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Abstract

	  In building up subroutine libraries for XSLT and
	  XQuery, it is sometimes useful to re-implement standard
	  algorithms in the new language. Such re-implementation can
	  be challenging, because standard algorithms are often 
	  described in imperative terms; before being
	  reimplemented in XSLT or XQuery, the algorithm must first be
	  re-understood in a declarative and functional way.
	

	  Some of the challenges which arise in this process can be
	  illustrated by the example of Earley parsing. Earley’s
	  algorithm can parse an input string against any context-free
	  grammar in Backus-Naur Form. Unlike recursive-descent or
	  table-driven LALR(1) parsers it is not limited to
	  well-behaved grammars. Unlike other
	  general context-free parsing algorithms such as CYK, it does
	  not devote time and space to operations which can be seen in
	  advance to have no possible use in a full parse. Earley’s
	  procedural description involves successive changes to a
	  small set of data structures representing sets of
	  Earley items; these procedural changes cannot
	  be translated directly into a functional language lacking
	  assignment.
	

	  But Earley’s data-structure updates can be
	  understood as defining relations among Earley items, and the
	  algorithm as a whole can be interpreted as calculating the
	  smallest set of Earley items which contains a given starter
	  item and is closed over a small number of relations on
	  items. Re-thinking the Earley algorithm in this way not only
	  makes it easier to implement it in XSLT and
	  XQuery, but helps make it clear why the parser is both
	  complete (it will always find a parse if there is one) and
	  correct (any parse it finds will be a real parse).
	



Balisage: The Markup Conference


      Translating imperative algorithms into declarative, functional terms

      towards Earley parsing in XSLT and XQuery

      
         Table of Contents

         
            	Title Page

            	Introduction

            	Notation

            	Earley items

            	Earley trees

            	Brief digression

            	Properties and relations of Earley items
                  	Expectation

                  	Testability; winning and losing
                        	The advance() function; continuations

                        	The scan() relation between items

                     

                  

                  	Testing and advance() function for non-terminals
                        	The advance() function again

                        	Continuations

                     

                  

                  	Useful items

                  	Relevant items

                  	Some consequences of the definition of relevance

                  	The pred() and comp() relations among items

               

            

            	The Earley algorithm

            	Two technical excursus
                  	Calculating transitive closures

                  	Extension to EBNF
                        	Operators on locations

                        	Notes on individual operators

                        	Properties of items and relations on items

                        	The algorithm

                        	Follow-on work

                     

                  

               

            

            	Concluding remarks

            	About the Author

         

      
   Translating imperative algorithms into declarative, functional terms
towards Earley parsing in XSLT and XQuery

Note
This paper makes no overt reference to markup; perhaps
	some rationale is due for submitting it Balisage.
Balisage is about the use of markup to meet challenges
	in information manangement.  Many, perhaps most, users of
	descriptive markup use XML.  Many (although not all) users of
	XML find it more convenient to process XML using XSLT and
	XQuery than using most other programming languages; some would
	like to XSLT and XQuery developed as general-purpose
	programming languages. To be useful as general-purpose
	programming languages, however, they need libraries providing
	standard functionality and often implementing standard
	algorithms. 
This paper describes the reimplementation of one
	standard in XQuery / XSLT terms.  Its interest, if it has any,
	is first in the functional, declarative reformulation of the
	interesting (even beautiful) Earley algorithm and second in
	the way that that reformulation has been achieved. Perhaps
	this example will be helpful to others seeking to reimplment
	standard functionality in these languages.
	
	

Introduction

	Among XML users, it’s not unusual to find XSLT and
	XQuery being used as general-purpose, not special-purpose,
	programming languages. It is easier to use a language for
	general-purpose programming across a wide range of application
	areas if it has libraries of subroutines for different
	domains. To build up larger libraries of subroutines for
	general-purpose languages, it’s sometimes useful to
	re-implement standard algorithms in the new language.
      

	One of the challenges of reimplementing standard algorithms in
	XSLT and XQuery is that standard algorithms are often
	described in imperative terms which cannot be translated
	directly into declarative functional languages. If we can
	understand the algorithms in a more declarative way, however,
	it may be possible to implement them straightforwardly in XSLT
	or XQuery. The difficulty and one path to resolving it are
	illustrated here with the parsing algorithm described by Jay
	Earley in 1970 (Earley 1970).
      

	Earley parsing is a well-known technique for parsing input
	using context-free languages; unlike techniques like recursive
	descent and standard table-driven parsing it does not require
	special properties in the grammar, like being LL(1) or
	LALR(1): it will work for any input and any grammar, whether
	the grammar requires lookahead or not. But the algorithm as
	Earley describes it is quite low-level: routines called the
	predictor, the scanner, and the completer take turns changing
	global data structures until it can be seen from the data
	structures that the parse has succeeded or failed.  In the
	case of success, one or more parse trees can be extracted from
	the data structure; in failures, one can identify the point at
	the input at which the attempt failed and generate diagnostic
	messages.  It is not always immediately obvious to the reader,
	however, exactly why the predictor, the scanner, and the
	completer behave as they do, or why their interaction is
	guaranteed to find any and all legitimate parses of the input.
	And since XSLT and XQuery don’t allow the assignment of
	new values to variables, the data-structure manipulations used
	by Earley cannot be implemented as described.
      

	The discussion below tries to step back and think about what
	the data structures described by Earley mean, in order to
	understand the algorithm in a purely declarative way.  We
	proceed roughly as follows:
		Earley defines an important data structure called
	    the Earley item and the Earley
	    algorithm initializes and manages a set of such items,
	    adding new elements to the set when certain conditions are
	    met.

	Since the conditions to be met typically involve the
	    presence of particular items in the set, and since the new
	    items to be added are typically constructed on the basis
	    of those existing items, we can consider Earley’s
	    operations as defining several relations on items.  A
	    relation R holds between two Earley
	    items X and Y
	    just in case Earley’s algorithm will add
	    Y to the set whenever
	    X is present.
	    Some relations used by Earley are ternary, not binary;
	    in those cases,
	    item Z will be added to the
	    set just in case X and
	    Y are in the set and
	    R(X,
	    Y,
	    Z) holds.
	    

	The algorithm's updates to the set of items can then
	    all be described in the following terms: if an item
	    X is in the set (or, for
	    some steps, if items X
	    and Y are in the set), and the relation
	    R holds between
	    X (or X and
	    Y) and another item
	    Z, then Z is
	    added to the set.
	    

