated
 data model. The output JSON could then be compared against the raw response to validate the fidelity of the
 model in practice. It’s not necessary or always useful for the results to match exactly. For example renaming
 of field names, collapsing redundant structure, removal of unneeded elements can be the main reason for
 using the tools. I found it easier to first produce and validate a correct implementation before modifying
 it to the desired model, especially since I didn’t yet know what data was going to be needed.

Refactoring JSON Schema via Java Class Representation
Tools to convert between JSON Schema and Java Classes are easily available. Typically used for Data
 Mapping and Serializing Java to and from JSON, they work quite well as a schema language conversion.
A Java Class derived from JSON Schema preserves most of the features of JSON Schema directly as Java
 constructs. The specific mapping is implementation dependant, but the concept is ubiquitous. Once in a Java
 Class representaiton common refactoring functionality present in modern Java IDE's such as Eclipse are
 trivial. For example the result of extracting anonymous types into named types in Restlet Studio resulted in a
 large number of synthetic class names such as "links_href_00023". Renaming a class to something more
 appropriate could be done in a few seconds including updating all of the references to it. Duplicate classes
 of different names can be easily consolidated by a similar method. Type constraints can be applied by
 modifying the primitive types. For example where enumerated values are present but the JSON to JSON Schema
 conversion did not recognize them, the fields were left as 'string' values. These could be replaced by Java
 Enum classes. Fields can be reordered or removed if unneeded.
Overlapping types can sometimes be refactored into a class hierarchy or encapsulation to reduce
 duplication and model the intended semantics. Mistakes are immediately caught as compile errors.
Since the IDE itself is not aware that the source of the classes was from JSON Schema it will not
 prevent you from making changes that have an ill-defined or non-existent JSON Schemea representaiton, or one
 that the conversion tool does not handle well. Several iterations may be necessary to produce the desired
 output.
Converting back from Java classes to JSON Schema preserves these changes allowing one to merge the results back into the OpenAPI document.

Refactoring by API Composition
No amount of schema refactoring and code generation could account for the expanded entities that spanned
 API calls. The Open API document has no native provision for composition or transformation at runtime. That
 required traditional programming.
Once I had a working and reasonable OpenAPI document model and validated it across a large sample set, I
 then took exited the OpenAPI ecosystem and proceeded to some simple program enhancements. The REST API was now
 represented as an Object model, with an API object with methods for each REST endpoint. From this basis it was
 simple to refactor by composition. For example to expand a partially exposed resource into the complete form
 required either extracting the resource id and invoke a call in its respective endpoint method, or in
 dereferencing its ‘self’ link. The later actually being more difficult because the semantics of the link was
 not part of the data model. The resource ID was not explicitly typed either but the generated methods to
 retrieve a resource of a given type were modeled and provided static type validation in the form of argument
 arty and return type.
This is a major difference from using a REST API in a web browser. The architecture and style impose a
 resource model and implementation that is not only presentation oriented but also browser navigation and
 user interaction specific. This is explicitly stated as a fundamental architectural feature highlighting the
 advantage of media type negation for user experience.

End Application
To complete the application I added a simple command line parser and serialize. This completed the
 experiment and validated that the process is viable and useful. This also marked the beginning. I could
 invoke the API, retrieve the data in multiple formats reliably, optimize and compose queries in a language
 of choice and rely on the results.
Figure 14: A simple command line application
[image:]

I could now begin to ask the question I started with. What are the transitive set of digital artifacts
 of the latest version of a software product?
Left as an exercise for the reader.

 Reverse Engineering, Refactoring, Schema and Data Model Transformation Cycle.

Figure 15: A Continuous Cyclical Transformation Workflow
[image:]
A flow diagram of the process described. Wherever the path indicates a possible loop implies that an iterative
 process can be used. The entire work-flow itself is iterable as well.
Since the work-flow is continuously connected including the ability to generate a client or server API, any step
 in the process can be an entry or exit point. This implies that not only can you start at any point and
 complete, but that any subset of the process can be used to enable transformations between the respective
 representations of the entry and end nodes in isolation.

	REST API to JSON Document
Invoke REST API producing a JSON Document

	API ‘Crawling’
Automated exhaustive search of API resources over hypermedia links.
Producing a representative sample set of JSON Documents

	JSON to JSON Schema
JSON samples to JSON Schema automated generation.

