[image: Balisage logo]Balisage: The Markup Conference

Translating imperative algorithms into declarative, functional terms
towards Earley parsing in XSLT and XQuery
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

Balisage: The Markup Conference 2017
August 1 - 4, 2017

Copyright © 2017 by the author.

How to cite this paper
Sperberg-McQueen, C. M. "Translating imperative algorithms into declarative, functional terms." Presented at: Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In Proceedings of Balisage: The Markup Conference 2017.
 Balisage Series on Markup Technologies vol. 19 (2017). https://doi.org/10.4242/BalisageVol19.Sperberg-McQueen01.

Abstract

	 In building up subroutine libraries for XSLT and
	 XQuery, it is sometimes useful to re-implement standard
	 algorithms in the new language. Such re-implementation can
	 be challenging, because standard algorithms are often
	 described in imperative terms; before being
	 reimplemented in XSLT or XQuery, the algorithm must first be
	 re-understood in a declarative and functional way.
	

	 Some of the challenges which arise in this process can be
	 illustrated by the example of Earley parsing. Earley’s
	 algorithm can parse an input string against any context-free
	 grammar in Backus-Naur Form. Unlike recursive-descent or
	 table-driven LALR(1) parsers it is not limited to
	 well-behaved grammars. Unlike other
	 general context-free parsing algorithms such as CYK, it does
	 not devote time and space to operations which can be seen in
	 advance to have no possible use in a full parse. Earley’s
	 procedural description involves successive changes to a
	 small set of data structures representing sets of
	 Earley items; these procedural changes cannot
	 be translated directly into a functional language lacking
	 assignment.
	

	 But Earley’s data-structure updates can be
	 understood as defining relations among Earley items, and the
	 algorithm as a whole can be interpreted as calculating the
	 smallest set of Earley items which contains a given starter
	 item and is closed over a small number of relations on
	 items. Re-thinking the Earley algorithm in this way not only
	 makes it easier to implement it in XSLT and
	 XQuery, but helps make it clear why the parser is both
	 complete (it will always find a parse if there is one) and
	 correct (any parse it finds will be a real parse).
	

Balisage: The Markup Conference

 Translating imperative algorithms into declarative, functional terms

 towards Earley parsing in XSLT and XQuery

 Table of Contents

 	Title Page

 	Introduction

 	Notation

 	Earley items

 	Earley trees

 	Brief digression

 	Properties and relations of Earley items
 	Expectation

 	Testability; winning and losing
 	The advance() function; continuations

 	The scan() relation between items

 	Testing and advance() function for non-terminals
 	The advance() function again

 	Continuations

 	Useful items

 	Relevant items

 	Some consequences of the definition of relevance

 	The pred() and comp() relations among items

 	The Earley algorithm

 	Two technical excursus
 	Calculating transitive closures

 	Extension to EBNF
 	Operators on locations

 	Notes on individual operators

 	Properties of items and relations on items

 	The algorithm

 	Follow-on work

 	Concluding remarks

 	About the Author

 Translating imperative algorithms into declarative, functional terms
towards Earley parsing in XSLT and XQuery

Note
This paper makes no overt reference to markup; perhaps
	some rationale is due for submitting it Balisage.
Balisage is about the use of markup to meet challenges
	in information manangement. Many, perhaps most, users of
	descriptive markup use XML. Many (although not all) users of
	XML find it more convenient to process XML using XSLT and
	XQuery than using most other programming languages; some would
	like to XSLT and XQuery developed as general-purpose
	programming languages. To be useful as general-purpose
	programming languages, however, they need libraries providing
	standard functionality and often implementing standard
	algorithms.
This paper describes the reimplementation of one
	standard in XQuery / XSLT terms. Its interest, if it has any,
	is first in the functional, declarative reformulation of the
	interesting (even beautiful) Earley algorithm and second in
	the way that that reformulation has been achieved. Perhaps
	this example will be helpful to others seeking to reimplment
	standard functionality in these languages.
	
	

Introduction

	Among XML users, it’s not unusual to find XSLT and
	XQuery being used as general-purpose, not special-purpose,
	programming languages. It is easier to use a language for
	general-purpose programming across a wide range of application
	areas if it has libraries of subroutines for different
	domains. To build up larger libraries of subroutines for
	general-purpose languages, it’s sometimes useful to
	re-implement standard algorithms in the new language.

	One of the challenges of reimplementing standard algorithms in
	XSLT and XQuery is that standard algorithms are often
	described in imperative terms which cannot be translated
	directly into declarative functional languages. If we can
	understand the algorithms in a more declarative way, however,
	it may be possible to implement them straightforwardly in XSLT
	or XQuery. The difficulty and one path to resolving it are
	illustrated here with the parsing algorithm described by Jay
	Earley in 1970 (Earley 1970).

	Earley parsing is a well-known technique for parsing input
	using context-free languages; unlike techniques like recursive
	descent and standard table-driven parsing it does not require
	special properties in the grammar, like being LL(1) or
	LALR(1): it will work for any input and any grammar, whether
	the grammar requires lookahead or not. But the algorithm as
	Earley describes it is quite low-level: routines called the
	predictor, the scanner, and the completer take turns changing
	global data structures until it can be seen from the data
	structures that the parse has succeeded or failed. In the
	case of success, one or more parse trees can be extracted from
	the data structure; in failures, one can identify the point at
	the input at which the attempt failed and generate diagnostic
	messages. It is not always immediately obvious to the reader,
	however, exactly why the predictor, the scanner, and the
	completer behave as they do, or why their interaction is
	guaranteed to find any and all legitimate parses of the input.
	And since XSLT and XQuery don’t allow the assignment of
	new values to variables, the data-structure manipulations used
	by Earley cannot be implemented as described.

	The discussion below tries to step back and think about what
	the data structures described by Earley mean, in order to
	understand the algorithm in a purely declarative way. We
	proceed roughly as follows:
		Earley defines an important data structure called
	 the Earley item and the Earley
	 algorithm initializes and manages a set of such items,
	 adding new elements to the set when certain conditions are
	 met.

	Since the conditions to be met typically involve the
	 presence of particular items in the set, and since the new
	 items to be added are typically constructed on the basis
	 of those existing items, we can consider Earley’s
	 operations as defining several relations on items. A
	 relation R holds between two Earley
	 items X and Y
	 just in case Earley’s algorithm will add
	 Y to the set whenever
	 X is present.
	 Some relations used by Earley are ternary, not binary;
	 in those cases,
	 item Z will be added to the
	 set just in case X and
	 Y are in the set and
	 R(X,
	 Y,
	 Z) holds.
	

	The algorithm's updates to the set of items can then
	 all be described in the following terms: if an item
	 X is in the set (or, for
	 some steps, if items X
	 and Y are in the set), and the relation
	 R holds between
	 X (or X and
	 Y) and another item
	 Z, then Z is
	 added to the set.
	