	It is then possible to see that Earley’s
	    algorithm calculates the smallest set of Earley items
	    which (a) contains a standard starter item
	    and (b) is closed over a number of relations defined as
	    holding (or not holding) for pairs or triples of Earley
	    items.



      
      
	Re-thinking the Earley algorithm in this way not only makes it
	easier to implement it in XSLT and XQuery, but
	helps make it clear why the parser is both complete (it will
	always find a parse if there is one) and correct (any parse it
	finds will be a real parse).
      
The next two sections of this paper (section “Notation” and section “Earley items”) introduce some
      basic notation and the concept of the Earley item.
      We then (section “Earley trees”) define
      Earley trees; these are not defined by Earley,
      but prove useful in the later discussion.  The nodes of Earley trees 
      are sets of Earley items with certain parsing-relevant
      properties. We then proceed (section “Properties and relations of Earley items”)
      to identify some interesting properties of
      Earley items (truth, expectation, testability, usefulness,
      relevance), and some useful relations between items (advance,
      continuation, scan, prediction). Supplied with these relations,
      we can define the Earley algorithm using them and show how they
      guarantee that it is complete and correct (section “The Earley algorithm”). 
The initial description of the algorithm applies to grammars
      given in Backus-Naur Form; the penultimate section (section “Two technical excursus”) contains discussions of two
      technical topics of practical importance: how to calculate the
      required sets in XSLT and XQuery, and how to extend the
      treatment of Earley parsing here to handle regular-right-part
      grammars like those specified for Invisible XML (section “Extension to EBNF”). The final section (section “Concluding remarks”) tries to draw some lessons for XSLT and
      XQuery translations of procedural algorithms from this
      example.

Notation

	  We assume a grammar G and an input string I of length n.
	  A grammar is a four-tuple (VN, VT, P, S), where
	  	VN is a set of non-terminal symbols.

	VT is a set of terminal symbols,
	    disjoint from VN (i.e.
	     VN ∩ VT = ∅).

	P is a set of production rules
	     of the form N → α, where
	     	N ∈ VN.

	α is a sequence of zero or more symbols
	       from (VN ∪ VT).




	S ∈ VN is the start symbol of
	     the grammar.



	  The vocabulary of G is the set of terminal and
	  non-terminal symbols V = VN ∪ VT.
	  When we need to mention the start symbol of G, we call it S.
	  Non-terminal and terminal symbols in G will be called N, T,
	  N1, N2, ... and so on. Sequences of terminals and
	  non-terminals will be called α, β, γ ...
	

	  For purpose of our exposition, we often wish to deal not with
	  the grammar G as is, but with an augmented grammar
	  G′ = (VN ∪ Goal, VT,
	  P ∪ Goal → S, Goal),
	  where Goal ∉ VN.  This allows us to know that
	  the start-symbol Goal has exactly one rule, whose form
	  we know, and that it never appears on the right-hand side of any rule
	  in G′.
	  It should be clear that G and G′ define the same
	  language.
	
We use the term string or string of
	characters when referring to I or substrings of I,
	or other sequences of terminal symbols.
	We use the term sequence when referring
	to sequences of symbols in V.  There is no technical
	distinction between the terms string and
	sequence other than the restriction of
	strings to terminal symbols; they are distinguished here only
	in an attempt to make the argument easier to follow.
For any two sequences or strings α and β,
	α β
	denotes the concatenation of α and
	β.  Where simple juxtaposition might
	be ambiguous, or where it is desired to emphasize the
	concatenation
	operator, the form 
	α || β
	is used with the same meaning.
We write the empty string ε and the empty sequence
	either ε or ().

	  The expression I[i] refers to the character at position i in
	  I; the expression I[x,y] refers to the substring from
	  (just after) position x up to and including the
	  character at position y. We use 0 to refer to the position
	  before the first character.
	

	  For example, if I is the string a+b, then
	
	
	      I[1], I[2], I[3] refer to the characters a,
	      +, and b,
	      respectively.
	    

	
	      I[0,1], I[0,2], I[2,3] refer to the substrings
	      a, a+, and
	      b respectively; I[0,0] and
	      I[3,3] refer to the empty strings immediately before
	      a and after b,
	      respectively.
	    


Note that for any string I and any non-negative integers
	x, y, z all ≤ n, we have I[x, y] || I[y,
	z] = I[x, z], and for any x (0 < x ≤ n),
	I[x] = I[x-1, x].
The discussion which follows tries to make the line of
	argument as explicit and easy to follow as possible, but some
	basic knowlege of context-free grammars is inevitably assumed.
	(Ironically, any attempt to make an argument easier to follow
	by making the inference steps as small as possible has the
	follow-on effect of multiplying the number of formulas and
	such, so that at first glance the text will appear less
	accessible, not more accessible. Readers interested but uneasy
	with formalisms are encouraged to take a deep breath and
	persevere.)
	

Earley items

	  An Earley item is a triple (x, y, N → α · β), where
	  	x is a number between 0 and n, inclusive, referred
	    to as the start value

	y is a number between x and n, inclusive,
	    referred to as the end value

	α and β are sequences in V*,
	    i.e. sequences of
	    zero or more symbols (terminals or non-terminals)

	N → α β is either a production rule in G or the special
	    rule Goal → S described above.



	

	  The third item in the triple is a location
	  (sometimes referred to in parsing literature simply as an
	  item); if we don’t care about the details
	  of the location, we may write an Earley item (x, y,
	  L).
	

	  If β is the empty sequence, so that the item has the form
	  (x, y, N → α ·), then the item is
	  called a completed item (or a
	  completion) for N.
	
	
	  For example, given I as above (a+b), if G is
	  the tuple (VN, VT, P, E), where
	  	VN = { E, T, P }

	VT = { *,
	    +,
	    a,
	    b, 
	    (, 
	    ), 
	    [, 
	    ]
	    }

	P = 
	    	E → T

	E → E * T

	T → A

	T → T + P

	A → a

	A → b

	A → ( E )

	A → [ E ]



	  



	  then possible Earley items include
	  	(0, 0, E → · T) 

	(2, 3, T → T + · A)

	(2, 2  E → · T)

	(2, 2  T → · T + A)

	(3, 3, A → ( E ) ·)  

	(0, 3, E → · T)

	(0, 3, E → T ·)

	(0, 3, A → ( E · ))

	(0, 0, Goal → · E) 

	(0, 0, Goal → E ·) 



	
	
	  Informally, we understand an Earley item to mean that in
	  grammar G, the string of symbols α generates the
	  string I[x, y]. (A sequence of symbols
	  generates a string if and only if the string
	  can be produced from the symbols by applying a series of
	  zero or more rewrites using rules of G.  Since generation
	  involves zero or more applications of the rewrite relation
	  written →, it is not infrequently denoted ⇒*.)
	  So the 
	  examples just given can be interpreted as saying
	  	The string  immediately
	    before a is generated by the empty
	    sequence of symbols.