	JSON Schema to Open API Documents
Enrich JSON Schema with REST semantics to create an Open API Document.
 (JSON or YAML)

	Open API IDE
Cleanup and refactoring in Open API IDE's.

	Open API to JSON Schema
Extract refactored JSON Schema from Open API

	JSON Schema to Java Class
JSON Schema to Java Class automated generation.
Produces self standing Java source code.

	Java IDE
Java IDE with rich class and source refactoring ability.
Refactor Java Class structure using standard techniques.
Enrich with Annotations
Produces refined and simplified Java Classes

	Java Source to JSON Schema
Automated conversion of Java source to JSON Schema

	Merge new JSON Schema to Open API
Merge Refactored JSON Schema back into Open API Document (JSON or YAML)

	Open API IDE
Cleanup and refactoring in Open API IDE's.

	Open API to JSON Schema
Extract JSON Schema from Open API
Iterate 6-11 as needed

	Code Generation
Open API code generation tools to source code.
Optional customization of code generation templates to apply reusable data mapping annotations

	Documentation Generation
Open API to complete documentation, any format.

	Generated Code to Application
Enrich and refactor generated code with Data Mapping annotation to produce custom data model
 preserving the REST interface.
Augment with business logic to produce custom application based on underlying data model
 directly.

	Custom Application
Application operates on custom data model directly; data mapping converts between data models and
 generated code invokes REST API.

	Output multiple markup formats
Side effect of open API tools and Data Mapping framework automate serialization to multiple formats.
 (JSON, XML, CSV)

	Application to Open API
Generated code includes automated output of OpenAPI document at runtime, incorporating any changes
 applied during enrichment.

Bibliography and Standard Acronyms
[JSON-LD]
 JSON-LD. https://json-ld.org/

[HAL]
 JSON Hypertext Application Language (HAL).
 https://tools.ietf.org/html/draft-kelly-json-hal-08,
 http://stateless.co/hal_specification.html

[Siren]
 Siren. https://github.com/kevinswiber/siren

[Collection+JSON]
 Collection+JSON. http://amundsen.com/media-types/collection/

[JSONAPI]
 JSON API Format. http://jsonapi.org/format/

[reststyle] "REST" Representation State Transfer. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
[JSON] JSON: The JavaScript Object Notation. http://www.json.org/. The JSON Data Interchange Format http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
[XML] XML: Extensible Markup Language. https://www.w3.org/XML/
[HTTP] HTTP: Hypertext Transfer Protocool. https://tools.ietf.org/html/rfc2068, https://tools.ietf.org/html/rfc2616, https://tools.ietf.org/html/rfc7230
[xmlsh] xmlsh: A polygot scripting scripting language. http://www.xmlsh.org
[WD] Marriam-Webster Dictionary. https://www.merriam-webster.com/dictionary/schema
[OD] Oxford Dictionary. https://en.oxforddictionaries.com/definition/schema
[JSCH1] JSON Schema. http://json-schema.org
[XML-RPC] XMLRPC or XML-RPC: a specification for remote procedure calls over HTTP. https://en.wikipedia.org/wiki/XML-RPC
[OAS] OpenAPI: A specification from the OpenAPI Initiative. https://www.openapis.org/, donated from Swagger SG01
[SG01] Swagger: A specification for APIs and the open source organziation of the same name. https://swagger.io/, donated to OpenAPI Initiative OAS

[1] API: Application Programming Interface
[2] WSDL, SOAP, JAXB, JAXP, J2EE are part of a large collection of related specifications loosely comprising the industry standard for web services predominant in the 2000-2010 era.
[3] XMLRPC: An early HTTP remote procedure call specification using an XML body. XML-RPC
[4] Andrew Stuart Tanenbaum, disputed https://en.wikiquote.org/wiki/Andrew_S._Tanenbaum
[5] JSON Schema is A set of releated specifications for describing a schema JSON objects and schema-related uses.
[6] Restlet Studio: https://studio.restlet.com/apis/local/info is part of the
 suite of software availbable from Restlet
 https://restlet.com.

Balisage: The Markup Conference

The Secret Life of Schema in Web Protocols, API's and Software Type Systems
David Lee
CTO
Nexstra, Inc.

