[image: Balisage logo]Balisage: The Markup Conference

The integration of XML databases and content management systems in digital editions
Understanding eXist-db through Reese’s Peanut Butter Cups
David J. Birnbaum
Professor and Chair
Department of Slavic Languages and Literatures, University of Pittsburgh (US)

<djbpitt@gmail.com>

Hugh Cayless
Senior Digital Humanities Developer
Duke University (US)

<philomousos@gmail.com >

Emmanuelle Morlock
Digital Humanities Research Officer
French National Center for Scientific Research (CNRS) - HiSoMA Reserch Center (UMR
 5189)

<emmanuelle.morlock@mom.fr>

Leif-Jöran Olsson
Systems Developer
Språkbanken, Department of Swedish, University of Gothenburg (Sweden)

<leif-joran.olsson@svenska.gu.se>

Joseph Wicentowski
Digital History Advisor
Office of the Historian, US Department of State

<joewiz@gmail.com>

Balisage: The Markup Conference 2019
July 30 - August 2, 2019

Creative Commons Attribution 4.0 International License (CC BY 4.0)

How to cite this paper
Birnbaum, David J., Hugh Cayless, Emmanuelle Morlock, Leif-Jöran Olsson and Joseph Wicentowski. "The integration of XML databases and content management systems in digital editions." Presented at: Balisage: The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019.
 Balisage Series on Markup Technologies vol. 23 (2019). https://doi.org/10.4242/BalisageVol23.Birnbaum01.

Abstract
We have identified four models for integrating digital edition content into eXist-db [], which are, in increasing order of dependence on eXist-db itself: 1) using Apache
 [] and PHP [] to mediate between the user and eXist-db, so
 that eXist-db provides only XML database services, 2) a pure XQuery framework for building an eXist-db
 web application [], 3) the eXist-db HTML templating framework [], and 4) TEI Publisher []. Our examination and
 comparison of these ways of conceptualizing and implementing the infrastructure for a digital edition
 reveals that each of them has advantages and disadvantages, primarily from the perspective of
 sustainability. These considerations apply to edition frameworks generally, and are therefore not
 specific to eXist-db, which has been used here as an example because of the number of editions that
 employ it and the variety of models it currently supports.

Balisage: The Markup Conference

 The integration of XML databases and content management systems in digital editions

 Understanding eXist-db through Reese’s Peanut Butter Cups

 Table of Contents

 	Title Page

 	Introduction

 	Web application architecture

 	Four ways of building an edition with eXist-db
 	Web application middleware

 	
 XQuery, the server language

 	Overview

 	Stage 1: Creating a basic edition

 	Stage 2: Creating a table of contents

 	Stage 3: Enhancing the table-of-contents view

 	Stage 4: Creating a library module and packing the application

 	Discussion

 	Apps with HTML templating

 	TEI Publisher

 	Conclusion
 	The interface and the scholarship

 	General

 	Sustainability

 	Ease of use

 	So what about those peanut butter cups?

 	About the Authors

 The integration of XML databases and content management systems in digital editions
Understanding eXist-db through Reese’s Peanut Butter Cups

Introduction
In the 1980s Reese’s Peanut Butter Cups, long owned by the Hershey Corporation and one of the best selling
 and most popular candy products in the US (Upton 2013), deployed an advertising campaign that
 portrayed the idea of eating chocolate and peanut butter together as a serendipitous pleasure. In one
 television advertisement (Reese’s), two persons accidentally walk into each other on the
 street, he eating a chocolate bar and she eating peanut butter out of a jar with—perhaps surprisingly—her
 finger. They collide, the chocolate bar winds up embedded in the peanut butter, and they protest, in unison:
 You got your chocolate in my peanut butter and You got peanut butter on my
 chocolate! They both then, simultaneously, realize that they like the taste of the combination, and
 proclaim, still in unison, Delicious!, as an older man (apparently a grocer; he wears an
 apron) suddenly materializes between them, standing uncomfortably close and silently ogling the packaged
 Reese’s Peanut Butter Cups that he holds up (for the camera; it is behind the field of view of the two
 principals).
Reese’s Peanut Butter Cups (advertisement; product)
[image:][image:]

