[image: Balisage logo]Balisage: The Markup Conference

In Defence of Style Guides
Ari Nordström

Balisage: The Markup Conference 2018
July 31 - August 3, 2018

Copyright ©2018 Ari Nordström

How to cite this paper
Nordström, Ari. "In Defence of Style Guides." Presented at: Balisage: The Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup Conference 2018.
 Balisage Series on Markup Technologies vol. 21 (2018). https://doi.org/10.4242/BalisageVol21.Nordstrom01.

Abstract
This is a paper about that twilight zone beyond schemas, the place where style
 guides, those arcane instructions to authors about house style and how to produce
 content that is not only valid but stylistically consistent, are supposed to kick in
 but, these days, increasingly don't. It's a paper written in defence of style
 guides, why they are needed, and why better tools cannot replace them.

Balisage: The Markup Conference

 In Defence of Style Guides

 Table of Contents

 	Title Page

 	Intro

 	Some Examples

 	Why Does This Happen?
 	Looking Pretty

 	What To Do About It
 	Um, What Is A Style Guide?
 	Style Guide Examples

 	Similar Models, No Way To Share

 	Lists Revisited

 	OK, So Where (How) Do I Get One?

 	Roles
 	Tools

 	Queues Reinvented

 	Conclusions
 	End Note

 	About the Author

 In Defence of Style Guides

Intro
This is a paper about that twilight zone beyond schemas, the place where style guides,
 those arcane instructions to authors about house style and how to produce content that
 is not only valid but stylistically consistent, are supposed to kick in but, these days,
 increasingly don't.
It's a soapbox paper, basically, a result of years of irritation, agitation, and
 random shouting.

Some Examples
Allow me to begin with a couple of examples to illustrate where I come from.
Here is a favourite pastime of Brits and Swedes:
Figure 1: Waiting in Line
[image:]

This, of course, is a queue. For us markup folks, it's basically a list. The semantics
 are clear, right?
But let's have a look at a more scary example:
Figure 2: Chaos?
[image:]

This is McDonald's on Fleet Street in London during lunch hour. There are a number of
 cash registers but, for the most part, no clear queues and no help in sight. People are
 literally all over the place. What are the semantics here? How do you get your food?
 Clearly, there should be queues, but none is readily apparent[1].
Let's do a more markup-centric example:
<para>Here are my favourite films:
 <list>
 <item>Close Encounters of the Third Kind</item>
 <item>2001</item>
 <item>Amadeus</item>
 </list>
</para>
This, a list construction recognisable from schemas such as DocBook, has, on the
 surface of it, clear semantics. There's an introductory sentence and a couple of list
 items. A lot clearer than the McDonald's chaos, above, right? There is a problem,
 though.
If your world is like mine, there are a couple of usual suspects when it comes to what
 are known as block-level elements. Paragraphs, notes,
 admonishments, tables... and lists. And on the surface of it, this would qualify as a
 list, except I've always instinctively read the DocBook-style lists as inline because
 they are inside a paragraph. Something to be presented like
 this:
Here are my favourite films: Close Encounters of the Third Kind, 2001, and
 Amadeus.