<dlee@calldei.com>
David Lee has over 30 years' experience in the software industry responsible for major projects at
 companies of all sizes and cross-industry and the developer of "xmlsh", a widely used open source scripting
 language. Examples include telephony automation, embedded systems, real-time video streaming (IBM), CRM
 systems (Sun, Centura Software), Security and infrastructure (Centura Software, RightPoint, MarkLogic),
 Software development frameworks (Centura, WebGain), Clinical information work-flows, mass mobile device
 information distribution (Epocrates), Core 'NoSQL'/'XML' Database development, Cloud computing, Global secure
 telemetry distribution (MarkLogic), Digital publishing (internet and physical media), eCommerce and custom
 messaging systems (Nexstra). He has a long history of independent research in effective data processing and
 markup use in industry and has been involved in multiple W3C working groups. He currently serves an advisory
 role as CTO of Nexstra, a digital publication and services company he co-founded over 10 years ago.

Balisage: The Markup Conference

content/images/Lee01-005.png
[mi-1:8005

&

C 0 |©mh18005
Apps | Demo @ Group Administratioc | | RHPC | | Nexstra || Amazon || Train | XMLSH Wi AWSNexstra W# PGE [) DevModeOn || GRADLE || Cloud | | Security

*x@ = 0HBE@0®0®manmn

» | || Other bookmarks

HTML JSON XML Request Triples Crawl [Top]

Go! https://network.pivotal.io/api/v2/products

“products”: [

{

133,
“slug": "forgerock”,
“name":
“logo_url

ForgeRock Service Broker for PCF",
“https://dtbspzsucitie.cloudfront.net/assets/images/product_logos/icon_forgerock@2x.png”,

://network.pivotal.io/api/v2/products/forgerock”

“releases”: {
"href": "https://network.pivotal.io/api/v2/products/forgerock/releases”

b
“product_files": {
“href": "https://network.pivotal.io/api/v2/products/forgerock/product_files"

ile_groups”: {
“href": "https://network.pivotal.io/api/v2/products/forgerock/file_groups”

“pivotal-gpdb”,
Pivotal Greenplum”,

“https://dtbspzswcitle.cloudfront.net/assets/images/product_logos/icon_gpdb@2x.png",

"href": "https://network.pivotal.io/api/v2/products/pivotal-gpdb”

b
“releases”: {

“href": "https://network.pivotal.io/api/v2/products/pivotal-gpdb/releases”
b

“product_files": {
"href": "https://network.pivotal.io/api/v2/products/pivotal-gpdb/product_files”

content/images/Lee01-016.png
A
JSON SCHEMA|

JSON Sa‘mple Set
)

I
Enrich JSON SCHEMA

REFACTOR|

|+ methodype): type
-+ ield: type

Open AP

+ ield: type

X =
REFACTOR N

Java Source,

Java IDE

content/images/Lee01-004.png
GET /api/v2/products/:product_slug

« Returns a specific product
productis found

user could not be authenticated

product cannot be found or user is not permitted to view
product no longer exists but user was permitted to view

« Authentication optional, but required to view products not publicly available

Example

Request

GET /api/v2/products/my-product-slug HTTP/1.1
Accept: application/json

Content-Length: @

Content-Type: application/json

Host: network.pivotal.io

Response

HTTP/1.1 200
Cache-Control: max-age=8, private, must-revalidate
Content-Length: 735

Content-Type: application/json; charset-utf-8
ETag: W/"17ede62429cacl129aef084dec260ccA™

d": 23,
"slug”: "my-product-slug”
"name”: "Product 23",
"logo_url":
"category’
"description”: "Description”,
“feature_list": [

“http://localhost/cloud_front_stub/assets/images/p-10go.png”,

PATCH /api/v2/products,

« Change the release display order for the specified product
« The ids array must contain exactly the release ids associated with this product
o returns 204 if the release sort order is updated
o returns 400 if there is no releases key in the request payload
© returns 40:

roduct_slug/release_sort_order

user could not be authenticated

content/images/Lee01-015.png
File Edit View Bookmarks Settings Help

[nexstraw:us-west-2] - Konsole

[0] [default] [@idell bin]$./cli --slug pivotal-gpdb list-releases 2>/dev/null | head -70

version: 4.3.
Release Type:
ID: 6120
version: 5.0.
Release Type:
ID: 6065
version: 4.3.
Release Type:
ID: 5973
version: 4.3.
Release Type:
ID: 5642
version: 5.0
Release Type:
ID: 5789
version: 4.3.
Release Type:
ID: 5226
version: 4.3.
Release Type:
ID: 4540
version: 4.3.
Release Type:
ID: 3936
version: 4.3.
Release Type:
ID: 3930
version: 4.3.
Release Type:

15.0
Minor Release

0-beta.3
Beta Release

14.1
Minor Release

14.0
Minor Release

.0-alpha.s

Alpha Release

13.0
Minor Release

12.0
Minor Release

SEL R
Maintenance Release

2L L7z
Maintenance Release

el gl
Minor Release

-

bin : bash

content/images/Lee01-003.png
Pivotal Cloud Foundry Service Metrics SDK Documentation

£ Get email updates

~ PRODUCT OVERVIEW

OVERVIEW FEATURES
Pivotal Cloud Foundry Service Metrics SDK « Easily emit metrics from your BOSH deployment to Cloud Foundry's Loggregator
system

« Part of the PCF Services SDK
SUPPORT

@ Knowledge Base

Releases: 1.5.6 v
15.7
Release Details
15.6
RELEASE DATE 2017-04-26
155 RELEASE TYPE Maintenance Release
80.1MB 156 RELEASE DESCRIPTION

Apache 2.0 Licensed Version of Service Metrics

Release Notes

End User License Agreement

content/images/Lee01-014.png
David
Petstore API - Restlet St X

< C O | @ Secure | https://studio.restlet.com/apis/local/types/Pet Y| @ (-} Q@ 0 0@m&kD H
Apps Demo @ Group Administratio RHPC Nexstra Amazon Train XMLSH AWS Nexstra PGE D Dev Mode On GRADLE Cloud » Other bookmarks

‘ STUDIO EXPORT v DOCUMENTATION Pricing Help ~ CED Signin
PREVIEW
Petstore API @ Pet E
h
GENERAL
/pet/findByStatus
Pet 4
[GE Finds Pets by status
/pet
DATATYPE
BUTlll Update an existing pet
Add t to the st
| posT | anew pet to the store -+ Object ’
/pet/{petid}
Find pet by ID
W Fic pet by id int64 -
[ESSE Updates a pet in the store with form data
DELETE Deletes a pet
category P |
/pet/{petid}/uploadimage tegor
ESSEl uploads an image
Pet name doggie P
Tag
photoUrls S |
Category
tags P |
Ta
P status pet status in the store PV {
available
ESSEl Place an order for a pet
pending
/store/order/{orderld}
sold

WEER Find purchase order by ID

DELETE Delete purchase order by ID

/store/inventory

EE Retums pet inventories by status

Order Design OAS / Swagger 2.0 RAML 1.0 Rest

content/images/Lee01-002.png
L Pivotal GemFire
N
2.‘ < + Getting email updates

r

> PRODUCT OVERVIEW

Releases: 9.0.4

Release Download Files

Pivotal GemFire VSD zip
5.23MB 9.0.0 Downloaded 2017-06-22

Pivotal GemFire Zip
86.2MB 9.0.4 Downloaded 2017-06-02

Pivotal GemFire Tar
85MB 9.0.4 Downloaded 2017-06-02

GemFire-Greenplum Connector
1File

Documentation Learn More

Release Details

RELEASE DATE 2017-05-09

RELEASE TYPE Maintenance Release
END OF GENERAL SUPPORT 2019-12-31

END OF TECHNICAL GUIDANCE 2020-12-31

RELEASE DESCRIPTION

See Release Notes for detail of issues resolved in this release.

UPGRADES FROM

Pivotal GemFire versions in the "Upgrades From" section can
be directly upgraded to Pivotal GemFire 9.0.4. If your current
Version of Pivotal GemFire is not on this list, please contact
Pivotal Customer Service for assistance.

8.270r9.0*

LICENSE FILES

I Open Source License GemFire

content/images/Lee01-013.png
o swagger

Swagger Petstore

gger.io/v2]

hrip//perstore swagger.io/v/swagger json

This is a sample server Petstore server. You can find out more about Swagger at http://swagger.io or on irc.freenode.net, #swagger. For this sample, you can use the api key special-key to test the authorization
filters.