	The string b is generated by
	    the symbol sequence T +.

	The string  immediately after
	    + is generated by the empty
	    sequence of symbols.

	The string  immediately after
	    + is generated by the empty
	    sequence of symbols.

	The string  immediately after
	    b is generated by the sequence
	    ( E ).

	The string a+b is generated
	    by the empty sequence of symbols.

	The string a+b is generated
	    by the sequence T.

	The string a+b is generated
	    by the sequence ( E.

	The string  immediately
	    before a is generated by the empty
	    sequence of symbols.

	The string  immediately
	    before a is generated by the
	    sequence of symbols E.



	
	
	  Note that since we normally use Earley items to keep track
	  of where we are in recognizing input against a grammar,
	  informally an Earley item may also suggest that we are
	  expecting to see an instantiation of the sequence
	  β that follows the dot. (See also the discussion of
	  expectation, below.) But expectations are not relevant for
	  the truth or falsehood of the item, and thus not part of the
	  meaning of the item, narrowly construed.
	
	
	  Of these examples, (5), (7), and (10) are completed items.
	

	  Note that because they have a meaning, Earley items can be true or false.
	
	
	  For example, in the list just given, items (1), (3), (4),
	  (7), and (9) are true
	  statements, and the others are false.
	
	
	  Note that if x = y and α is the empty string, then
	  we have an Earley item of the form (x, x, N →
	  · β). The meaning of such an item is always that
	  the empty sequence of grammar symbols derives the empty
	  sequence of terminal symbols, and the item is accordingly
	  always true.
	

Earley trees
These are not defined by Earley, but they prove helpful for
	later discussion.
	

	  An Earley tree for the start symbol S in a given grammar
	  G, for a given input I, is an ordered tree of Earley items with
	  the following properties:
	  	Each node in the tree is either an Earley item
	      or an expression of the form 
	      I[y]
	      or an expression of the form 
	      I[y, y]. 
	      

	The children of any node are ordered.

	The root node has the form (0, n, Goal → S
	      ·), where S is the start-symbol of G and Goal
	      is the start symbol of the augmented grammar G′
	      described above.

	For any node K of the form (x, y, N1 →
	      α N2 · β), (i.e. in which the last item
	      before the dot is a non-terminal N2), the node’s
	      children
	      
	      will take the form:
	      	(w, w, N2 → · R1 R2 R3
		... Rk)

	(w, z1, N2 → R1 · R2 R3
		... Rk)

	(w, z2, N2 → R1 R2 · R3
		...  Rk)

	...

	(w, y, N2 → R1 R2 R3 ... Rk
		·)



	      where
	      	k is the length of the rule’s
		right-hand side.

	w ≤ z1 ≤ z2 ≤ ... ≤ zn-1 ≤
		y.

	w is equal to the end value of node K’s left
		  sibling, if K has a left sibling.
Otherwise, w = x (the start value of K).
Note that in either case we have x ≤ w ≤ y.



	      
Recall that by the definition of Earley item, N2
	      → R1 R2 R3 ... Rk is a rule in G.
By this rule, all siblings in an Earley tree have
	      locations in the same production rule of G, all have
	      the same start value w, and they have non-decreasing
	      end values. The start value of all children is the same
	      as the end value of the parent’s left sibling,
	      when it has one; otherwise it’s the same as the
	      start value of the parent. (The second case arises for
	      unit rules and for the children of the root node.) The
	      end value of the last child is the end value of the
	      parent.

	Every node K of the form (x, x, N →
	      ·), (i.e. a completion for non-terminal
	      N in which the production has an
	      empty right-hand side) has a single child node, of the
	      form I[x, x].
	      

	For any node of the form (x, y, N →
	    α T · β), (i.e. in which the last item
	    before the dot is a terminal symbol T), the node’s
	    sole child is the terminal symbol I[y], and I[y] =
	    T.

	Every node of the form
	    I[y] is a leaf
	    node (has no children).



	

	  Like an Earley item, an tree of Earley items has a meaning, and
	  can be true or false.
	  	The root node has the form (0, n, Goal → S
	      ·). Informally, this means means S generates
	      the string I[0,n], and since I[0,n] = I,
	      this amounts to saying that
	      S generates I. Since S is the start symbol of the
	      grammar G this in turn means that I is a sentence in
	      the language defined by G.

	For any node K of the form (x, y, N1 →
	      α N2 · β), the meaning is that the
	      substring of I from x to y, i.e. I[x,y], is
	      generated by the sequence α N2. This will be
	      true if and only if (a) α generates I[x,w]
	      and (b) N2 generates I[w,y].
K’s first child has the form
	      (w, w, N2 → · α) and means
	      that the empty sequence of symbols generates the
	      zero-length (empty) string I[w,w].  Like
	      all Earley items of similar form, it is true.
Each subsequent child of K has the meaning that
	      a longer and longer prefix of the right-hand side of the rule
	      N2 → R1 R2 ... Rk generates a longer and
	      longer substring of I beginning at w.  The final
	      child, which has the form
	      (w, y, N2 → R1 R2 ... Rk ·),
	      means that the sequence of symbols
	      R1 R2 ... Rk generates
	      I[w,y], the substring of I from
	      w to y.
	      It follows that N2 also generates the string I[w,y].
	      
If the sequence of symbols α
	      generates I[x,w], and the symbol N2 generates
	      I[w,y], then it follows that
	      the sequence α N2 generates I[x,y].
	      So if (a) the Earley item in K’s left sibling is true,
	      or K has no left sibling, and (b) all of K’s children
	      are true, then K is also true.
	      

	
	      For any node K of the form (x, y, N → α T · β),
	      (i.e. in which the last item before the dot is a terminal symbol T),
	      the meaning of the Earley item is that
	      the sequence of symbols α T generates
	      I[x,y], the substring of I from
	      x to y.
The left sibling of K, if it exists, will be an
	      Earley item of the form (x, w, N → α
	      · T β), where w = y - 1. If the Earley
	      item in the left sibling is true, and if I[y] = T,
	      then node K is true.  
	      