Here's how it's usually presented, though, with everything on block level:
Here are my favourite films:
* Close Encounters of the Third Kind
* 2001
* Amadeus
Looking at the schema, how does one know what is actually meant here?
In practice, since DocBook and others allow lists both (seemingly) inline and on block
 level, I've had plenty of authors write
<para>
 Intro to list:
 <list>...</list>
</para>
But just as many write
<para>Intro to list:</para>
<list>...</list>
And many write lists in both ways, frequently in the same document, seemingly
 oblivious to the difference, or the pain they cause me.
That intro text is part of the list, of course; if you remove the list
 during some processing, that processing should remove the intro, too. To illustrate this
 problem:
<para>Here are my favourite films:</para>
<list>
 <item>Close Encounters of the Third Kind</item>
 <item>2001</item>
 <item>Amadeus</item>
</list>
Here, the introductory para clearly belongs to the list if you bother to read the
 contents, but isn't actually part of it. The quick fix in a schema would be to add a
 para to the list model and use that:
<!ELEMENT list (para, item+)>
(Yes, required. I hate lists without neither motivation nor explanation[2].)
In real life, there are any number of reasons to want to use a list but not introduce
 it with a para, so making the para optional is a prudent first modelling step. In a lot
 of content, though, people like to precede the items with a title rather than a para, or
 a title and a para, and possibly other elements, all of them part
 of the list group. Adding all of those to the content model (and making most of it
 optional) results in a large model:
<!ELEMENT list (title?, (para|note|admonishment|figure)*, item+)>
Chances are that if your list model looks like this, then quite a few of your other
 block-level elements will, too — they'll be complex because you need to cover all the
 use cases. For the author, though, this will increase the risk for markup errors, with
 content ending up in the wrong place, or simply cause a (mostly) unused model. Or
 both.
The intended meaning behind the model is far from clear, even though the literal
 semantics may be.
Or, to take a different kind of example, have a look at this ATTLIST
 depicting the allowed attributes of a list in legal commentary:
<!ATTLIST core:list
	 type (bullet | check-box | lower-alpha | lower-roman |
 mdash | ndash | number | plain | upper-alpha | upper-roman |
 upper-alpha-alpha | lower-alpha-alpha | smallcaps-alpha-alpha)
 #REQUIRED
	 restart (yes | no) 'yes'
	 source-pnum CDATA #IMPLIED
	 %display-atts;
	 lni CDATA #IMPLIED
	 >
Most importantly, there is a type attribubte offering 13 (!) different
 list types. There's probably[3] no way for you to know what's going on merely by reading the DTD. In fact,
 even if you decide to study their use by looking at actual documents, you'd probably
 still miss the point (note the two ordered list types, number and
 lower-alpha):
<core:para-grp>
 <core:desig value="17">17.</core:desig>
 <core:title>General financial arrangements.</core:title>

 <core:para>The following are to be paid out ...:</core:para>

 <core:list type="number">
 <core:listitem>
 <core:para>contributory benefit...;</core:para>
 </core:listitem>
 <core:listitem>
 <core:para>guardian’s allowance...;</core:para>
 </core:listitem>
 ...
 </core:list>

 <core:para>The following are to be paid out ...:</core:para>

 <core:list type="lower-alpha">
 <core:listitem>
 <core:para>any administrative expenses of the Secretary of State...</core:para>
 </core:listitem>
 ...
 </core:list>
 ...
</core:para-grp>
At a quick glance, this might suggest that an ordered list type
 is all you need, and that the other types happened because someone thought they would be
 pretty. It's what I, rather lazily, assumed at first.
Not so. The different types are there because in a single unit of the law, what is
 known as a paragraph, you are not allowed to use the same type of list
 more than once. If you think about it, it makes perfect sense; if you refer to the
 second item of a list in a (law) paragraph, the reader will only find the right item if
 the list type used is unique within that paragraph.
Nowhere in the schema is any of this apparent, however, and there was no style guide
 available to me.
List types in legal documents are easy to misunderstand, especially if you don't use
 them daily and there's no documentation to guide you. Some authors have enough
 difficulties understanding the difference between the different types to begin
 with.
Which is why it is not uncommon to see a step-by-step instruction that looks like
 this:
Follow these steps:
* Do this.
* Then do this.
* Also do this.
This, of course, is simply bad form stemming from inadequate understanding of
 semantics. A bulleted list is an unordered list, which is pretty much the
 opposite of a step-by-step instruction. The former is a list of
 things where the order is of no importance, while the latter is a set of instructions
 where order (presumably) matters a lot.

Why Does This Happen?
The question we need to answer first is why does this happen? And
 to answer that, we need to define exactly what it is that happens.
Think about the list intro, above, the one that grew to an overcomplicated mess. This
 tends to happen because the sources lack consistency[4]. For example, ordered lists are used as procedures and vice versa, and to
 cover all the use cases, the schema grows unnecessarily[5] big to allow for cases that should have been identified as edge cases to
 begin with. Or, in cases where an existing schema is expanded with new models, the
 requirements process is the result of a lack of understanding in the
 style the content should follow.
Note
Also, sometimes duplication or near duplication of an existing model happens when
 a schema is updated, again because the style that the content should follow is
 poorly understood or the sources were inconsistent and poorly modelled to begin
 with.