Terms of service

Contact the developer

Apache 2.0

Find out more about Swagger

Schemes

HTTP v Authorize @

pet Everything about your Pets

Parameters. Tryit out
Name Description

body * reeied Pet object that needs to be added to the store

(body) Example Value | Model

Parameter content type

application/json v

content/images/Lee01-009.png
O mi-1:8005 x

< C O | ® ml-1:8005

3 Apps || Demo @' Group Administratio

HTML JSON XML Request Triples Crawl [Top]

Subject

products
http://marklogic.com/semantics/blank/3699164329502634 157
http://marklogic.com/semantics/blank/18359225367373075164
http://marklogic.com/semantics/blank/3171344775449478724
http://marklogic.com/semantics/blank/3171344775449478724
http://marklogic.com/semantics/blank/3171344775449478724
http://marklogic.com/semantics/blank/3171344775449478724
http://marklogic.com/semantics/blank/7540217571023688418
http://marklogic.com/semantics/blank/15624393304733804958
http://marklogic.com/semantics/blank/8494704988607013978
http://marklogic.com/semantics/blank/15860451416101473553

http://marklogic.com/semantics/blank/7484976541296717439

@ | B

Gol https://network.pivotal.io/api/v2/products

Predicate
http://nexstra.com/relation#is
http://nexstra.com/relation#products
http://nexstra.com/relation#has
http://nexstra.com/relation#id
http://nexstra.com/relation#slug
http://nexstra.com/relation#name
http://nexstra.com/relation#logo__url
http://nexstra.com/relation#__links
http://nexstra.com/relation#self
http://nexstra.com/relation#href
http://nexstra.com/relation#releases

http://nexstra.com/relation#href

Object
http://marklogic.com/semantics/blank/3699164329502634 157
http://marklogic.com/semantics/blank/18359225367373075164
http://marklogic.com/semantics/blank/3171344775449478724
133

forgerock

ForgeRock Service Broker for PCF

»

- [m X

OB Q0 e 0 Wan

| RHPC || Nexstra | Amazon | Train || XMLSH &¥ AWSNexstra ¥ PGE [J DevModeOn || GRADLE | Cloud | Security | Archive ¥k Bookmarks | Balisage | web services

| Other bookmarks

https://dtb5pzswcit1e.cloudfront.net/assets/images/product_logos/icon_forgerock@2x.png

http://marklogic.com/semantics/blank/517059329750919221
http://marklogic.com/semantics/blank/8494704988607013978
https://network.pivotal.io/api/v2/products/forgerock
http://marklogic.com/semantics/blank/7484976541296717439

https://network.pivotal.io/api/v2/products/forgerock/releases

http://marklogic.com/semantics/blank/11870596819453219116 http://nexstra.com/relation#product__files http://marklogic.com/semantics/blank/14415180568584 102583

http://marklogic.com/semantics/blank/14415180568584102583 http://nexstra.com/relation#href https://network.pivotal.io/api/v2/products/forgerock/product_files

http://marklogic.com/semantics/blank/9363861179943145625 http:/nexstra.com/relation#file__groups http://marklogic.com/semantics/blank/13971852269808059944

http://marklogic.com/semantics/blank/13971852269808059944 http://nexstra.com/relation#href https://network.pivotal.io/api/v2/products/forgerock/file_groups

http://marklogic.com/semantics/blank/18359225367373075164 http:/nexstra.com/relation#has http://marklogic.com/semantics/blank/4056798406249962563

httn-//markinaic com/semantine/hlank/ANRR7ORANARP2400RP2RRR hittn-//nayatra com/ralatinn#id 19 M
<

content/images/Lee01-008.png
D mi-tanos x

€ C 0| Omk1005 ax @ ~o@@Ooe0Wann
Apps (1 Demo o' GroupAdminstatic (| RHPC | Newts || Amamn [Tanm (| XMLSH @ AWSNesta @ PGE [) DevModeOn (| GRADLE () Clowd (] Seaunty » | [Otherbookmanis

HTML JSON XML Request Trples Crawl [Top]

Gol | hitpsi/inetwork pivotal io/api/v2/products

<axml version="1." encoding="UTF-8"?>
<prop:properties xalns: prop="http: //markLogic. con/xdnp/property”>
<rrirequest xmlns:rr="http://rest/rr">
<rrsuri>https: //network. pivotal . io/api/v2/productse/rriuri>
method>
-11712:57:08.5946282¢ /rr date-tine>
<Content-Type xnlns="xdap:http">appLication/ jsonc/Content-Type>
xdup:ht tp">Token deaips s ks phbme< /Authori zation>