Meanwhile, in a galaxy far, far away, the eXist-db native XML database was born in 2000. [Meier 2003] Created by Wolfgang Meier, who at the time was a researcher in the field of
 sociology, to support projects that required the efficient processing of XML documents, eXist-db was
 released as a free, open source project that has enjoyed a broad following in the world of XML and NoSQL
 databases. In particular, eXist-db has often been used in publishing and digital edition projects in the
 humanities, including some designed and implemented by authors of the present report. Since its inception,
 eXist-db has provided the services one expects from any database management system (DBMS): it stores records
 (XML documents), builds persistent indexes, supports retrieval with a query language (XQuery), and provides
 the housekeeping functionality (e.g., user authentication) those processes require. eXist-db is commonly
 hosted inside an HTTP server and servlet container (it ships with Jetty, but other hosts
 are also supported), which mediates between the user and the eXist-db functionality, as is illustrated in
 this image from Siegel and Retter 2014:
eXist-db web application platform architecture (Siegel and Retter 2014: 72)
[image:]

Since its early years users have been able to interact with eXist-db by communicating directly with the
 Jetty server, and over time eXist-db has increasingly come to support features that are more commonly
 associated with a Content Management System (CMS) than with a database, such as themes, templates, and page
 management (not just data resource management). We might consider the eXist-db core functionality, the DBMS
 services at the innermost layer of an eXist-db installation, as analogous to the thick peanut butter center
 of a Reese’s Peanut Butter Cup, and the Jetty servlet container, which provides eXist-db’s REST interface,
 as the thin outer layer of chocolate. But the analogy does not depend only on the fact that the eXist-db
 DBMS services are wrapped, as it were, inside Jetty’s CMS ones. Peanut butter and chocolate have a long
 history as independently popular foodstuffs, and neither depends in any necessary, obvious, or even
 intuitive way on the other, yet their combination in a single product has proven impressively popular with
 consumers. Similarly, there is nothing about a DBMS that requires or expects CMS services, and vice versa,
 yet the growing integration of the two types of functionality within eXist-db confirms that they can be
 combined to create a resource for developing and deploying digital editions.
While digital editions based on eXist-db have been produced using a variety of architectures, the release
 of TEI Publisher 4.0 in December 2018 [TEI Publisher 4.0] provides an opportunity for
 creators of digital editions, such as the authors of this paper, to review and assess the existing
 architectures in the context of this new one.[1] An implementation of the TEI Processing Model [TEI Processing Model, Turska 2015] that leverages Web Components for its default user
 interface [Web Components], TEI Publisher can be said to turn eXist-db into a hosting
 platform for digital editions that both goes very far beyond traditional DBMS services and provides
 functionality that would normally be expected from a CMS. The TEI Publisher documentation says as much
 explicitly (see especially the paragraph below the numbered list):Despite its elegant
 simplicity, various projects we realized in the past prove that the TEI Processing Model is: 1. powerful enough to cover complex transformation needs
2. a truly universal tool for
 any kind of digital edition
3. efficient and as fast (or faster) as handwritten
 transformations
4. suitable for any XML, not just TEI (this documentation is written in
 docbook!)

However, online editions require more than just a text transformation: the
 text needs to be embedded into an application context, adding navigation, pagination, search, facsimile
 display and so on. The larger part of TEI Publisher deals with those aspects, providing all the necessary
 building blocks for an online edition. [TEI Publisher Quickstart]

After a digression about web application architecture, which serves as a reference point for comparison
 and discussion, in the following sections we describe four models for integrating digital edition content
 into eXist-db. These are, in increasing order of eXist-db dependence: 	using
 Apache [Apache] and PHP [PHP] to mediate between the user and eXist-db,
 so that eXist-db provides only DBMS services;

	using pure XQuery, as
 implemented in eXist-db, as the server language for building web applications [Web applications];

	using the eXist-db HTML templating framework [HTML templating]; and

	using TEI Publisher [TEI Publisher].