The irony, of course, is that the content resulting from the shiny new (or updated)
 schema will rarely or never need everything the schema offers, so all those models
 remain either inconsistently used (with one document using one model and another a
 different one) or not used at all.
On the other hand, an overly complex model might actually be correct but poorly
 understood by its users. Think of those 13 different list types (or rather,
 formats; to me, type implies semantics). It's
 all too easy to dismiss most of those types, again because the intended style
 of the content is poorly understood.
The documentation there is will probably not tell you enough; most schema
 documentation I've seen is half auto-generated, the other half not up to date. None of
 it explains the use cases (sometimes because there is not enough room, more often
 because the information analysis that resulted in the model wasn't properly
 documented.
Looking Pretty
The legal lists above are seemingly about being pretty, but as we saw, their
 reasoning was actually far more than that. Maybe it's because so many schemas do
 this sort of thing:
<emphasis type="bold italic">emphasised content</emphasis>
Us markup folks see this sort of thing so often that we become jaded. Yes, you
 haven't bothered about the semantics here (is it a GUI object? a spare part? an
 important word?), just provided the author the means to have the text look pretty.
 We see it and lazily assume that formatting in markup is either about lazy modelling
 or no actual semantics was needed[6]. The opposite is sometimes true, as seen in the ATTLIST
 example, above, but how are we to know without enough information?
I have no problems with using this sort of thing, mind; sometimes it's what you
 need. What I don't accept is just letting it all out there. When you say bold
 italic, what do you mean? And pretty doesn't count.
It's about consistency. If you do this now, do what you've done before, and what
 your co-workers have done before. But, if you've all done it before, what do you
 actually mean?
And is it too much to ask that you document what you mean?

What To Do About It
Some of the practical-minded and result-oriented markup folks will now be saying
 things like add Schematron rules! Add Schematron Quick
 Fixes!
 This is true but not nearly enough, in my ever-so-humble opinion. By themselves,
 Schematron rules are merely painkillers.
Schematron rules check for patterns, relying on XPath expressions to match a pattern
 and offer appropriate messages. Sometimes, these are merely informational, sometimes
 they warn against a practice or report an error a schema either can't or shouldn't warn
 about. Sounds useful, right?
But where should the patterns come from? Why do they happen to begin with? Some
 developers will now reiterate the last paragraph, emphasising the parts about a schema
 being unable to check for condition A or warn against error B. Yes, but what a
 Schematron should really check for is adherence to a house style.
 In olden days, this style was described in a style guide, and so
 that's what you need to look for.
So, what should we really do about the mess outlined in the previous sections? Locate
 the style guide, see what it says, and act accordingly. And if there is no style guide,
 then write one![7]
Um, What Is A Style Guide?
When I started writing this paper, the conclusion was to use a style guide, and
 that's pretty much it. Maybe a little sugar on top — tools such as Schematrons — but
 essentially, the paper concluded with use a style guide,
 without any explanation of what a style guide is.
So, what is a style guide?
Think of it as a poet's schema. There are rules, such as how many section levels
 to use, or how to describe a procedure, including things like what a single step is
 and what kinds of things warrant a procedure. But a style guide will also explain
 how to write[8] — passive vs active voice, gerunds in headings, that sort of thing — and
 what to include in a certain document type. And once upon a time, it would list
 explain what an index needs to contain — today, of course, people increasingly
 equate indices with search engines, which is just not the same, but search boxes is
 what we have, rather than indices.
There was a time when most technical writing departments had a style guide
 detailing how their documentation was written, but these days, style guides tend to
 only be used by newspapers (although this practice is also disappearing) and
 publishers. The reasons, I imagine, are much the same as with indices — for some
 reason, the thinking is that just as search engines can replace indices, schemas can
 replace style guides. Ugh.
Style Guide Examples
In a former life, I worked as an editor (as opposed to author; see section “Roles”) of a global
 telecommunications company. Among other things, I was responsible for editing
 and updating their Style Guide[9]. The company produced most of their documents in unstructured
 FrameMaker format, but with well-defined paragraph and character formats, a
 style guide, and an actual editor — me! — to enforce the content styles[10]. That's a subject for a different paper, or perhaps my memoirs.
 Suffice to say that the content produced at the time was more consistent than a
 lot of the XML content I see these days, and it was easy to convert to SGML when
 the time came.
I do want to highlight some of the instructions in that long-forgotten book,
 though, as I feel it still illustrates my points rather well[11]. For example, here's a screenshot from a section that deals with
 ordered lists:
Figure 3: Ordered List Style
[image:]

Note how ordered sublists should avoided if at all possible. This was about
 keeping ordered lists simple enough to process and fit onto a low-res screen
 (this was in the 90s), among other things.
Procedures (not to be confused with ordered lists) had different style
 instructions:
Figure 4: Procedure Style
[image:]

There were a lot of different procedures in the documentation, and they all
 had their own style. The following example is rather long, but should illustrate
 how style ties into structure:
Figure 5: System Integration Procedure Instructions
[image:]

As should be apparent above, there is an overlap between the style guide and
 the structure, which worked quite well for FrameMaker-based content. Also, when
 the time came, the SGML DTD did complement the style guide quite well.
Today, some twenty years after the fact, the style guide is all but forgotten,
 and the editors have all left.