	It is then possible to see that Earley’s
	 algorithm calculates the smallest set of Earley items
	 which (a) contains a standard starter item
	 and (b) is closed over a number of relations defined as
	 holding (or not holding) for pairs or triples of Earley
	 items.

	Re-thinking the Earley algorithm in this way not only makes it
	easier to implement it in XSLT and XQuery, but
	helps make it clear why the parser is both complete (it will
	always find a parse if there is one) and correct (any parse it
	finds will be a real parse).

The next two sections of this paper (section “Notation” and section “Earley items”) introduce some
 basic notation and the concept of the Earley item.
 We then (section “Earley trees”) define
 Earley trees; these are not defined by Earley,
 but prove useful in the later discussion. The nodes of Earley trees
 are sets of Earley items with certain parsing-relevant
 properties. We then proceed (section “Properties and relations of Earley items”)
 to identify some interesting properties of
 Earley items (truth, expectation, testability, usefulness,
 relevance), and some useful relations between items (advance,
 continuation, scan, prediction). Supplied with these relations,
 we can define the Earley algorithm using them and show how they
 guarantee that it is complete and correct (section “The Earley algorithm”).
The initial description of the algorithm applies to grammars
 given in Backus-Naur Form; the penultimate section (section “Two technical excursus”) contains discussions of two
 technical topics of practical importance: how to calculate the
 required sets in XSLT and XQuery, and how to extend the
 treatment of Earley parsing here to handle regular-right-part
 grammars like those specified for Invisible XML (section “Extension to EBNF”). The final section (section “Concluding remarks”) tries to draw some lessons for XSLT and
 XQuery translations of procedural algorithms from this
 example.

Notation

	 We assume a grammar G and an input string I of length n.
	 A grammar is a four-tuple (VN, VT, P, S), where
	 	VN is a set of non-terminal symbols.

	VT is a set of terminal symbols,
	 disjoint from VN (i.e.
	 VN ∩ VT = ∅).

	P is a set of production rules
	 of the form N → α, where
	 	N ∈ VN.

	α is a sequence of zero or more symbols
	 from (VN ∪ VT).

	S ∈ VN is the start symbol of
	 the grammar.

	 The vocabulary of G is the set of terminal and
	 non-terminal symbols V = VN ∪ VT.
	 When we need to mention the start symbol of G, we call it S.
	 Non-terminal and terminal symbols in G will be called N, T,
	 N1, N2, ... and so on. Sequences of terminals and
	 non-terminals will be called α, β, γ ...
	

	 For purpose of our exposition, we often wish to deal not with
	 the grammar G as is, but with an augmented grammar
	 G′ = (VN ∪ Goal, VT,
	 P ∪ Goal → S, Goal),
	 where Goal ∉ VN. This allows us to know that
	 the start-symbol Goal has exactly one rule, whose form
	 we know, and that it never appears on the right-hand side of any rule
	 in G′.
	 It should be clear that G and G′ define the same
	 language.
	
We use the term string or string of
	characters when referring to I or substrings of I,
	or other sequences of terminal symbols.
	We use the term sequence when referring
	to sequences of symbols in V. There is no technical
	distinction between the terms string and
	sequence other than the restriction of
	strings to terminal symbols; they are distinguished here only
	in an attempt to make the argument easier to follow.
For any two sequences or strings α and β,
	α β
	denotes the concatenation of α and
	β. Where simple juxtaposition might
	be ambiguous, or where it is desired to emphasize the
	concatenation
	operator, the form
	α || β
	is used with the same meaning.
We write the empty string ε and the empty sequence
	either ε or ().

	 The expression I[i] refers to the character at position i in
	 I; the expression I[x,y] refers to the substring from
	 (just after) position x up to and including the
	 character at position y. We use 0 to refer to the position
	 before the first character.
	

	 For example, if I is the string a+b, then
	
	
	 I[1], I[2], I[3] refer to the characters a,
	 +, and b,
	 respectively.
	

	
	 I[0,1], I[0,2], I[2,3] refer to the substrings
	 a, a+, and
	 b respectively; I[0,0] and
	 I[3,3] refer to the empty strings immediately before
	 a and after b,
	 respectively.
	

Note that for any string I and any non-negative integers
	x, y, z all ≤ n, we have I[x, y] || I[y,
	z] = I[x, z], and for any x (0 < x ≤ n),
	I[x] = I[x-1, x].
The discussion which follows tries to make the line of
	argument as explicit and easy to follow as possible, but some
	basic knowlege of context-free grammars is inevitably assumed.
	(Ironically, any attempt to make an argument easier to follow
	by making the inference steps as small as possible has the
	follow-on effect of multiplying the number of formulas and
	such, so that at first glance the text will appear less
	accessible, not more accessible. Readers interested but uneasy
	with formalisms are encouraged to take a deep breath and
	persevere.)
	

Earley items

	 An Earley item is a triple (x, y, N → α · β), where
	 	x is a number between 0 and n, inclusive, referred
	 to as the start value

	y is a number between x and n, inclusive,
	 referred to as the end value

	α and β are sequences in V*,
	 i.e. sequences of
	 zero or more symbols (terminals or non-terminals)

	N → α β is either a production rule in G or the special
	 rule Goal → S described above.

	

	 The third item in the triple is a location
	 (sometimes referred to in parsing literature simply as an
	 item); if we don’t care about the details
	 of the location, we may write an Earley item (x, y,
	 L).
	

	 If β is the empty sequence, so that the item has the form
	 (x, y, N → α ·), then the item is
	 called a completed item (or a
	 completion) for N.
	
	
	 For example, given I as above (a+b), if G is
	 the tuple (VN, VT, P, E), where
	 	VN = { E, T, P }

	VT = { *,
	 +,
	 a,
	 b,
	 (,
),
	 [,
]
	 }

	P =
	 	E → T

	E → E * T

	T → A

	T → T + P

	A → a

	A → b

	A → (E)

	A → [E]

	

	 then possible Earley items include
	 	(0, 0, E → · T)

	(2, 3, T → T + · A)

	(2, 2 E → · T)

	(2, 2 T → · T + A)

	(3, 3, A → (E) ·)

	(0, 3, E → · T)

	(0, 3, E → T ·)

	(0, 3, A → (E ·))

	(0, 0, Goal → · E)

	(0, 0, Goal → E ·)

	
	
	 Informally, we understand an Earley item to mean that in
	 grammar G, the string of symbols α generates the
	 string I[x, y]. (A sequence of symbols
	 generates a string if and only if the string
	 can be produced from the symbols by applying a series of
	 zero or more rewrites using rules of G. Since generation
	 involves zero or more applications of the rewrite relation
	 written →, it is not infrequently denoted ⇒*.)
	 So the
	 examples just given can be interpreted as saying
	 	The string immediately
	 before a is generated by the empty
	 sequence of symbols.