Each of these ways of conceptualizing and
 implementing the infrastructure for a digital edition has advantages and disadvantages, primarily from the
 perspective of sustainability. Those concerns are applicable to digital edition frameworks generally, and
 are therefore not specific to eXist-db.

Web application architecture
A typical web application architecture has a front end, or user-facing
 interface; a middle tier, which handles interactions between the user and
 the application data; and a back end, which is a data store of some kind.
 In most web applications the front end is HTML, CSS, and JavaScript, and the middle tier is dealt with by
 some piece of software, often developed using a framework that takes care of common tasks (see the examples
 below). In many digital editions, the text exposed by the edition on the front end may be be relatively
 isomorphic with the source TEI XML on the back end. This is typically the case to a large extent because the
 TEI XML markup is an operationalization of a theory of the text, and the model expressed by the markup is a
 large part of the scholarly content that is to be made accessible to the user. Applications like TEI
 Boilerplate [TEI Boilerplate] and the Versioning Machine [Versioning Machine] are
 designed for this type of situation; in different ways they select, style, and present a view of underlying
 TEI XML that is organized primarily by the XML hierarchy. CETEIcean offers an in-browser JavaScript strategy
 for rendering the XML TEI directly through the use of web components, and specifically of HTML custom
 elements. [Cayless and Viglianti 2018, CETEIcean] CETEIcean is capable of reorganizing the
 DOM to support transformation, and can even create new content, but its developers describe it as
 appropriate especially in situations where the TEI’s model of the text can be usefully leveraged to
 allow interesting dynamic functionality in the browser. [Cayless and Viglianti 2018]. Other types of
 editions, though, may rely very substantially on structural transformation of the underlying TEI XML, and on
 the creation of new data objects. For example, an SVG graph of character interactions in a novel (where the
 individual nodes and edges do not correspond to specific XML elements or attributes in the TEI XML source)
 or a table of part-of-speech counts (where the counts are generated atomic values not present in any overt
 way in the TEI XML source) is also an expression of the data, but one that is not at all isomorphic to the
 TEI XML model. These views, too, may play a role in a digital edition that is designed to express
 interpretive aspects of textual scholarship that go beyond discrete source-level textual data.
A digital edition based on the Text Encoding Initiative guidelines has some decisions to make about its
 back-end and front-end architecture. The methods we discuss here all assume that on the back end the data is
 stored in one or more TEI XML documents.[2] How will the content on the front end be created and presented?
 Transformed to HTML or SVG or something else using XSLT, XQuery, or some other mechanism? When will that
 conversion occur—ahead of time or upon request? Will the conversion be cached or always live? Will it happen
 on the server or in the browser? Bound up with these questions is the decision of how to structure the
 software that mediates between the back-end content and the front-end presentation. We use eXist-db as the
 data store in all of the examples below, but each example makes different choices about the proportion of
 application logic and source-conversion entrusted to eXist-db.
The decision of where to place the application logic of a digital edition and how to structure it may be
 influenced by many factors, including performance, available developer expertise, and software
 functionality. The latter issue can be acute because of the stagnation of XML technology development in some
 areas. Common application frameworks such as Ruby on Rails [Ruby on Rails], Flask (Python) [Flask], or Django (Python) [Django] rely on libxml2 and libxslt for XML
 processing, and therefore are restricted to XSLT 1.0. Java or ASP.Net-based systems can make use of the more
 modern XSLT support available in Saxon [Saxon], and the same is true of Saxon-JS [Saxon-JS]. eXist-db supports XQuery 3.1, but a decision to use it as a complete solution may mean
 relying upon it for things like user management and other functionality that could be easier to implement on
 top of a web framework. In addition, it may be easier to find developers qualified to work with a common web
 application framework than with eXist-db. With all of that said, there are obvious advantages to working
 with XML-related processing solutions when dealing with XML data resources.
MVC is an architecture that separates an application into three components: Model, View, and
 Controller.[3] The
 following explanation is based on MVC architecture: 	Model: the data and core DBMS functionality. This corresponds to what we describe
 above as the back end.