Similar Models, No Way To Share
To illustrate how important style is, let me tell you another story. Some
 years after the demise of the style guide at the big telecom company, above, I
 was tasked with creating an XML production DTD, an exchange format that would
 allow two car manufacturers to exchange service information. The two were
 already sharing a lot of the hardware; both manufacturers shared platforms,
 engines, gearboxes and more to make many of their car models.
The production DTD itself was easy enough to create. There were a couple of
 differences in the respective DTDs¸but most differences were about trivialities
 like cardinality and different element names, and so the production DTD that
 resulted was a superset of the respective DTDs used by each manufacturer. I
 think that DTD took me a few days to do, all in all.
But looking at the actual contents from the respective manufacturer, it became
 clear that sharing information would be a lot trickier than sharing hardware.
 Manufacturer A used a text-based approach to write their service information,
 adding a few illustrations where necessary. Manufacturer B, however, used a
 comic-book approach — very little or no text, but at least one image per
 step.
This was not a modelling problem at all, this was purely a style problem, and
 neither side would give up their way of producing content. They never did share
 their service information with each other.
Neither manufacturer used a style guide, and it certainly never occurred to
 them to ask the other how they wrote their information.
 DTDs were sent back and forth during early decision-making[12], but that was about it.

Lists Revisited
So, to return to the list problems that followed the queues, here's a style
 guide excerpt that addresses my list examples (drawn from memory; I don't have
 the actual pages):
Always introduce a list with a paragraph that
 explains what is listed. The introductory paragraph is
 not a title; rather, it is a qualifier, giving the
 list its proper context. It, just as the list, is an integral part of the
 text flow, and should, just as the list, be written to fit the surrounding
 text.
Never use an ordered list when you are writing a
 procedure (and don't even consider writing it using an unordered
 list).
Never insert a list or its introductory text inside a
 paragraph unless you intend to present your list inline.
...

That last bit I added here and now; my style guide did not
 discuss markup.

OK, So Where (How) Do I Get One?
If you don't have use a style guide but have a lot of XML, plus some schemas and
 schematrons, chances are that your documents are inconsistent and would need that
 style guide. Is it too late?
Ideally, I think a style guide should be the first result of the information
 analysis that will later lead to the schema(s) when starting out with structured
 information. This, of course, may not be possible, so I'd settle for the next best
 thing: do a new information analysis by looking at the current XML sources and the
 Schematron schemas, figure out what the problems are — I'm guessing looking at the
 more common Schematron errors will point you in the right direction — and then
 having a think about what the content should look like, in terms of style. Define a
 desired house style, in other words. Once there — and this is just as iterative a
 process as writing a schema — you should formalise your findings in a style
 guide.
This will result in better semantics and more consistent content. Chances are that
 you'll be able to tighten the schema(s) and get rid of unused models while improving
 the ones you keep. This will help you create better, more focussed, Schematron rules
 and achieve a separation of concerns — let the schema enforce the structure and the
 Schematron suggest a style defined in the style guide.
Yes, I do think it's worth your while.