	The string b is generated by
	 the symbol sequence T +.

	The string immediately after
	 + is generated by the empty
	 sequence of symbols.

	The string immediately after
	 + is generated by the empty
	 sequence of symbols.

	The string immediately after
	 b is generated by the sequence
	 (E).

	The string a+b is generated
	 by the empty sequence of symbols.

	The string a+b is generated
	 by the sequence T.

	The string a+b is generated
	 by the sequence (E.

	The string immediately
	 before a is generated by the empty
	 sequence of symbols.

	The string immediately
	 before a is generated by the
	 sequence of symbols E.

	
	
	 Note that since we normally use Earley items to keep track
	 of where we are in recognizing input against a grammar,
	 informally an Earley item may also suggest that we are
	 expecting to see an instantiation of the sequence
	 β that follows the dot. (See also the discussion of
	 expectation, below.) But expectations are not relevant for
	 the truth or falsehood of the item, and thus not part of the
	 meaning of the item, narrowly construed.
	
	
	 Of these examples, (5), (7), and (10) are completed items.
	

	 Note that because they have a meaning, Earley items can be true or false.
	
	
	 For example, in the list just given, items (1), (3), (4),
	 (7), and (9) are true
	 statements, and the others are false.
	
	
	 Note that if x = y and α is the empty string, then
	 we have an Earley item of the form (x, x, N →
	 · β). The meaning of such an item is always that
	 the empty sequence of grammar symbols derives the empty
	 sequence of terminal symbols, and the item is accordingly
	 always true.
	

Earley trees
These are not defined by Earley, but they prove helpful for
	later discussion.
	

	 An Earley tree for the start symbol S in a given grammar
	 G, for a given input I, is an ordered tree of Earley items with
	 the following properties:
	 	Each node in the tree is either an Earley item
	 or an expression of the form
	 I[y]
	 or an expression of the form
	 I[y, y].
	

	The children of any node are ordered.

	The root node has the form (0, n, Goal → S
	 ·), where S is the start-symbol of G and Goal
	 is the start symbol of the augmented grammar G′
	 described above.

	For any node K of the form (x, y, N1 →
	 α N2 · β), (i.e. in which the last item
	 before the dot is a non-terminal N2), the node’s
	 children
	
	 will take the form:
	 	(w, w, N2 → · R1 R2 R3
		... Rk)

	(w, z1, N2 → R1 · R2 R3
		... Rk)

	(w, z2, N2 → R1 R2 · R3
		... Rk)

	...

	(w, y, N2 → R1 R2 R3 ... Rk
		·)

	 where
	 	k is the length of the rule’s
		right-hand side.

	w ≤ z1 ≤ z2 ≤ ... ≤ zn-1 ≤
		y.

	w is equal to the end value of node K’s left
		 sibling, if K has a left sibling.
Otherwise, w = x (the start value of K).
Note that in either case we have x ≤ w ≤ y.

	
Recall that by the definition of Earley item, N2
	 → R1 R2 R3 ... Rk is a rule in G.
By this rule, all siblings in an Earley tree have
	 locations in the same production rule of G, all have
	 the same start value w, and they have non-decreasing
	 end values. The start value of all children is the same
	 as the end value of the parent’s left sibling,
	 when it has one; otherwise it’s the same as the
	 start value of the parent. (The second case arises for
	 unit rules and for the children of the root node.) The
	 end value of the last child is the end value of the
	 parent.

	Every node K of the form (x, x, N →
	 ·), (i.e. a completion for non-terminal
	 N in which the production has an
	 empty right-hand side) has a single child node, of the
	 form I[x, x].
	

	For any node of the form (x, y, N →
	 α T · β), (i.e. in which the last item
	 before the dot is a terminal symbol T), the node’s
	 sole child is the terminal symbol I[y], and I[y] =
	 T.

	Every node of the form
	 I[y] is a leaf
	 node (has no children).

	

	 Like an Earley item, an tree of Earley items has a meaning, and
	 can be true or false.
	 	The root node has the form (0, n, Goal → S
	 ·). Informally, this means means S generates
	 the string I[0,n], and since I[0,n] = I,
	 this amounts to saying that
	 S generates I. Since S is the start symbol of the
	 grammar G this in turn means that I is a sentence in
	 the language defined by G.

	For any node K of the form (x, y, N1 →
	 α N2 · β), the meaning is that the
	 substring of I from x to y, i.e. I[x,y], is
	 generated by the sequence α N2. This will be
	 true if and only if (a) α generates I[x,w]
	 and (b) N2 generates I[w,y].
K’s first child has the form
	 (w, w, N2 → · α) and means
	 that the empty sequence of symbols generates the
	 zero-length (empty) string I[w,w]. Like
	 all Earley items of similar form, it is true.
Each subsequent child of K has the meaning that
	 a longer and longer prefix of the right-hand side of the rule
	 N2 → R1 R2 ... Rk generates a longer and
	 longer substring of I beginning at w. The final
	 child, which has the form
	 (w, y, N2 → R1 R2 ... Rk ·),
	 means that the sequence of symbols
	 R1 R2 ... Rk generates
	 I[w,y], the substring of I from
	 w to y.
	 It follows that N2 also generates the string I[w,y].
	
If the sequence of symbols α
	 generates I[x,w], and the symbol N2 generates
	 I[w,y], then it follows that
	 the sequence α N2 generates I[x,y].
	 So if (a) the Earley item in K’s left sibling is true,
	 or K has no left sibling, and (b) all of K’s children
	 are true, then K is also true.
	

	
	 For any node K of the form (x, y, N → α T · β),
	 (i.e. in which the last item before the dot is a terminal symbol T),
	 the meaning of the Earley item is that
	 the sequence of symbols α T generates
	 I[x,y], the substring of I from
	 x to y.
The left sibling of K, if it exists, will be an
	 Earley item of the form (x, w, N → α
	 · T β), where w = y - 1. If the Earley
	 item in the left sibling is true, and if I[y] = T,
	 then node K is true.
	

	

	 It follows from the rules that all leaves in the tree are
	 either of the form
	 I[j]
	 or else of the form
	 I[j, j],
	 for 1 ≤ j ≤ n.
	 It also follows that for the leaves, taken in tree order,
	 j is monotonically non-decreasing.
 For any two leaf of the form
	 I[j],
	 the immediately following leaf in tree order may be
	 either
	 I[k]
	 or
	 I[k,
	 k],
	 where
	 k = j + 1.
 For a leaf of the form
	 I[j, j],
	 the next leaf in tree order may be either
	 I[j,
	 j],
	 or
	 I[k],
	 again with
	 k = j + 1.
	