	

	  It follows from the rules that all leaves in the tree are
	  either of the form
	  I[j]
	  or else of the form
	  I[j, j],
	  for 1 ≤ j ≤ n.
	  It also follows that for the leaves, taken in tree order, 
	  j is monotonically non-decreasing.
          For any two leaf of the form 
	  I[j],
	  the immediately following leaf in tree order may be
	  either 
	  I[k]
	  or
	  I[k,
	  k],
	  where 
	  k = j + 1. 
          For a leaf of the form 
	  I[j, j],
	  the next leaf in tree order may be either
	  I[j,
	  j],
	  or
	  I[k],
	  again with 
	  k = j + 1. 
	

	  The Earley tree is true (or correct) if and only if the
	  concatenation of all the leaves, in order, is the input I.
	  We say that such an Earley tree exhibits a
	  derivation of I from G.
	
	
	  It should be evident that a conventional parse tree for the
	  input I against the grammar G can be constructed from a
	  correct Earley tree by
	  (1) deleting each node (x,
	  x,
	  N → ·
	  α)
	  for non-empty α;
	  (2) replacing each node (x, y, N1 → α N2
	  · β) with
	  N2; 
	  (3) replacing pre-terminal nodes (nodes with single leaf
	  children) with their children;
	  (4) replacing each leaf node with the string it denotes
	  (I[j]
	  with character j of
	  I,
	  I[j,
	  j]
	  with the empty string);
	  and (5) retaining the parent-child relations and sequence of children.
	
	
	  It should also be evident that the parse tree implied by an
	  Earley tree for a given I and G is correct if and only
	  if every Earley item in the tree is true.
	

Brief digression

	  We note in passing that the job of any parser is to
	  calculate an Earley tree for a given G and I; one way to
	  think of it is as starting with the given information (I
	  and G), calculating a set of Earley items, and then
	  determining whether we can build an Earley tree from them.
	

	  The job of a correct parser is to ensure that
	  all the items in the Earley tree are true (and thus that the
	  tree is correct).
	

	  The job of an efficient parser is to do so with
	  as little effort as possible (in particular, considering as
	  few items as possible, and testing as few as possible for
	  truth).
	
	
	  The job of an unrestricted parser is to calculate a correct
	  Earley tree for any arbitrary G and I; restricted
	  parsers (e.g. LL(1) or LR(k) parsers) do so only for some
	  G.
	

	  Grune and Jacobs observe that the problem with some general
	  parsing methods is that in the worst case they end up doing
	  a lot of unnecessary work, such as calculating the
	  truth of a lot of Earley items that turn out irrelevant to
	  the construction of a correct parse tree.
	
	
	  The Earley algorithm is a way to calculate Earley trees for
	  arbitrary context-free grammars while reducing the amoung of
	  unnecessary work. To summarize the algorithm, we need to
	  define some properties of Earley items, beyond truth and
	  falsehood.
	

Properties and relations of Earley items
The first important property of Earley items has already
	been mentioned several times: Earley items can be true or
	false. This section describes some additional properties and
	relations.
Expectation
	
	    An Earley item (x, y, N → α · X
	    β), i.e. an item with the symbol X (terminal or
	    non-terminal) right after the dot, is said to expect an
	    X.
	  
	
	    Note: We are restricting ourselves here to CFGs given in
	    BNF. The extension to EBNF and regular right part grammars
	    is not too difficult, but complicates the account. See below
	    (section “Extension to EBNF”) for a discussion of extended BNF.
	  

Testability; winning and losing

	    An Earley item (x, y, N → α · T
	    β), which expects a terminal symbol T, can be
	    directly tested against the input. If I[y,y+1] = T,
	    then the item wins; otherwise it
	    loses.
	  

	    If the item just described is true and wins, then the
	    related item (x, y, N → α T · β),
	    which moves the dot one symbol to the right, is also true.
	    That is, given the truth of:
	    	(x, y, N → α · T β)

	I[y,y+1] = T



	    we can infer the truth of:
	    	(x, y + 1, N → α T · β)



	  
The advance() function; continuations
	
	      We define the function advance() to describe this
	      relation; it maps from an Earley item i and a terminal
	      symbol T to an Earley item j or to nothing.
	      Specifically, if
	      	i = (x, y, N → α · T β)

	j = (x, y + 1, n → α T · β)



	      then 
	      	advance(i,T) = j if and only if i wins

	advance(i,T) = ∅ if and only if i loses



	    

	      For convenience, we may also want to be able to apply the
	      function to a set of items, not just a single item. If iii
	      is a set of Earley items, and T is a terminal symbol, then
	      advance*(iii, T) is the set {j | j =
	      advance(i, T) for some i ∈ iii}. We refer to
	      j as a continuation of i. Continuation is
	      transitive: any continuation of j is also a continuation
	      of i.
	    

The scan() relation between items

	      Looking ahead, we say that the relation scan(i, j)
	      holds between Earley items i and j if and only if i expects
	      terminal T, i wins, and j = advance(i, T).
	    


Testing and advance() function for non-terminals

	    By contrast, an Earley item (x, y, N1 → α
	    · N2 β) which expects a non-terminal symbol
	    N2 cannot be directly tested against the input. It can
	    however can be tested indirectly. If N2 generates a
	    substring of I beginning at y (i.e. if for some z we
	    have N2 ⇒* I[y, z]), then the item wins;
	    otherwise it loses.
	  
The advance() function again

	      Again we define advance() appropriately:  given 
	      	i = (x, y, N1 → α · N2 β)

	j = (x, z, N1 → α N2 · β)



	      then
	      	advance(i, N2) = j
		if and only if N2 ⇒* I[y, z] for some z

	advance(i, N2) = ∅ otherwise



	    

Continuations
	      
	      As with terminals, so also with non-terminals; if j =
	      advance(i, N) for some non-terminal N, then j
	      is a continuation of i, and any continuation of j is
	      also a continuation of i.
	    


Useful items
	      
	    An Earley item is useful if and only if it
	    appears in a correct Earley tree for the grammar G and
	    the input I. If an Earley item is not useful, it is
	    useless.
	  
	      
	    If parsing algorithms could distinguish between useful
	    and useless items before spending time on them, they
	    could be very efficient.
	  