</rrirequest>
<rriresponse xnlns:rr="http://rest/rr">
<code xmlns="xdmp: http">200¢/ code>
<nessage xalns="xdup: http">0K</message>
<headers xalns="xdp:http">
<cache-controlomax-age=0, private, must-revalidatec/cache-control>
<content-type>application/json; charset=utf-8</content-type>
<date>Tue, 11 Jul 2017 12:57:11 GHT</date>
Cotag e sy T tag>
<strict-transport-security>max-age=15552000¢ /strict-transport-security>
<x-content-type-options>nosniff</x-content-type-options>
<x-frane-options» SAMEORTGIIG/x-Frame-options>
x-request.id> sk nin. sy e s - request - 1d>
<x-runtine>2.604274¢/x-runtine>
X-VCap-request - LAk 1181 ot el - MR-+
<x-xss-protections1; mode=blocks/x-xss-protection>
<transfer-encoding>chunkeds /transfer-encoding>
<connection>keep-alivec/comnection>
</headers>
<frriresponse>
<prop: last.-nodiFied>2017-07-11712:57 :08Z¢/prop: 1ast -modified>
</prop:properties>

BB/ x-veap-request-id>

content/images/Lee01-007.png
[mi-1:8005

x

David

- [m X

<« C O ® mh1:8005 @ % | @ OB Q0 e 0 mKd H

HTML JSON

XML Request Triples Crawl [Top]

Go! https://network.pivotal.io/api/v2/products

<json type="object

ob:
nu
<slug type=
<name type=":
<logo__url t
<_ links typ
<self type:
<href ty
</self>
<releases
<href ty
</releases
<product__1
<href ty

“ xmlns="http://marklogic.com/xdmp/json/basic">
array">

ject">

mber">133</1d>

string">forgerock</slug>

string”">ForgeRock Service Broker for PCF</name>
ype="string">https://dtbspzsucitie.cloudfront.net/assets/images/product_logos/icon_forgerock@2x.png</logo_ url>
object">

~"object">

pe="string">https://network.pivotal.io/api/v2/products/forgerock</href>

type="object">
pe="string">https://network.pivotal.io/api/v2/products/forgerock/releases</href>
>

files type="object">
pe="string">https://network.pivotal.io/api/v2/products/forgerock/product_files</href>

</product__files>
<file_ gro
<href ty
</file_ gr
</__links>
</json>

“ob.
nu

<logo__url t
<_ links typ
<self type:
<href ty
</self>
<releases
<href ty
</releases
<product__1
<href ty

DU

ups type="object">
pe="string">https://network. pivotal.io/api/v2/products/forgerock/file_groups</href>
oups>

ject">

mber”>19</id>

string">pivotal-gpdb</slug>

string”">Pivotal Greenplum</name>
ype="string">https://dtbSpzsucitie.cloudfront.net/assets/images/product_logos/icon_gpdb@2x.png</logo_ url>
object">

object”>

pe="string">https://network.pivotal.io/api/v2/products/pivotal-gpdb</href>

“object">

typ
"string”>https: //network. pivotal.io/api/v2/products/pivotal-gpdb/releases</href>

pe=
>
files type="object">

pe="string">https://network. pivotal.io/api/v2/products/pivotal-gpdb/product_files</href>

e

Apps || Demo w" Group Administratior | | RHPC || Nexstra || Amazon || Train || XMLSH W§# AWSNexstra §§ PGE [) DevModeOn || GRADLE || Cloud || Security »