	View: the user
 interface (UI), such as web forms that accept user input and the HTML returned to the user in response to
 queries. This corresopnds to what we describe as the front end.

	Controller: The interface between the model and the view. The
 controller may translate user-supplied values from a web form (part of the view) into a database query
 (interacting with the model) and return the results (drawn from the model) as an HTML page (part of the
 view). This corresponds to what we describe above as middleware.

These
 components and the relationships among them may be represented as follows:Three-tier MVC architecture (https://www.wideskills.com/struts/introduction-to-mvc-architecture)
[image:]

The Model in all of the examples below is the XML data stored inside eXist-db and the core eXist-db
 database functionality that interacts with the data (e.g., the ability to interpret XQuery and navigate
 collections and resources). The View in all of the examples is the UI, that is, web pages as presented to
 the user, both those that elicit user input (such as query forms) and those that are returned in response to
 user input (such as formatted results returned from a query). The most variable aspect of the examples below
 is the Controller, that is, the part of the architecture that 1) responds to user interaction with the View
 by interacting with the Model and 2) updates the View in response to user activity, often recruiting and
 manipulating user-specified information retrieved from the Model.[4]

Four ways of building an edition with eXist-db
Web application middleware
A common architecture for web interfaces that incorporate a DBMS (relational, XML, or other) is that
 user requests are mediated by a standard HTTP server, such as Apache running on ports 80 and 443, which
 delegates the job of processing requests to some middleware, such as PHP scripts, web frameworks like
 Ruby on Rails or Django, or many other alternatives. Under this approach, the front end is generated by
 the middleware, which queries the database (commonly via a REST interface) for information to be
 presented in the view. Views might be created by transforming XML to HTML with XSLT, or by including
 HTML fragments generated directly from eXist-db using XQuery. This architecture is similar to that of
 the fundamental open-source LAMP stack: Linux (OS), Apache (HTTP server), MySQL (DBMS), and PHP
 (middleware language), with the DBMS role replaced by eXist-db. Obviously, PHP is only one option for
 the middle tier language, and here it should be understood to be replaceable by any language filling a
 similar niche.[5]
The strictest implementation of this type of system in an eXist-db context relies on eXist-db only as
 an XML database, that is, as an alternative to the MySQL component of LAMP. For example, a PHP script
 running inside an Apache server on port 80, which is the only direct point of access for the end-user,
 might incorporate user-supplied form values into a constructed XQuery script that is then passed into
 eXist-db using the eXist-db REST interface. The results of the query are returned to the PHP script,
 which then shapes them into HTML, associates CSS and JavaScript, and returns a response page to the
 user. Under this stricter model, any CSS and JavaScript reside on the Apache server because they are
 part of the front-end functionality, and not of the DBMS services. And the only part of the content of
 the returned page (the modified View) that is connected to eXist-db is information that depends on XML
 stored inside eXist-db. The rest of the HTML returned page is a literal part of the PHP script.
Looser implementations of this approach might offload additional Controller functionality onto
 eXist-db. For example, XML retrieved from inside the database might be transformed to HTML markup inside
 eXist-db, using the XQuery typeswitch() expression or XSLT by way of the eXist-db