	    But at the beginning of a parse, it’s impossible
	    to know which items will be useful and which
	    won’t. For example, if I is not in the language
	    L(G) defined by G, then all Earley items for I and
	    G are useless, but we can’t know that without
	    calculating and testing at least a few.
	  

	    Note in passing that if any item i = (x, y, N
	    → α · β) is useful, then some
	    completion of i, i.e. some item of the form (x, z,
	    N → α β ·) (with z ≥ y) will
	    also be useful; the two will be siblings in the Earley
	    tree. There might be more than one true completion of
	    i; if I has more than one derivation in G, more than
	    one of them may be useful.
	  
	    
	    The converse is also true in most cases: if (x, z, N
	    → α β ·) is useful, then there will be
	    at least one true item of the form (x, y, N →
	    α · β), and at least one such form will be
	    useful (more than one, in cases of ambiguity).
	  

Relevant items

	    In a particular state of partial knowledge, when we have
	    examined part of the input but not all, an Earley item is
	    relevant if, based on what we know, it
	    could be useful. (We will make this more
	    precise in a moment.)
	  

	    Also any Earley item (x, x, N → · α
	    β) is relevant if for some y (≠ x) the item
	    (x, y, N → α · β) is relevant.
	  

	    Given a particular state of partial knowledge, an Earley
	    item is irrelevant if we know, based on
	    that partial knowledge, that it is useless. Any item
	    known to be false (in that same state of partial knowlege)
	    is thus irrelevant. I believe but have not attempted to
	    prove that in any given state of partial knowledge, any
	    Earley item that is not relevant is
	    irrelevant. This might depend on the nature
	    of the partial knowledge available.
	  
	
	    The Earley algorithm is an online
	    algorithm, which reads the input left to right (or:
	    front to back, if one wishes to avoid fatal confusion in
	    cases of right-to-left scripts). At any given point in
	    time, we have read the first y characters in the
	    input, for some number y such that 0 ≤ y ≤
	    n, so we have knowledge of the substring I[0, y],
	    and no knowledge of the substring 
	    I[y,
	    n].
	    We also have full knowledge of the grammar G.
	  

	    Given knowledge of I[0, y], an Earley item of the
	    form (x,y,L) is relevant if it could
	    be part of an Earley tree for G and some input
	    which starts with the string I[0, y]. Or more
	    formally, the Earley item is relevant if and only if
	    there is some string I′ which shares the prefix
	    I[0, y] with I, for which the item is useful
	    (appears in some correct Earley tree).
	  

Some consequences of the definition of relevance

	    It follows from the definition of relevance just given
	    that the item (0, 0, Goal → · S) is relevant
	    for all grammars and inputs.
	  

	    It also follows from the definition of relevance that if
	    an item i = (x, y, L) expects terminal T, and
	    i is relevant, then advance(i, T) is relevant if
	    it exists (i.e. if i wins; if i loses,
	    advance(i, T) does not denote an item).
	  

	    It further follows from the definition of relevance that
	    if an item i = (x, y, L) expects non-terminal N,
	    and i is relevant, then for every production rule N
	    → α in G, the item (y, y, N →
	    · α) is relevant.
	  

	    If i is useful as well as relevant, then we know
	    we’ll need an item (y, z, N → α
	    ·) in the tree as well (since i is expecting an N,
	    and appears in a derivation tree, there will
	    be an N in the derivation tree at the appropriate
	    location). So at least one of the production rules for N
	    will be useful as well, but if there is more than one we
	    do not yet know which.
	  

	    If the grammar is unambiguous, at most one production rule will be
	    relevant, but G could be ambiguous, so more than one
	    could be useful.
	  

	    We don’t know, however, how N might be
	    instantiated in I (that’s essentially a
	    consequence of the nature of CFGs), so any of the
	    production rules for N could be the one needed for the
	    tree. That means every possible item (y, y, N →
	    · α) is relevant if N → α is in
	    G.
	  

The pred() and comp() relations among items

	    Looking ahead, we say that the relation pred(i, j)
	    holds between items i and j if and only if item i = (x,
	    y, L) expects non-terminal N and item j has the
	    form (y, y, N → · α). Here pred
	    is short for predicts.
	  

	    It also follows from the definition of relevance that if we have  
	    	item i =
	      (x, y, N1 → α · N2 β)
	      expecting a non-terminal N2

	item j =
	      (y, z, N2 → γ ·)
	      is a completion for N1.



	    and both are relevant (if i is relevant, then j is also relevant
	    unless j is false), then the item
	    advance(i, N2),
	    i.e. 
	    (x, z, N1 → α N2 · β), 
	    is also relevant.
	  
	      
	    Looking ahead, we say that the relation comp(i, j, k) holds
	    if and only if
	    	item i = (x, y, L1)
	      expects some non-terminal N

	item j = (y, z, L2) is a completion for N

	k = advance(i, N)



	    
	  


The Earley algorithm

	  The Earley algorithm (as described in Earley 1970)
	  is a procedural way of calculating a set of Earley
	  items which are all true and are all relevant at the time
	  they are added to the set. I believe (but have not proved)
	  that it is in fact the set of all items which are both true
	  and relevant by the definitions above.
	

	  The algorithm calculates a set of Earley items which obeys
	  the following rules:
	
	
	      The item (0, 0, Goal → · S) is a member of the set.
	    

	
	      If i = (x, y, L) is a member of the set which
	      expects terminal symbol T, and I[y+1] = T, then
	      advance(i, T) is also a member of the set.
	    

	      If (x, y, L) is a member of the set which expects
	      non-terminal symbol N, and N → α is a
	      production rule in G, then (y, y, N → ·
	      α) is also a member of the set.
	    

	
	      If i = (x, y, L) is a member of the set which
	      expects non-terminal symbol N, and j = (y, z,
	      N → α ·) is a member of the set, then
	      advance(i,N) is also a member of the set.
	    

	
	      Nothing else is a member of the set.
	    



	  Or, more concisely, the set is the smallest set that contains (0, 0,
	  Goal → · S) and is closed over the relations
	  scan(i, j), pred(i, j),
	  and comp(i, j, k).
	

	  Earley defines things procedurally, in terms of the
	  following steps:
	
	
	      He starts by initializing the set of items to (0, 0, Goal→ · S).
	    

	
	      He then applies rule 3 above (our pred() relation) until it produces
	      no new items.  At this point all items in the set have x = y =
	      0.
	    

	
	      Then he iterates over the following procedure.
	    