Roles
Authors are opinionated people. They care very much about their content, and they
 all have very definitive ideas about what makes it good. This, sometimes, can be
 bad, because when allowed to do what they want, the documents will differ from one
 another; the reader, will suffer.
This is why publishers used to have editors.
Some years ago, before the true state of things was readily apparent to me, I
 innocently asked a client of mine if they had editors. Yes, they had a whole
 department of them, why? It took me a few moments to realise that they were talking
 about authors. Writers. They had no editors, and hadn't had them for years. That's
 why they moved to structured information, right?
An editor, of course, is the person who makes sure that everyone follows the style
 guide, is the final arbiter of all things style, and frequently the one who edits
 the style guide[13].
So, does it make sense to have an editor on the staff, in addition to authors?
 Aren't there tools that can do the job, these days?
Tools
 The obvious tool beyond a schema is a Schematron — those XPath-based,
 context-sensitive soft rules that go beyond what schemas can
 express, and what schemas should express.
A Schematron rule can, with a few well-expressed XPaths, make sure that any
 ordered list in a law paragraph will use a different list type (see section “Some Examples”). It can
 suggest a list to have an introductory paragraph if it lacks one, and, in a
 similar way, help out with most other rules. What it can't do is to explain what
 a complete procedure should or shouldn't look like. Schematrons are not
 instructions, they are a help when validating, and if you don't know how you
 should write your content, it won't help you, only point out what's wrong with
 what you've already written[14].
Schematrons — and certainly Schematron Quick Fixes — are great for
 context-sensitive reminders of what's in a style guide, but they can't replace
 one. Nor can they replace an editor — an editor is the guy who will look through
 your content and explain, in broad strokes, what doesn't comply with the style
 guide and why. If you've created content consistently and with consistent
 errors, Schematron warnings could be numerous and therefore overwhelming; an
 editor will be able to summarise.
Of course, with enough time and code, there's a lot you can do to convert your
 numerous Schematron warnings into summaries, say, by eliminating duplicate
 errors, but in the end, an editor will be able to do that much more quickly
 while also being able to explain further if you don't understand the finer
 points.
And perhaps more importantly, if the style guide changes, the editor can take
 this into account without any coding whatsoever, and also spot
 why the style guide needs to change.
A Schematron, then, is a tool that aids rules expressed in style guides and
 enforced by an editor.

Queues Reinvented
So, what to do about the long queue and the chaos at Mc Donald's on Fleet Street I
 started this paper with? Well, if you haven't thought about it already, this is what
 everyone should do:
Figure 6: Queue Numbers
[image:]

This is a fairly advanced queue numbering system display for a waiting room. Once
 you've picked a queue number from the machine, all you have to do is to wait for
 your turn. It's multiple lists merged into a single one, really — you won't ever
 risk picking the wrong queue, and you won't miss your turn. The semantics are clear
 and reasonably unambiguous.
I'm betting that a lot of thought and careful analysis went into designing this
 display and its underlying system. Instead of the long line or the chaos that is
 McDonald's on Fleet St during lunch hour, this simplifies the model (multiple lists
 are merged into a single one) and allows for a separation of concerns where the
 business rules help the end user to complete his or her tasks (waiting for your turn
 and finding the right counter) while being able to relax.
This, of course, is a paradoxical example, considering that it's a (mostly)
 technological solution to the queue problem opening this paper. Where is
 the style guide in all this? Glad you asked; it would have been easy
 to present the whole thing as a straight list[15]:
148 (6)
293 (8)
774 (3)
694 (4)
616 (10)
102 (9)
X (5)
602 (2)
X (7)
X (1)

This is a made-up example, of course, but my point should be clear. The style
 guide is involved:
	Don't display any unmanned counters.

	Show the latest update in a larger font.

	Limit the number of counters shown.

	...

See how this works? Yes, it is probably entirely possible to check the above rules
 in, um, a Schematron and then enforce the findings by adding some XSLT and CSS[16], but the Schematron only checks what's already been done
 rather than telling you what to do before you start. We want to
 prevent the bad habits rather than catch them later!

Conclusions
You need to start with the style guide. The style guide should be
 an organic part of your information analysis — if you're starting out, it should be the
 first thing produced by the analysis — and later allow you to make informed choices when
 writing the schema. Which should then allow the authors to use the new schema in the
 right way and using the correct style.
Ideally, this is how it should be done:
	Information analysis

	Style guide produced

	Schema produced (enforce structure)

	Schematron(s) produced (enforce style)

	Rinse and repeat until done

Authors can then produce content in the style prescribed by the style guide, the
 structure as described by the schema, and with schematron rules highlighting problems
 with both. And ideally, with an editor making sure that it's all done properly.
End Note
Hoping to find a few examples of modern style guides by searching Google for
 online style guide, the first several results were all about web
 design. I rest my case.

References
The Chicago Manual of Style. [online]. The
 University of Chicago Press. http://www.chicagomanualofstyle.org/home.html
William Strunk Jr. and E.B. White. Elements of Style, 3rd
 Edition. Simon & Schuster.