	 The Earley tree is true (or correct) if and only if the
	 concatenation of all the leaves, in order, is the input I.
	 We say that such an Earley tree exhibits a
	 derivation of I from G.
	
	
	 It should be evident that a conventional parse tree for the
	 input I against the grammar G can be constructed from a
	 correct Earley tree by
	 (1) deleting each node (x,
	 x,
	 N → ·
	 α)
	 for non-empty α;
	 (2) replacing each node (x, y, N1 → α N2
	 · β) with
	 N2;
	 (3) replacing pre-terminal nodes (nodes with single leaf
	 children) with their children;
	 (4) replacing each leaf node with the string it denotes
	 (I[j]
	 with character j of
	 I,
	 I[j,
	 j]
	 with the empty string);
	 and (5) retaining the parent-child relations and sequence of children.
	
	
	 It should also be evident that the parse tree implied by an
	 Earley tree for a given I and G is correct if and only
	 if every Earley item in the tree is true.
	

Brief digression

	 We note in passing that the job of any parser is to
	 calculate an Earley tree for a given G and I; one way to
	 think of it is as starting with the given information (I
	 and G), calculating a set of Earley items, and then
	 determining whether we can build an Earley tree from them.
	

	 The job of a correct parser is to ensure that
	 all the items in the Earley tree are true (and thus that the
	 tree is correct).
	

	 The job of an efficient parser is to do so with
	 as little effort as possible (in particular, considering as
	 few items as possible, and testing as few as possible for
	 truth).
	
	
	 The job of an unrestricted parser is to calculate a correct
	 Earley tree for any arbitrary G and I; restricted
	 parsers (e.g. LL(1) or LR(k) parsers) do so only for some
	 G.
	

	 Grune and Jacobs observe that the problem with some general
	 parsing methods is that in the worst case they end up doing
	 a lot of unnecessary work, such as calculating the
	 truth of a lot of Earley items that turn out irrelevant to
	 the construction of a correct parse tree.
	
	
	 The Earley algorithm is a way to calculate Earley trees for
	 arbitrary context-free grammars while reducing the amoung of
	 unnecessary work. To summarize the algorithm, we need to
	 define some properties of Earley items, beyond truth and
	 falsehood.
	

Properties and relations of Earley items
The first important property of Earley items has already
	been mentioned several times: Earley items can be true or
	false. This section describes some additional properties and
	relations.
Expectation
	
	 An Earley item (x, y, N → α · X
	 β), i.e. an item with the symbol X (terminal or
	 non-terminal) right after the dot, is said to expect an
	 X.
	
	
	 Note: We are restricting ourselves here to CFGs given in
	 BNF. The extension to EBNF and regular right part grammars
	 is not too difficult, but complicates the account. See below
	 (section “Extension to EBNF”) for a discussion of extended BNF.
	

Testability; winning and losing

	 An Earley item (x, y, N → α · T
	 β), which expects a terminal symbol T, can be
	 directly tested against the input. If I[y,y+1] = T,
	 then the item wins; otherwise it
	 loses.
	

	 If the item just described is true and wins, then the
	 related item (x, y, N → α T · β),
	 which moves the dot one symbol to the right, is also true.
	 That is, given the truth of:
	 	(x, y, N → α · T β)

	I[y,y+1] = T

	 we can infer the truth of:
	 	(x, y + 1, N → α T · β)

	
The advance() function; continuations
	
	 We define the function advance() to describe this
	 relation; it maps from an Earley item i and a terminal
	 symbol T to an Earley item j or to nothing.
	 Specifically, if
	 	i = (x, y, N → α · T β)

	j = (x, y + 1, n → α T · β)

	 then
	 	advance(i,T) = j if and only if i wins

	advance(i,T) = ∅ if and only if i loses

	

	 For convenience, we may also want to be able to apply the
	 function to a set of items, not just a single item. If iii
	 is a set of Earley items, and T is a terminal symbol, then
	 advance*(iii, T) is the set {j | j =
	 advance(i, T) for some i ∈ iii}. We refer to
	 j as a continuation of i. Continuation is
	 transitive: any continuation of j is also a continuation
	 of i.
	

The scan() relation between items

	 Looking ahead, we say that the relation scan(i, j)
	 holds between Earley items i and j if and only if i expects
	 terminal T, i wins, and j = advance(i, T).
	

Testing and advance() function for non-terminals

	 By contrast, an Earley item (x, y, N1 → α
	 · N2 β) which expects a non-terminal symbol
	 N2 cannot be directly tested against the input. It can
	 however can be tested indirectly. If N2 generates a
	 substring of I beginning at y (i.e. if for some z we
	 have N2 ⇒* I[y, z]), then the item wins;
	 otherwise it loses.
	
The advance() function again

	 Again we define advance() appropriately: given
	 	i = (x, y, N1 → α · N2 β)

	j = (x, z, N1 → α N2 · β)

	 then
	 	advance(i, N2) = j
		if and only if N2 ⇒* I[y, z] for some z

	advance(i, N2) = ∅ otherwise

	

Continuations
	
	 As with terminals, so also with non-terminals; if j =
	 advance(i, N) for some non-terminal N, then j
	 is a continuation of i, and any continuation of j is
	 also a continuation of i.
	

Useful items
	
	 An Earley item is useful if and only if it
	 appears in a correct Earley tree for the grammar G and
	 the input I. If an Earley item is not useful, it is
	 useless.
	
	
	 If parsing algorithms could distinguish between useful
	 and useless items before spending time on them, they
	 could be very efficient.
	

	 But at the beginning of a parse, it’s impossible
	 to know which items will be useful and which
	 won’t. For example, if I is not in the language
	 L(G) defined by G, then all Earley items for I and
	 G are useless, but we can’t know that without
	 calculating and testing at least a few.
	

	 Note in passing that if any item i = (x, y, N
	 → α · β) is useful, then some
	 completion of i, i.e. some item of the form (x, z,
	 N → α β ·) (with z ≥ y) will
	 also be useful; the two will be siblings in the Earley
	 tree. There might be more than one true completion of
	 i; if I has more than one derivation in G, more than
	 one of them may be useful.
	
	
	 The converse is also true in most cases: if (x, z, N
	 → α β ·) is useful, then there will be
	 at least one true item of the form (x, y, N →
	 α · β), and at least one such form will be
	 useful (more than one, in cases of ambiguity).
	

Relevant items

	 In a particular state of partial knowledge, when we have
	 examined part of the input but not all, an Earley item is
	 relevant if, based on what we know, it
	 could be useful. (We will make this more
	 precise in a moment.)
	

	 Also any Earley item (x, x, N → · α
	 β) is relevant if for some y (≠ x) the item
	 (x, y, N → α · β) is relevant.
	