	
		  First
		  apply rule 2 (Earley’s
		  scanner, our scan() relation),
		  which generates new items of the form (x, y+1, L).
		  If no new items are produced by this step, we are done;
		  I is not a member of L(G).
		

		  (Digression: Why are we done?  If applying rule 2 produces no
		  new items, then one of the following is true:
		
	
		      (a) The set of items includes no items which expect a terminal.
		      In this case, we have reached a point in the grammar where no
		      terminal is predicted, which means that no terminal can possibly
		      advance the parse, which means the parsing situation is
		      hopeless.
		    

	
		      (b) The set of items includes some items which expect a
		      terminal, but none of them win.  In this case, the grammar does
		      make testable predictions for this point, but the input
		      satisfies none of them, which means that the input definitely
		      fails to match the grammar.
		    



		  Either way, there is no parse tree for I as a sentence of G,
		  so we are done.
		  End of digression.)
		

	
		  Then apply rule 3 (Earley’s
		  predictor, our pred() relation)
		  and rule 4 (Earley’s completer,
		  our comp() relation) until they produce no new items.
		

	
		  If the highest end-point y in our items (x, y,
		  L) is less than n, then start another round of
		  this procedure (go back to finding instances of the
		  scan() relation).
		

		  Otherwise, the highest end-point y = n and we
		  have reached the end of the input and are done.
		



	
	      If the set contains (0, n, Goal → S ·),
	      we have recognized the sentence and can construct an
	      Earley tree from the set. If the set doesn’t
	      contain that item, I is not a member of L(G).
	    



	  Each round of this procedure uses progressively higher
	  values for the end-point in the search for instances of
	  the scan() relation, so there are at most n rounds
	  before we reach the end of the input.
	

	  It seems clear from this way of putting it that the
	  procedure described by Earley calculates the transitive
	  closure of (0, 0, Goal → · S) over the
	  relations scan(), pred(), and comp().
	

	  It’s pretty clear, intuitively, that the starter item
	  (0, 0, Goal → · S) is relevant and true,
	  and that all of the relations scan(), pred(), and
	  comp() produce new items for the set which are also
	  relevant and also true. Producing only relevant items is
	  what distinguishes Earley from some other algorithms, which
	  work purely bottom-up and essentially try to calculate all
	  true items with x ≠ y. I believe (but hesitate to say
	  it’s intuitively obvious) that the set described
	  contains all relevant items, as that term is
	  defined above; that property distinguishes the Earley
	  algorithm from things like recursive-descent and LR(1)
	  parsing, which in the interests of simplicity and/or speed
	  ignore some relevant items (which is why they can’t
	  handle all grammars).
	

	  Earley describes his algorithm in terms of very small
	  mechanical tasks; it’s obvious how to implement it,
	  especially in a procedural language with mutation.
	  It’s not at all obvious to me from E’s
	  description how to do the same thing in a declarative
	  language without mutation.
	

	  But by describing the set in terms of the relations, and defining the
	  relations in terms of their properties, instead of in the imperative,
	  procedural-pseudocode style used by Earley and by other descriptions,
	  I think I have succeeded in defining the relevant sets and properties
	  declaratively, which will make it easier to calculate them in a
	  functional language. 
	

Two technical excursus
Calculating transitive closures

	    For implementing this declarative functional version
	    of the algorithm, it would obviously be handy to have
	    a language with a built-in transitive-closure
	    operator.  But with higher-order functions, we can
	    build our own, I think.


  (: to take the transitive closure of some
     function f on some set $s, first define an
     equality function $eq, then specify a maximum
     number of recursive calls $n, and finally call
     my:transclos($eq, f, $n, $s)
     :)
  declare function my:transclos(
    $eq as function(*), (: equality test :)
    $r as function(*), (: unary function, for binary relation :)
    $maxcycles as xs:integer,
    $set as item()*
  ) as item()* {
    local:tc-helper($eq, $r, $maxcycles, $set, $set)
  };

  declare function local:tc-helper(
    $eq as function(*), (: equality test :)
    $r as function(*),
        (: unary function to calculate a binary
           relation :)
    $ttl as xs:integer,
    $queue as item()*,
    $accum as item()*
  ) as item()* {
    if (empty($queue)) then
       $accum
    else if ($ttl le 0) then
       error("Could not complete calculation, out of cycles.")
    else
       let $this := $queue[1],
           $rest := $queue[position() gt 1],
           $candidates := $r($this),
           $new := $candidates
	           [no $x in $accum
	           satisfies
	           $eq(., $x)]
       return local:tc-helper($eq, $r, $ttl - 1, 
                   ($rest, $new), ($accum, $new))
  };


	
	
	  Unfortunately, I really don’t know
	  a good way to generalize this for
	  ternary relations like comp. But the
	  pattern is simple enough to replicate.
       	

Extension to EBNF

	  The account of the algorithm given above exploits the
	  simplicity of production rules in BNF, which have a flat
	  sequence of symbols in the right hand side of each rule. But
	  many grammars extend BNF in ways which vary but typically
	  amount to allowing not just a sequence of symbols, but a
	  regular expression over V, on the right-hand side of a
	  rule. The notations are typically called
	  extended BNF, or EBNF; grammars written using
	  such notations are regular-right-part grammars
	  (because the right-hand part of each rule is a regular
	  expression).
	

	  Among the notations for regular-right-part grammars of
	  interest to XML users is the variant of van Wijngaarden
	  grammars specified by Steven Pemberton for use in
	  invisible XML
	  (Pemberton 2013).
	

	  To apply the Earley algorithm to regular-right-part
	  grammars, it is necessary to generalize the account above,
	  which can be done as follows. In particular, we will need
	  more abstract and general notions of (1) location,
	  (2) position in a production rule,
	  (3) expectation, and
	  (4) the advance function.
	

	  As before, an Earley item is a triple (x, y, L),
	  interpreted in the context of a grammar G and an input
	  string I, where x and y are the start and end
	  points of a substring of the input I, and L is a
	  location inside some rule in the productions P of the
	  grammar G. But instead of taking the form N →
	  α, where α is a sequence of symbols in V, the
	  location now has a structure whose details are not
	  specified. Instead, we define several operations on L,
	  which provide the information we need for the algorithm.
	

	  We would like the definition of these operations to be
	  general enough to be consistent with any of several
	  possible implementations of locations:
	  	For a BNF, we can use a sequence of symbols in
	    V and a non-negative integer representing an index into
	    that sequence.