| Other bookmarks

content/images/Lee01-006.png
X (D
/ [mi-1:8005 X\

€ - C 00805 Aax @ = Ol @0 e0WaDN :
Apps | Demo @ Group Administratior | | RHPC | | Nexstra | Amazon | Train | XMLSH Wi AWSNexstra W PGE [} DevModeOn GRADLE || Cloud || Security » | || Other bookmarks
HTML | JSON XML Request Tiples Crawl [Top] Gol | hitps:inetwork pivotal ofapiiv2/products =
products N
id 133
slug forgerock
name ForgeRock Service Broker for PCF
logo__url https://dtb5pzswecit1e.cloudfront.net/assets/images/product_logos/icon_forgerock@2x.png
—links self https://network.pivotal.io/api/v2/products/forgerock [200]
releases https://network.pivotal.io/api/v2/products/forgerock/releases [
product__files https://network.pivotal.io/api/v2/products/forgerock/product_files [
file__groups https://network.pivotal.io/api/v2/products/forgerock/file_groups [
id 19
slug pivotal-gpdb
name Pivotal Greenplum
logo__url https://dtb5pzswecit1e.cloudfront.net/assets/images/product_logos/icon_gpdb@2x.png
—links self https://network.pivotal.io/api/v2/products/pivotal-gpdb [
releases https://network.pivotal.io/api/v2/products/pivotal-gpdb/releases [
product__files https://network.pivotal.io/api/v2/products/pivotal-gpdb/product_files [
file__groups https://network.pivotal.io/api/v2/products/pivotal-gpdb/file_groups [
id 57
slug p-gemfire
name GemFire for PCF
logo__url https://dtb5pzswecit1e.cloudfront.net/assets/images/product_logos/icon_gemfire_cf@2x.png
__links self https://network_pivotal.io/api/v2/products/p-gemfire [l

releases https://network.pivotal.io/api/v2/products/p-gemfire/releases [

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Lee01-001.png
I Pivotal Network X

& > C O | & Secure | https//network pivotal.io ¥ | B (<] Q@ 060wk
i1 Apps Demo @ Group Administratio RHPC Nexstra Amazon Train XMLSH AWS Nexstra PGE [J DevMode On GRADLE Cloud Security Archive ¢ Bookmarks » Other bookmarks

P Pivotal Network PRODUCTS SUPPORT

Explore, download, and update Pivotal software and services

Pivotal Cloud Foundry
Pivotal Cloud Foundry (PCF) delivers a BOSH Backup and Restore Q Buildpacks for PCF

modern IT platform that accelerates

software development without

compromising operations on any cloud

infrastructure. ¢) GCP Service Broker for PCF @ Microsoft Azure Service Broker for PCF

G PCF Dev @ Pivotal Cloud Foundry Elastic Runtime

Q Pivotal Cloud Foundry JMX Bridge (Ops

Pivotal Cloud Foundry Isolation Segment Metrics)

< pivotal-gemfire-vsdzip A Showall | X

content/images/Lee01-012.png
[Swagger Editor x
& C 0| ediorswaggerio/# *| & (-] @060 WwaD
2 Apps Demo w" Group Administratio RHPC Nexstra Amazon Train XMLSH AWS Nexstra PGE [J DevMode On GRADLE Cloud Security Archive » Other bookmarks

: "This is a sample server Petstore server. You can find out more
about swagger at http://swagger.io or on [irc.freenode
.net, #swagger](http://swagger.io/irc/). For this sample, you can use the s gg
e R S e et wagger Petstore
1.0.0" [Base url: petstore.swagger.io/v2]
“Swagger Petstor
“http://swagger.io/terms/"
pi//swagg 4 4 This is a sample server Petstore server. You can find out more about Swagger at
apiteam@swagger.io” http://swagger.io or on irc.freenode.net, #swagger. For this sample, you can use the api key
special-key to test the authorization filters.
‘Apache 2.0"
“http://www.apache.org/licenses/LICENSE-2.0.html" Terms of service
swagger. 0" B
Contact the developer
Apache 2.0
“Everything about your Pets” Find out more about Swagger
: "Find out more”
//swagger.io
ccess to Petstore orders” Schemes
perations about user” HTTP v

ore about our store”
pet Everything about your Pets

/pet Add a new pet to the store

Parameters Try it out
“application/json
“application/xml" Name Description
“application/xml" ,
“application/json body * reauired Pet object that needs to be added to the store
(body)

Example ValueModel

“body"
: "body’
: “Pet pbject that needs to be added to the store

<id>8</id>
<Category>

"#/definitions/pet"
: <id>@</id>
<name>stringe/name>
</Category>
<name>doggiec/name>

<photoUrl>

“Invalid input™

content/images/Lee01-011.png
Documentation

Schema

Consumers Data Mapping

OpenAPI

Code Document Schema
Generation Generation

Self Descri Consuming
APIs APIs

content/images/Lee01-010.png
- Resource

’ Resource
Sub1 Subd
atrioute atribute
atribute Ve
attribute I attribute
atribute I
atrioute 1
attrioute i
attrioute 1
self 1
- P e e e e e e e = ”
o N
W troue Sub2 f
1| stroute atioute .
atribute
so '
atribute
atribute 1
Resource |atribute 1