	 Given a particular state of partial knowledge, an Earley
	 item is irrelevant if we know, based on
	 that partial knowledge, that it is useless. Any item
	 known to be false (in that same state of partial knowlege)
	 is thus irrelevant. I believe but have not attempted to
	 prove that in any given state of partial knowledge, any
	 Earley item that is not relevant is
	 irrelevant. This might depend on the nature
	 of the partial knowledge available.
	
	
	 The Earley algorithm is an online
	 algorithm, which reads the input left to right (or:
	 front to back, if one wishes to avoid fatal confusion in
	 cases of right-to-left scripts). At any given point in
	 time, we have read the first y characters in the
	 input, for some number y such that 0 ≤ y ≤
	 n, so we have knowledge of the substring I[0, y],
	 and no knowledge of the substring
	 I[y,
	 n].
	 We also have full knowledge of the grammar G.
	

	 Given knowledge of I[0, y], an Earley item of the
	 form (x,y,L) is relevant if it could
	 be part of an Earley tree for G and some input
	 which starts with the string I[0, y]. Or more
	 formally, the Earley item is relevant if and only if
	 there is some string I′ which shares the prefix
	 I[0, y] with I, for which the item is useful
	 (appears in some correct Earley tree).
	

Some consequences of the definition of relevance

	 It follows from the definition of relevance just given
	 that the item (0, 0, Goal → · S) is relevant
	 for all grammars and inputs.
	

	 It also follows from the definition of relevance that if
	 an item i = (x, y, L) expects terminal T, and
	 i is relevant, then advance(i, T) is relevant if
	 it exists (i.e. if i wins; if i loses,
	 advance(i, T) does not denote an item).
	

	 It further follows from the definition of relevance that
	 if an item i = (x, y, L) expects non-terminal N,
	 and i is relevant, then for every production rule N
	 → α in G, the item (y, y, N →
	 · α) is relevant.
	

	 If i is useful as well as relevant, then we know
	 we’ll need an item (y, z, N → α
	 ·) in the tree as well (since i is expecting an N,
	 and appears in a derivation tree, there will
	 be an N in the derivation tree at the appropriate
	 location). So at least one of the production rules for N
	 will be useful as well, but if there is more than one we
	 do not yet know which.
	

	 If the grammar is unambiguous, at most one production rule will be
	 relevant, but G could be ambiguous, so more than one
	 could be useful.
	

	 We don’t know, however, how N might be
	 instantiated in I (that’s essentially a
	 consequence of the nature of CFGs), so any of the
	 production rules for N could be the one needed for the
	 tree. That means every possible item (y, y, N →
	 · α) is relevant if N → α is in
	 G.
	

The pred() and comp() relations among items

	 Looking ahead, we say that the relation pred(i, j)
	 holds between items i and j if and only if item i = (x,
	 y, L) expects non-terminal N and item j has the
	 form (y, y, N → · α). Here pred
	 is short for predicts.
	

	 It also follows from the definition of relevance that if we have
	 	item i =
	 (x, y, N1 → α · N2 β)
	 expecting a non-terminal N2

	item j =
	 (y, z, N2 → γ ·)
	 is a completion for N1.

	 and both are relevant (if i is relevant, then j is also relevant
	 unless j is false), then the item
	 advance(i, N2),
	 i.e.
	 (x, z, N1 → α N2 · β),
	 is also relevant.
	
	
	 Looking ahead, we say that the relation comp(i, j, k) holds
	 if and only if
	 	item i = (x, y, L1)
	 expects some non-terminal N

	item j = (y, z, L2) is a completion for N

	k = advance(i, N)

	
	

The Earley algorithm

	 The Earley algorithm (as described in Earley 1970)
	 is a procedural way of calculating a set of Earley
	 items which are all true and are all relevant at the time
	 they are added to the set. I believe (but have not proved)
	 that it is in fact the set of all items which are both true
	 and relevant by the definitions above.
	

	 The algorithm calculates a set of Earley items which obeys
	 the following rules:
	
	
	 The item (0, 0, Goal → · S) is a member of the set.
	

	
	 If i = (x, y, L) is a member of the set which
	 expects terminal symbol T, and I[y+1] = T, then
	 advance(i, T) is also a member of the set.
	

	 If (x, y, L) is a member of the set which expects
	 non-terminal symbol N, and N → α is a
	 production rule in G, then (y, y, N → ·
	 α) is also a member of the set.
	

	
	 If i = (x, y, L) is a member of the set which
	 expects non-terminal symbol N, and j = (y, z,
	 N → α ·) is a member of the set, then
	 advance(i,N) is also a member of the set.
	

	
	 Nothing else is a member of the set.
	

	 Or, more concisely, the set is the smallest set that contains (0, 0,
	 Goal → · S) and is closed over the relations
	 scan(i, j), pred(i, j),
	 and comp(i, j, k).
	

	 Earley defines things procedurally, in terms of the
	 following steps:
	
	
	 He starts by initializing the set of items to (0, 0, Goal→ · S).
	

	
	 He then applies rule 3 above (our pred() relation) until it produces
	 no new items. At this point all items in the set have x = y =
	 0.
	

	
	 Then he iterates over the following procedure.
	
	
		 First
		 apply rule 2 (Earley’s
		 scanner, our scan() relation),
		 which generates new items of the form (x, y+1, L).
		 If no new items are produced by this step, we are done;
		 I is not a member of L(G).
		

		 (Digression: Why are we done? If applying rule 2 produces no
		 new items, then one of the following is true:
		
	
		 (a) The set of items includes no items which expect a terminal.
		 In this case, we have reached a point in the grammar where no
		 terminal is predicted, which means that no terminal can possibly
		 advance the parse, which means the parsing situation is
		 hopeless.
		

	
		 (b) The set of items includes some items which expect a
		 terminal, but none of them win. In this case, the grammar does
		 make testable predictions for this point, but the input
		 satisfies none of them, which means that the input definitely
		 fails to match the grammar.
		

		 Either way, there is no parse tree for I as a sentence of G,
		 so we are done.
		 End of digression.)
		

	
		 Then apply rule 3 (Earley’s
		 predictor, our pred() relation)
		 and rule 4 (Earley’s completer,
		 our comp() relation) until they produce no new items.
		

	
		 If the highest end-point y in our items (x, y,
		 L) is less than n, then start another round of
		 this procedure (go back to finding instances of the
		 scan() relation).
		

		 Otherwise, the highest end-point y = n and we
		 have reached the end of the input and are done.
		

	
	 If the set contains (0, n, Goal → S ·),
	 we have recognized the sentence and can construct an
	 Earley tree from the set. If the set doesn’t
	 contain that item, I is not a member of L(G).
	

	 Each round of this procedure uses progressively higher
	 values for the end-point in the search for instances of
	 the scan() relation, so there are at most n rounds
	 before we reach the end of the input.
	