	For an EBNF, we might use a pointer to a rule in
	    the grammar, together with a derivative expression
	    identifying what is still required or allowed to
	    appear.

	For any grammar, we could use a triple consisting
	    of a non-terminal N, a finite state automaton (FSA)
	    representing the right-hand side of a rule for N, and an
	    identifier denoting the current state in the
	    FSA.



	
Operators on locations
The following operations on locations are useful in
	  describing Earley parsing for regular-right-part grammars.
	  	
		rule(L) denotes the production rule within which
		the location L appears.
	      

	
		nt(L) denotes the non-terminal on the left-hand side of
		rule(L).
	      

	
		rhs(L) denotes the right-hand-side of rule(L) 
	      

	
		seen-so-far(L) denotes a sequence of symbols in V (all
		of which appear in rhs(rule(L))), which form a
		prefix of some word recognized by rhs(rule(L)).
	      

	
		remains-to-be-seen(L) is an expression describing the part of
		rhs(L) which remains to be matched after
		seen-so-far(L) has been seen.
	      

		In an EBNF it will always be (equivalent to) the
		derivative of rhs(L) with respect to seen-so-far(L).
	      

	completed(L) is true if and only if
	    remains-to-be-seen(L) is nullable, i.e. it is matched
	    by (accepts) the empty sequence.
For any item (x, y, L), if completed(L)
	    then nt(L) ⇒* I[x, y].
	    Such an item is a completed item,
	    and a completion of nt(L).
	    

	 expects(L) denotes a set of symbols in
	    rhs(L). In a BNF, we get exactly one symbol, or none:
	    the symbol to the right of dot in the item. In an EBNF, we
	    get the set of symbols (terminal or non-terminal) which
	    can follow the current state, or equivalently the set of
	    symbols which are accepted as initial symbols by
	    remains-to-be-seen(L).
	  



	  
For any two locations L1 and L2, if rule(L1) =
	  rule(L2) and seen-so-far(L1) = seen-so-far(L2), then L1 and
	  L2 are equivalent. Let R = rule(L1) = rule(L2)
	  and α = seen-so-far(L1) = seen-so-far(L2); then we have:
	  	nt(L1) = nt(L2) = left-hand side of R

	rhs(L1) = rhs(L2) = right-hand side of R

	remains-to-be-seen(L1) is equivalent to remains-to-be-seen(L2) in the
	    sense that they accept the same language; in each case,
	    the expression will be the derivative of rhs(R) with
	    respect to α, or another expression equivalent to
	    that derivative. (In practice, it is helpful to simplify
	    derivative expressions, but a weak and easy simplification
	    may not reduce all equivalent expressions to the same
	    form. See Brzozowski 1964.) 

	completed(L1) = completed(L2) =
	    nullable(remains-to-be-seen(L1)) = nullable(remains-to-be-seen(L2)).
	  

	    An expression is nullable if the language it defines
	    includes the empty string as a sentence.
	    For definitions of nullability and explanations of
	    the relation between nullability of a derivative and
	    satisfaction of the original expression, 
	    see
	    Brzozowski 1964 or
	    Brüggemann-Klein 1993a or 
	    Brüggemann-Klein/Wood 1998 or 
	    Sperberg-McQueen 2005.
	    

	expects(L1) = expects(L2) = the
	    set {X | X ∈ V and the derivative of remains-to-be-seen(L1)
	    with respect to X ≠ ∅}.



	  A consequence of the equivalence of L1 and L2, given the
	  identify of rule() and seen-so-far() for them, is that we can
	  specify any location down to equivalence by specifying a
	  rule and a sequence of symbols.
	  

Notes on individual operators
The following subsections provide some examples
	  and further discussion of some of the operators
	  defined above.

	    Note that seen-so-far(L) is not necessarily
	    or usually a prefix of some sequence of characters
	    generated by nt(L); it is a prefix of some
	    sequence of terminal and non-terminal symbols in V
	    which matches the regular expression rhs(L).
	  

	    If an item (x, y, L) is in fact true, then
	    I[x, y] is generated by seen-so-far(L).
	  

	    For example, consider L1 and L2 such that
	    	rule(L1) = A → B C D

	rule(L2) = A → (B | C)*, D



	    In this case, seen-so-far(L1) may be any
	    of
	    	() (i.e. the empty sequence)

	(B)

	(B C)

	(B C D)



	    seen-so-far(L2) 
	    may be any of
	    	()

	(B)

	(C)

	(D)

	(B B)

	(B C)

	(B D)

	(C B)

	(C C)

	(B D)

	(B B B)

	...



	  

	    This operator is not actually used in calculating the
	    set of Earley items we are interested in; the only
	    reason for defining seen-so-far(L) is to make it possible
	    to say (as we did above) that any item (x, y, L)
	    is true if and only seen-so-far(L) ⇒* I[x, y].
	  

	    We could do without seen-so-far(L) if we said that the
	    interpretation of an Earley item (x, y, L) is not
	    the string I[x, y] matches (is generated by) the
	    part of the rule to the left of the dot but the
	    equivalent claim for all strings s generated by
	    remains-to-be-seen(L), the concatenation of I[x, y] with s is
	    generated by nt(L).
	
Unlike seen-so-far, which returns a sequence of symbols in V,
	  remains-to-be-seen returns a regular expression over V.

	    For L1 and L2 as described above, then
	    remains-to-be-seen(L1) may be any of
	    	(B C D)

	 (C D)

	 (D)

	()



	    remains-to-be-seen(L2) may be any of
	    	((B|C)*, D)

	(D)

	()



	  

	      If the grammar is in BNF, then completed(L) if and only if
	      remains-to-be-seen(L) = empty-sequence.  
	    

Properties of items and relations on items
Provided with the operations defined above, we
	  can now redefine the crucial terms introduced earlier
	  for BNF (section “Properties and relations of Earley items”) so that
	  they also apply when G is a regular-right-part grammar.
Expectation, winning, and losing in EBNF grammars
An item (x, y, L) expects a
	    symbol X if and only if X ∈ expects(L).
Given an item i = (x, y, L) and a symbol X (X ∈ V),
	    such that i expects X, i wins on X if either
	    	X is a terminal symbol T, and

	I[x, y+1] = T,



	    or 
	    	X is a non-terminal symbol N, and

	N ⇒* I[y, z], for some z (y ≤ z ≤ n).