 transform:transform() function[6] instead of by the PHP script
 after the eXist-db query returns. Looser implementations might also store the XQuery script inside
 eXist-db and pass it user-supplied parameters, instead of integrating the parameters into the query
 within PHP before passing the entire constructed query into eXist-db. And looser implementations might
 store some front-end components inside eXist-db, such as CSS and JavaScript, although these might most
 properly be regarded as aspects of the View, rather than of the Model. What these variations all have in
 common, though, is that PHP provides all or most or, at least, some of the Controller functionality of
 the MVC architecture.
One advantage of using eXist-db only as a DBMS, and limiting its role as Controller, is reducing
 dependency on custom features of eXist-db. To the extent that this separation of concerns allows the use
 of standard XQuery, with no non-standard, implementation-specific features, users may replace eXist-db
 with an alternative XML DBMS, such as BaseX [BaseX] or MarkLogic [Marklogic], with minimal adjustment to the Controller. However, insofar as all XML DBMSs
 rely to some extent on custom functions in custom namespaces[7], it is unlikely
 that a useful application of any complexity will be able to avoid proprietary features entirely. It is
 nonetheless the case that an application that does not rely on application-specific features at the
 Controller level reduces—even if it does not entirely eliminate—the extent of the lock-in to a specific
 XML DBMS product.[8] The use of Free Software products, such as
 eXist-db and BaseX, reduces it further. For certain types of application, a second advantage may come
 from limiting the use for dynamic (and therefore slower) querying of the database in the construction of
 most views. Relatively static outputs can be cached in the middle layer and regenerated only when the
 sources are changed, with dynamic querying therefore restricted to operations like searching. This kind
 of strategy can pay great dividends in application performance, although at the cost of having to manage
 a cache.
The principal disadvantage of using eXist-db only as a DBMS and locating all of the Controller logic
 in the middleware is an increase in the complexity of the overall architecture. Specifically, in this
 arrangement the Controller interjects a PHP layer between the View and the core XML DBMS services
 provided by XQuery within the Model, and the need to communicate between PHP and XQuery introduces an
 additional potential zone of failure. The separation of concerns (Controller in PHP, which interacts
 with a Model that understands XQuery) is generally (and not unreasonably) considered a virtue because of
 its modularity, since the connectivity between the two is mediated through an API. For example, PHP that
 knows how to communicate between a web form and a relational DBMS can be reused to communicate between
 the same form and an XML DBMS by adapting only the API-specific parts (for example, by replacing SQL
 queries with XQuery ones). But this modularity comes at the price of lengthening and complicating the
 distance between the View and the Model. For example, when a query fails during development under this
 approach, the failure may reside in the PHP code, in the XQuery code, or in a miscommunication (REST
 connectivity, API, or other). The PHP layer also complicates deployment because it requires
 configuration of both eXist-db and PHP resources on the host. With that said, this is an old and very
 widespread architecture in the relational DBMS world, as in the familiar LAMP architecture.
We have applied several varieties of this middleware strategy in production. The most manageable
 (easiest to develop, debug, maintain) arrangement has involved the following workflow:	The user enters information into an HTML form and submits the form, which fires a PHP
 script.