	 It seems clear from this way of putting it that the
	 procedure described by Earley calculates the transitive
	 closure of (0, 0, Goal → · S) over the
	 relations scan(), pred(), and comp().
	

	 It’s pretty clear, intuitively, that the starter item
	 (0, 0, Goal → · S) is relevant and true,
	 and that all of the relations scan(), pred(), and
	 comp() produce new items for the set which are also
	 relevant and also true. Producing only relevant items is
	 what distinguishes Earley from some other algorithms, which
	 work purely bottom-up and essentially try to calculate all
	 true items with x ≠ y. I believe (but hesitate to say
	 it’s intuitively obvious) that the set described
	 contains all relevant items, as that term is
	 defined above; that property distinguishes the Earley
	 algorithm from things like recursive-descent and LR(1)
	 parsing, which in the interests of simplicity and/or speed
	 ignore some relevant items (which is why they can’t
	 handle all grammars).
	

	 Earley describes his algorithm in terms of very small
	 mechanical tasks; it’s obvious how to implement it,
	 especially in a procedural language with mutation.
	 It’s not at all obvious to me from E’s
	 description how to do the same thing in a declarative
	 language without mutation.
	

	 But by describing the set in terms of the relations, and defining the
	 relations in terms of their properties, instead of in the imperative,
	 procedural-pseudocode style used by Earley and by other descriptions,
	 I think I have succeeded in defining the relevant sets and properties
	 declaratively, which will make it easier to calculate them in a
	 functional language.
	

Two technical excursus
Calculating transitive closures

	 For implementing this declarative functional version
	 of the algorithm, it would obviously be handy to have
	 a language with a built-in transitive-closure
	 operator. But with higher-order functions, we can
	 build our own, I think.

 (: to take the transitive closure of some
 function f on some set $s, first define an
 equality function $eq, then specify a maximum
 number of recursive calls $n, and finally call
 my:transclos($eq, f, $n, $s)
 :)
 declare function my:transclos(
 $eq as function(*), (: equality test :)
 $r as function(*), (: unary function, for binary relation :)
 $maxcycles as xs:integer,
 $set as item()*
) as item()* {
 local:tc-helper($eq, $r, $maxcycles, $set, $set)
 };

 declare function local:tc-helper(
 $eq as function(*), (: equality test :)
 $r as function(*),
 (: unary function to calculate a binary
 relation :)
 $ttl as xs:integer,
 $queue as item()*,
 $accum as item()*
) as item()* {
 if (empty($queue)) then
 $accum
 else if ($ttl le 0) then
 error("Could not complete calculation, out of cycles.")
 else
 let $this := $queue[1],
 $rest := $queue[position() gt 1],
 $candidates := $r($this),
 $new := $candidates
	 [no $x in $accum
	 satisfies
	 $eq(., $x)]
 return local:tc-helper($eq, $r, $ttl - 1,
 ($rest, $new), ($accum, $new))
 };

	
	
	 Unfortunately, I really don’t know
	 a good way to generalize this for
	 ternary relations like comp. But the
	 pattern is simple enough to replicate.
 	

Extension to EBNF

	 The account of the algorithm given above exploits the
	 simplicity of production rules in BNF, which have a flat
	 sequence of symbols in the right hand side of each rule. But
	 many grammars extend BNF in ways which vary but typically
	 amount to allowing not just a sequence of symbols, but a
	 regular expression over V, on the right-hand side of a
	 rule. The notations are typically called
	 extended BNF, or EBNF; grammars written using
	 such notations are regular-right-part grammars
	 (because the right-hand part of each rule is a regular
	 expression).
	

	 Among the notations for regular-right-part grammars of
	 interest to XML users is the variant of van Wijngaarden
	 grammars specified by Steven Pemberton for use in
	 invisible XML
	 (Pemberton 2013).
	

	 To apply the Earley algorithm to regular-right-part
	 grammars, it is necessary to generalize the account above,
	 which can be done as follows. In particular, we will need
	 more abstract and general notions of (1) location,
	 (2) position in a production rule,
	 (3) expectation, and
	 (4) the advance function.
	

	 As before, an Earley item is a triple (x, y, L),
	 interpreted in the context of a grammar G and an input
	 string I, where x and y are the start and end
	 points of a substring of the input I, and L is a
	 location inside some rule in the productions P of the
	 grammar G. But instead of taking the form N →
	 α, where α is a sequence of symbols in V, the
	 location now has a structure whose details are not
	 specified. Instead, we define several operations on L,
	 which provide the information we need for the algorithm.
	

	 We would like the definition of these operations to be
	 general enough to be consistent with any of several
	 possible implementations of locations:
	 	For a BNF, we can use a sequence of symbols in
	 V and a non-negative integer representing an index into
	 that sequence.

	For an EBNF, we might use a pointer to a rule in
	 the grammar, together with a derivative expression
	 identifying what is still required or allowed to
	 appear.

	For any grammar, we could use a triple consisting
	 of a non-terminal N, a finite state automaton (FSA)
	 representing the right-hand side of a rule for N, and an
	 identifier denoting the current state in the
	 FSA.

	
Operators on locations
The following operations on locations are useful in
	 describing Earley parsing for regular-right-part grammars.
	 	
		rule(L) denotes the production rule within which
		the location L appears.
	

	
		nt(L) denotes the non-terminal on the left-hand side of
		rule(L).
	

	
		rhs(L) denotes the right-hand-side of rule(L)
	

	
		seen-so-far(L) denotes a sequence of symbols in V (all
		of which appear in rhs(rule(L))), which form a
		prefix of some word recognized by rhs(rule(L)).
	

	
		remains-to-be-seen(L) is an expression describing the part of
		rhs(L) which remains to be matched after
		seen-so-far(L) has been seen.
	

		In an EBNF it will always be (equivalent to) the
		derivative of rhs(L) with respect to seen-so-far(L).
	

	completed(L) is true if and only if
	 remains-to-be-seen(L) is nullable, i.e. it is matched
	 by (accepts) the empty sequence.
For any item (x, y, L), if completed(L)
	 then nt(L) ⇒* I[x, y].
	 Such an item is a completed item,
	 and a completion of nt(L).
	

	 expects(L) denotes a set of symbols in
	 rhs(L). In a BNF, we get exactly one symbol, or none:
	 the symbol to the right of dot in the item. In an EBNF, we
	 get the set of symbols (terminal or non-terminal) which
	 can follow the current state, or equivalently the set of
	 symbols which are accepted as initial symbols by
	 remains-to-be-seen(L).
	