[1] The answer is that there are almost no queues. The people waiting
 have already ordered; they are waiting for their
 burgers to be ready. If it's your first time eating at McD, Fleet St, there's no
 way to know without pushing your way through to a counter. If you're like me,
 this is very disconcerting.
[2] This, actually, is the kind of thing that belongs in a style guide, not
 schema. Let the para be optional but stress its importance in the
 style guide. But I'm getting ahead of myself.
[3] Unless you've worked in legal publishing.
[4] I'm not saying there's never a reason for complex models. Of course there is.
 It's just that in my experience, overmodelling is more common.
[5] In my experience, FrameMaker sources are especially vulnerable, paradoxically
 because FrameMaker templates can be used as semi-structured because of the way
 paragraph and character formats are defined.
[6] Although bold italic in a single emphasis type always made
 me suspicious.
[7] In a way, this is the easiest paper I've ever written. The one-stop solution
 is actually to write a style guide!
[8] How you write content will influence the schema, too, but above all, it's
 the kind of thing best explained in a style guide.
[9] This also led to me setting requirements for, and eventually writing,
 their SGML DTDs.
[10] Yes, I did use a red marker, and yes, the authors hated me.
[11] I'm not taking credit for all of it; we did work I'm very proud of to
 this day, but we also borrowed heavily from other style guides, such as
 Chicago Manual of Style, Strunk & White's
 Elements of Style, and many others.
[12] I was not part of this — I would have asked for style guides then, and
 most of the misery that followed would have been avoided. When I did
 come aboard, I asked for them, got some puzzled looks, and was
 eventually given the DTDs instead.
[13] And is at least partly responsible of the schema, if you're lucky.
[14] This is not entirely true; a clever Schematron can make things a lot
 easier if you have an inkling of the direction in which you need to
 go.
[15] Yes, the irony does not escape me.
[16] Schematron Quick Fixes for the win?

Balisage: The Markup Conference

In Defence of Style Guides
Ari Nordström
Ari Nordström is a Senior XML Specialist (fancy speak for "markup geek") at Karnov Group, a Scandinavian legal publisher. He is based in Göteborg, Sweden, but has been known to provide angled brackets across a number of borders over the years.
Ari is the proud owner and head projectionist of Western Sweden's last functioning 35/70mm cinema, situated in his garage, which should explain why he once wrote a paper on automating commercial cinemas using XML.

Balisage: The Markup Conference

content/images/Nordstrom01-001.jpg
A et

content/images/Nordstrom01-006.png
Now serving

Ticket

148

on counter

6

Ticket Counter

293 8
774 3
694 4
616 10

content/images/Nordstrom01-002.jpg

content/images/Nordstrom01-003.jpg
2.6.3 Numbered (Ordered) Lists

Use a numbered (ordered) list to present items that must be
considered in a certain sequence or that have a definite priority. Such
a list must be presented in the order of its performance or priority
(first step or highest priority first). Avoid sublevels within a
numbered list. If sublists must be useld, the levels are the same as for
bullet lists.

Example 6 A Numbered List with Unordered Sublists

1. Appearance of numbered lists
— Second level

— Introduced with a dash

content/images/Nordstrom01-004.jpg
Paragraphs in a System Administration Manual should be kept short.
Third person must be used in descriptive chapters.
Contractions must not be used.

Second person imperative is required in step-by-step descriptions in
procedural chapters. Note, however, that step responses and
comments are written in third person, as they depict system
responses or clarify steps or responses.

Procedure steps must be kept short and include only one action (for
example, one command to be typed or one mouse action) and one
system response. More than one comment for each step is allowed,
although discouraged. Uniform division of a procedure into steps is
a difficult matter and requires the use of test results and editorial
advice.

content/images/Nordstrom01-005.jpg
Note: Procedure names should use gerund, that is, the “~ing” form
of verbs. For example, a procedure for recovering from a disc
crash should be named “Recovering From a Disc Crash”, not
“Disc Crash Recovery”.

6.7.1.1 Section 8.n <Procedure>

Use a separate level two section for each procedure listed in the
introduction to the System Integration Procedures chapter. The
procedure name in the section heading must be identical to the
procedure name in the listing in the introduction.

Note: The level two section heading must be forced to the top of a
page to make the beginning of the procedures easy to locate.

Introduce every procedure with a short paragraph that describes
what the procedure will accomplish.

Then split the level two section into two level three sections,
Requirements and Procedure.

Section 8.n.1, Requirements

Begin the Requirements section by describing the conditions that
apply before the integration procedure at hand. If some special
hardware or software is required, then mention this. If the procedure
at hand requires another procedure to be performed first, then state
this and include a cross-reference to that procedure.

Section 8.n.2, Procedure

In the other level three section, Procedure, describe the procedure
itself, step by step, using one action and one response per step.

If the procedure section is lengthy, divide it into level four sections.
Name these sections according to their contents. The numbering of
procedure steps should be continuous throughout the entire level
three section, that is, throughout the entire procedure.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