	    Otherwise i loses on X. 
Note that since i can expect more than one symbol, it
	    may win on some symbols and lose on others. Without
	    respect to any particular symbol, i wins if
	    there exists as least one symbol X for which i wins on
	    X; i loses if there is no such symbol.
	    

The advance function for EBNF grammars
For any i = (x, y, L1), j = (x, z, L2), and
	    X ∈ V,
	    if (1) i expects X and
	    (2) rule(L1) = rule(L2) and
	    (3) seen-so-far(L1) || X = seen-so-far(L2),
	    then advance(i, X) = j if and only if i wins on X;
	    otherwise advance(i, X) = ∅.
	    
The definitions of advance* and
	    continuation are as given above: if iii is
	    a set of items and X is a symbol, advance*(iii, X)
	    = {j | j = advance(i, T) for some i ∈
	    iii }, and j is a continuation of i if j = 
	    advance(i, X) for some symbol X, or if
	    j is a continuation of some continuation of i.
	    

The scan relation for EBNF grammars

	      The relation scan(i, j) holds between items i and j if and only if
	      there exists some T such that
	      i expects T,
	      i wins on T,
	      and j = advance(i, T).
	    

Inferences regarding relevance for EBNF grammars
The definitions of useful, useless, relevant, and irrelevant items are as given above
							(section “Useful items”). Some of the inferences given above can
						be generalized for EBNF grammars. 
Any item i = (x, y, L) may have more than one
	    continuation which is a completion for nt(L). If i
	    is useful, at least one of those completions will be
	    useful. (If more than one is useful, they will be useful
	    in different Earley trees, and G will be ambiguous.) 
	    
If any item i of the form (x, y, L) is relevant
	    at the point where we have knowledge of I[0, y] and
	    expects a symbol X and wins with X, then
	    advance(i, X) is also relevant, at the point where
	    we have read X. (For terminal symbols, that will be at
	    point I[0, y+1]; for non-terminals, it may be at any
	    point between I[0, y] and I[0, n], inclusive.) If
	    expects(L) ⊆ VT (i.e. every symbol expected by
	    i is a terminal symbol), and i loses, then at point
	    I[0, y+1] i is known to be false and thus known to
	    be useless, so at that point it is no longer relevant.
	    If any of the symbols expected by i are non-terminals,
	    it is not usually known how long a string any of those
	    non-terminals might generate; it is accordingly somewhat
	    harder to establish with certainty that any such items
	    have lost definitively and have become irrelevant.	    
	    
At any point when we have read I[0, y], if item i
	    = (x, y, L) is relevant, then for every non-terminal
	    N in expects(L), and for every rule R defining N
	    in the grammar G, the item (y, y, L) with
	    rule(L) = R and seen-so-far(L) = ε (the empty
	    sequence) is relevant.

The pred and comp relations for EBNF
	    grammars

	      The relation pred(i, j)
	      (prediction) holds between any two items
	      i and j if and only if item i = (x, y, L1)
	      expects some non-terminal N, and j = (y, y,
	      L2) with nt(L2) = N and seen-so-far(L2) = ε.
	    
 The definition of relation comp(i,
							j, k)
							(completion) applies to EBNF grammars in the form defined
						above (section “The pred() and comp() relations among items”). 


The algorithm
Provided with the operations defined above, we
	  can now describe the Earley algorithm in a form that
	  applies to EBNF as well as to BNF.
Actually, the only change needed is that instead of
	  saying that the set is initialized with the starter item
	  (0, 0, Goal → · S), we say that it is
	  initialized with a starter item item of the form (0, 0,
	  L) with nt(L) = Goal and seen-so-far(L) = ε.
	  

Follow-on work
Future work should include formal proofs of one or more of
	  the following propositions stated or suggested informally
	  above.
	  In them, E is the set calculated by the
	  algorithm in Earley’s paper, and S is the smallest set
	  which contains the starter item and is closed over the
	  relations scan, pred, and comp (i.e. the set
	  described in the declarative functional restatement of the
	  algorithm).
	    	The set E and the set S are
	      identical.

	S contains no false items.

	Every item i of the form (x, y, L)
	      which is relevant with respect to the partial knowledge
	      available from having read I[0, x] is in
	      S.

	Every item in S of the form (x, y, L)
	      is relevant with respect to the partial knowledge
	      available from having read I[0, x].




	      The first of these amounts to showing the correctness of
	      my claim to have translated Earley’s algorithm into
	      functional terms.
	    

	      The second would establish that the functional algorithm
	      described here is correct, in the sense that if for a
	      given I and G it produces a set from which an Earley
	      tree can be constructed, then I is in fact a sentence
	      of the language defined by G.
	    

	      The third would establish that the functional algorithm
	      given here is complete, in the sense that if a given I
	      is a sentence of the language defined by a given grammar
	      G, the algorithm will produce a set from which an
	      Earley tree can be constructed.
	    

	      The fourth would suggest that the functional algorithm
	      given here does not do any work which can be seen in
	      advance to be pointless.
	    



Concluding remarks
What can be learned from the example of Earley
	parsing for the general problem of translating procedural
	algorithms into XSLT and XQuery?
Three basic ideas seems to stand out.
		Update operations define relations.
Each of the basic operations performed by the Earley
	    operation consists in adding an Earley item to a set,
	    given certain conditions.  The functional paraphrase given
	    here works by interpreting each of these operations semantically
	    as identifying a relation that holds between one or more items
	    already in the set and the new item being calculated.
(The dependency of the operations on G and I complicates
	    matters very slightly, because it makes scan and
	    pred, which would otherwise be binary relations,
	    into relations with four arguments.  But since G and I don’t change,
	    we can treat them as binary relations, for which transitive closure
	    is easily defined, by restricting our universe of discourse to
	    contexts in which G and I are present.  Earley achieves the same
	    effect by treating G and I as global variables.)

	Iteration can calculate a transitive closure.
Earley describes the algorithm as running until either
	    the input is exhausted or the parse fails. We can capture
	    this in a non-temporal way by making the algorithm
	    calculate the transitive closure of one or more
	    relations.
Transitive closure is not a primitive operation in XSLT or
	    XQuery, except in the special cases of the axes ancestor,
	    descendant, following[-sibling],
	    etc.  But any transitive closure can be calculated without
	    great difficulty using a recursive function.

	Sets may be easier than more complex structures.
We are able to use the concept of transitive closure here
	    because we are operating on sets of Earley items; if instead we
	    were building a set of parse trees, both the relations among objects
	    and the calculation of the transitive closure would almost certainly
	    be more complicated.
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