	
For any two locations L1 and L2, if rule(L1) =
	 rule(L2) and seen-so-far(L1) = seen-so-far(L2), then L1 and
	 L2 are equivalent. Let R = rule(L1) = rule(L2)
	 and α = seen-so-far(L1) = seen-so-far(L2); then we have:
	 	nt(L1) = nt(L2) = left-hand side of R

	rhs(L1) = rhs(L2) = right-hand side of R

	remains-to-be-seen(L1) is equivalent to remains-to-be-seen(L2) in the
	 sense that they accept the same language; in each case,
	 the expression will be the derivative of rhs(R) with
	 respect to α, or another expression equivalent to
	 that derivative. (In practice, it is helpful to simplify
	 derivative expressions, but a weak and easy simplification
	 may not reduce all equivalent expressions to the same
	 form. See Brzozowski 1964.)

	completed(L1) = completed(L2) =
	 nullable(remains-to-be-seen(L1)) = nullable(remains-to-be-seen(L2)).
	

	 An expression is nullable if the language it defines
	 includes the empty string as a sentence.
	 For definitions of nullability and explanations of
	 the relation between nullability of a derivative and
	 satisfaction of the original expression,
	 see
	 Brzozowski 1964 or
	 Brüggemann-Klein 1993a or
	 Brüggemann-Klein/Wood 1998 or
	 Sperberg-McQueen 2005.
	

	expects(L1) = expects(L2) = the
	 set {X | X ∈ V and the derivative of remains-to-be-seen(L1)
	 with respect to X ≠ ∅}.

	 A consequence of the equivalence of L1 and L2, given the
	 identify of rule() and seen-so-far() for them, is that we can
	 specify any location down to equivalence by specifying a
	 rule and a sequence of symbols.
	

Notes on individual operators
The following subsections provide some examples
	 and further discussion of some of the operators
	 defined above.

	 Note that seen-so-far(L) is not necessarily
	 or usually a prefix of some sequence of characters
	 generated by nt(L); it is a prefix of some
	 sequence of terminal and non-terminal symbols in V
	 which matches the regular expression rhs(L).
	

	 If an item (x, y, L) is in fact true, then
	 I[x, y] is generated by seen-so-far(L).
	

	 For example, consider L1 and L2 such that
	 	rule(L1) = A → B C D

	rule(L2) = A → (B | C)*, D

	 In this case, seen-so-far(L1) may be any
	 of
	 	() (i.e. the empty sequence)

	(B)

	(B C)

	(B C D)

	 seen-so-far(L2)
	 may be any of
	 	()

	(B)

	(C)

	(D)

	(B B)

	(B C)

	(B D)

	(C B)

	(C C)

	(B D)

	(B B B)

	...

	

	 This operator is not actually used in calculating the
	 set of Earley items we are interested in; the only
	 reason for defining seen-so-far(L) is to make it possible
	 to say (as we did above) that any item (x, y, L)
	 is true if and only seen-so-far(L) ⇒* I[x, y].
	

	 We could do without seen-so-far(L) if we said that the
	 interpretation of an Earley item (x, y, L) is not
	 the string I[x, y] matches (is generated by) the
	 part of the rule to the left of the dot but the
	 equivalent claim for all strings s generated by
	 remains-to-be-seen(L), the concatenation of I[x, y] with s is
	 generated by nt(L).
	
Unlike seen-so-far, which returns a sequence of symbols in V,
	 remains-to-be-seen returns a regular expression over V.

	 For L1 and L2 as described above, then
	 remains-to-be-seen(L1) may be any of
	 	(B C D)

	 (C D)

	 (D)

	()

	 remains-to-be-seen(L2) may be any of
	 	((B|C)*, D)

	(D)

	()

	

	 If the grammar is in BNF, then completed(L) if and only if
	 remains-to-be-seen(L) = empty-sequence.
	

Properties of items and relations on items
Provided with the operations defined above, we
	 can now redefine the crucial terms introduced earlier
	 for BNF (section “Properties and relations of Earley items”) so that
	 they also apply when G is a regular-right-part grammar.
Expectation, winning, and losing in EBNF grammars
An item (x, y, L) expects a
	 symbol X if and only if X ∈ expects(L).
Given an item i = (x, y, L) and a symbol X (X ∈ V),
	 such that i expects X, i wins on X if either
	 	X is a terminal symbol T, and

	I[x, y+1] = T,

	 or
	 	X is a non-terminal symbol N, and

	N ⇒* I[y, z], for some z (y ≤ z ≤ n).

	 Otherwise i loses on X.
Note that since i can expect more than one symbol, it
	 may win on some symbols and lose on others. Without
	 respect to any particular symbol, i wins if
	 there exists as least one symbol X for which i wins on
	 X; i loses if there is no such symbol.
	

The advance function for EBNF grammars
For any i = (x, y, L1), j = (x, z, L2), and
	 X ∈ V,
	 if (1) i expects X and
	 (2) rule(L1) = rule(L2) and
	 (3) seen-so-far(L1) || X = seen-so-far(L2),
	 then advance(i, X) = j if and only if i wins on X;
	 otherwise advance(i, X) = ∅.
	
The definitions of advance* and
	 continuation are as given above: if iii is
	 a set of items and X is a symbol, advance*(iii, X)
	 = {j | j = advance(i, T) for some i ∈
	 iii }, and j is a continuation of i if j =
	 advance(i, X) for some symbol X, or if
	 j is a continuation of some continuation of i.
	

The scan relation for EBNF grammars

	 The relation scan(i, j) holds between items i and j if and only if
	 there exists some T such that
	 i expects T,
	 i wins on T,
	 and j = advance(i, T).
	

Inferences regarding relevance for EBNF grammars
The definitions of useful, useless, relevant, and irrelevant items are as given above
							(section “Useful items”). Some of the inferences given above can
						be generalized for EBNF grammars.
Any item i = (x, y, L) may have more than one
	 continuation which is a completion for nt(L). If i
	 is useful, at least one of those completions will be
	 useful. (If more than one is useful, they will be useful
	 in different Earley trees, and G will be ambiguous.)
	
If any item i of the form (x, y, L) is relevant
	 at the point where we have knowledge of I[0, y] and
	 expects a symbol X and wins with X, then
	 advance(i, X) is also relevant, at the point where
	 we have read X. (For terminal symbols, that will be at
	 point I[0, y+1]; for non-terminals, it may be at any
	 point between I[0, y] and I[0, n], inclusive.) If
	 expects(L) ⊆ VT (i.e. every symbol expected by
	 i is a terminal symbol), and i loses, then at point
	 I[0, y+1] i is known to be false and thus known to
	 be useless, so at that point it is no longer relevant.
	 If any of the symbols expected by i are non-terminals,
	 it is not usually known how long a string any of those
	 non-terminals might generate; it is accordingly somewhat
	 harder to establish with certainty that any such items
	 have lost definitively and have become irrelevant.	
	
At any point when we have read I[0, y], if item i
	 = (x, y, L) is relevant, then for every non-terminal
	 N in expects(L), and for every rule R defining N
	 in the grammar G, the item (y, y, L) with
	 rule(L) = R and seen-so-far(L) = ε (the empty
	 sequence) is relevant.

The pred and comp relations for EBNF
	 grammars

	 The relation pred(i, j)
	 (prediction) holds between any two items
	 i and j if and only if item i = (x, y, L1)
	 expects some non-terminal N, and j = (y, y,
	 L2) with nt(L2) = N and seen-so-far(L2) = ε.
	
 The definition of relation comp(i,
							j, k)
							(completion) applies to EBNF grammars in the form defined
						above (section “The pred() and comp() relations among items”).

The algorithm
Provided with the operations defined above, we
	 can now describe the Earley algorithm in a form that
	 applies to EBNF as well as to BNF.
Actually, the only change needed is that instead of
	 saying that the set is initialized with the starter item
	 (0, 0, Goal → · S), we say that it is
	 initialized with a starter item item of the form (0, 0,
	 L) with nt(L) = Goal and seen-so-far(L) = ε.
	

Follow-on work
Future work should include formal proofs of one or more of
	 the following propositions stated or suggested informally
	 above.
	 In them, E is the set calculated by the
	 algorithm in Earley’s paper, and S is the smallest set
	 which contains the starter item and is closed over the
	 relations scan, pred, and comp (i.e. the set
	 described in the declarative functional restatement of the
	 algorithm).
	 	The set E and the set S are
	 identical.

	S contains no false items.

	Every item i of the form (x, y, L)
	 which is relevant with respect to the partial knowledge
	 available from having read I[0, x] is in
	 S.

	Every item in S of the form (x, y, L)
	 is relevant with respect to the partial knowledge
	 available from having read I[0, x].

	 The first of these amounts to showing the correctness of
	 my claim to have translated Earley’s algorithm into
	 functional terms.
	

	 The second would establish that the functional algorithm
	 described here is correct, in the sense that if for a
	 given I and G it produces a set from which an Earley
	 tree can be constructed, then I is in fact a sentence
	 of the language defined by G.
	

	 The third would establish that the functional algorithm
	 given here is complete, in the sense that if a given I
	 is a sentence of the language defined by a given grammar
	 G, the algorithm will produce a set from which an
	 Earley tree can be constructed.
	

	 The fourth would suggest that the functional algorithm
	 given here does not do any work which can be seen in
	 advance to be pointless.
	

Concluding remarks
What can be learned from the example of Earley
	parsing for the general problem of translating procedural
	algorithms into XSLT and XQuery?
Three basic ideas seems to stand out.
		Update operations define relations.
Each of the basic operations performed by the Earley
	 operation consists in adding an Earley item to a set,
	 given certain conditions. The functional paraphrase given
	 here works by interpreting each of these operations semantically
	 as identifying a relation that holds between one or more items
	 already in the set and the new item being calculated.
(The dependency of the operations on G and I complicates
	 matters very slightly, because it makes scan and
	 pred, which would otherwise be binary relations,
	 into relations with four arguments. But since G and I don’t change,
	 we can treat them as binary relations, for which transitive closure
	 is easily defined, by restricting our universe of discourse to
	 contexts in which G and I are present. Earley achieves the same
	 effect by treating G and I as global variables.)

	Iteration can calculate a transitive closure.
Earley describes the algorithm as running until either
	 the input is exhausted or the parse fails. We can capture
	 this in a non-temporal way by making the algorithm
	 calculate the transitive closure of one or more
	 relations.
Transitive closure is not a primitive operation in XSLT or
	 XQuery, except in the special cases of the axes ancestor,
	 descendant, following[-sibling],
	 etc. But any transitive closure can be calculated without
	 great difficulty using a recursive function.

	Sets may be easier than more complex structures.
We are able to use the concept of transitive closure here
	 because we are operating on sets of Earley items; if instead we
	 were building a set of parse trees, both the relations among objects
	 and the calculation of the transitive closure would almost certainly
	 be more complicated.

	

References
[Brüggemann-Klein 1993a]
	 Brüggemann-Klein, Anne.
	 1993.
	 Regular expressions into finite automata.
	 Theoretical Computer Science
	 120.2 (1993): 197-213. doi:https://doi.org/10.1016/0304-3975(93)90287-4.
	
[Brüggemann-Klein/Wood 1998]
	 Brüggemann-Klein, Anne,
	 and
	 Derick Wood.
	 1998.
	 One-unambiguous regular languages.
	 Information and computation
	 140 (1998): 229-253. doi:https://doi.org/10.1006/inco.1997.2688.
	
[Brzozowski 1964]
	 Brzozowski, Janusz A.
	 Derivatives of regular expressions.
	 Journal of the ACM
	 11.4 (1964): 481-494. doi:https://doi.org/10.1145/321239.321249.
	
[Earley 1970]
	 Earley, Jay.
	 1970.
	 An efficient context-free parsing algorithm.
	 CACM
	 13.2 (1970): 94-102. doi:https://doi.org/10.1145/362007.362035.
	
[Grune/Jacobs 1990/2008]
	 Grune, Dick, and Ceriel J. H. Jacobs.
	 1990/2008.
	 Parsing techniques: a practical guide.
	 First edition New York et al.: Ellis Horwood, 1990.
	 Second edition [New York]: Springer, 2008.
	
[Pemberton 2013]
	 Pemberton, Steven.
	 Invisible XML.
	 Presented at Balisage: The Markup Conference 2013,
	 Montréal, Canada, August 6 - 9, 2013.
	 In
	 Proceedings of Balisage: The Markup Conference 2013.
	 Balisage Series on Markup Technologies, vol. 10 (2013).
	 doi:https://doi.org/10.4242/BalisageVol10.Pemberton01.
	
[Sperberg-McQueen 2005]
	 Sperberg-McQueen, C. M.
	 2005.
	 Applications of Brzozowski derivatives
	 to XML Schema processing.
	 Paper given at Extreme Markup Languages 2005, Montréal,
	 sponsored by IDEAlliance.
	 Available on the Web at
	 	http://www.mulberrytech.com/Extreme/Proceedings/html/2005/SperbergMcQueen01/EML2005SperbergMcQueen01.html,
	 	http://cmsmcq.com/2005/abdxsp.unicode.html, and
	 	http://cmsmcq.com/2005/abdxsp.ascii.html.
	

Balisage: The Markup Conference

Translating imperative algorithms into declarative, functional terms
towards Earley parsing in XSLT and XQuery
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

C. M. Sperberg-McQueen is the founder and
	 principal of Black Mesa Technologies, a consultancy
	 specializing in helping memory institutions improve
	 the long term preservation of and access to the
	 information for which they are responsible.
He served as editor in chief of the TEI
	 Guidelines from 1988 to 2000, and has also served
	 as co-editor of the World Wide Web Consortium's
	 XML 1.0 and XML Schema 1.1
	 specifications.
	

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