	The script collects the input, sanitizes and validates it,
 and executes a REST call to an XQuery script that has been installed inside eXist-db. This avoids the
 legibility challenges that arise when trying to construct an XQuery script while observing PHP syntax. A
 sample query as formulated within a PHP script might look like the following, where
 REST_PATH has been declared with a value like
 http://example.com:8080/exist/rest in an imported file, and the $country and
 $text variables are user-supplied values retrieved from the web form, after validation and
 sanitation:
 $xql = REST_PATH .
"/db/repertorium/xquery/runSearch.xql?country=$country&text=$text";
echo file_get_contents($xql);

	eXist-db receives the REST call, dereferences the parameters with
 request:get-parameter(), runs the query (previously stored inside eXist-db), transforms the
 results to a well-balanced XHTML fragment using typeswitch or XSLT with
 transform:transform(), and returns it to the PHP script.

	The PHP script inserts the returned result in the correct place, the location of the echo
 file_get_contents($xql); instruction in the example above.

	The result is a valid XHTML page, which the PHP script then returns to the user.

 XQuery, the server language

Overview
The previous section relegated eXist-db to the MySQL portion of the prototypical LAMP stack.
 However, it is also possible to build applications purely with XQuery. In this architecture,
 eXist-db functions as the entire AMP portion of the stack—handling the model, view, and
 controller.[9] The primary advantage of this model is that the edition’s developer need master only one
 core technology—XQuery—rather than many disparate ones. Kurt Cagle articulated this potential in an
 article published just months after XQuery achieved 1.0 status as a W3C Recommendation in 2007:
 Over the years, I’ve had the chance to program in a lot of different server-side
 scripting languages—C, Perl, ASP, JSP, PHP, ASP.NET, Python, Ruby, among others … As an XML
 developer, one of the problems that I come across almost invariably within these languages is the
 fact that they are shaped by people who view XML as something of an afterthought, a small subset of
 the overall language that’s intended to satisfy those strange people who think in angle brackets … A
 few recent XML databases have taken XQuery to heart, and use it as the primary mechanism for
 accessing the XML database content. One in particular, the open source eXist-db project, has gone
 somewhat further, by inverting the normal sequence of working with XML where the XML object or data
 store is passed in as an object to the XQuery filter within the context of a server session. In the
 case of eXist-db, the various session objects—request, response, server, and so forth—are instead
 brought into the XQuery engine as externally defined XQuery methods. In other words, in this
 situation, the server-side scripting language is not PHP or ASP.NET or JSP, it’s XQuery. [Cagle 2007]

Cagle argues that XQuery need not be limited to querying and analyzing XML documents; it is fully
 capable as a server language for web applications. eXist-db’s Request, Response, and Session
 extension modules give developers the ability to access HTTP request parameters (as well as host
 names, server ports, etc.), control session parameters, and return HTTP responses with customized
 status, headers, and body. An eXist-db application can even serve customized URL endpoints via its
 native URL Rewriting Facility or through its support for RESTXQ.
To illustrate the appeal of such an architecture, we explore here the syllabus of a half-day long
 seminar taught by one of this paper’s authors at digital humanities institutes to participants who
 had already completed a Text Encoding Initiative track, but who were not experienced in application
 development. In this short span of time, the instructor leveraged the participants’ newly acquired
 knowledge of TEI XML to teach them enough XQuery to create a simple, dynamic, database-driven
 web-based application. The goal of the application was to let users browse through twenty
 TEI-encoded issues of Punch, a satirical, Victorian-era periodical
 used throughout the institute as a sample dataset. [Punch] Each issue has a title
 and a number of sections, many of which are accompanied by illustrations. The application presents
 the reader with a list of issues, and the reader then clicks an issue to view its contents (at
 varying levels of granularity) by transforming the source TEI into HTML on the fly.
For pedagogical reasons the approach to developing this application was divided into four major
 stages, each designed to introduce a new set of techniques in application development or
 capabilities of eXist-db. Those techniques included:	querying a
 collection of XML documents with XPath

	sorting the results with
 XQuery

	creating HTML and serializing it in response to requests
 from web browsers

	transforming TEI into HTML

	passing data between requests using dynamically-generated URL parameters

	encapsulating commonly used code into functions

	importing functions from library modules

	implementing full text search

 The learning outcome goal was
 that by acquiring these skills the institute participants would be empowered to create editions of
 their own as customized applications.

Stage 1: Creating a basic edition
In preparation for building the application, institute participants download and install eXist-db
 on their workstations and upload the sample collection of Punch
 issues to the database, using eXide, eXist-db’s built-in integrated development environment for
 XQuery. Participants then build up from simple XPath expressions to a bare-bones application that
 shows a list of issues and lets readers choose an issue to view. They begin this process by opening
 a new XQuery window in eXide and creating an XPath expression that points to the titles of all
 issues in the
 collection:collection("/db/apps/punch/data")
/tei:TEI/tei:teiHeader/tei:fileDesc/tei:titleStmt/tei:title

Submitting this query in eXide returns a sequence of TEI <title> elements.
 Participants then extend this core XPath expression by constructing an XQuery FLWOR expression that
 iterates over the sequence of <title> elements and returns a new sequence of HTML
 elements. The return clause in their XQuery uses an enclosed
 expression to obtain the string value of the title, preceded by an order by clause to
 sort the sequence
 alphabetically:for $issue in collection("/db/apps/punch/data")/tei:TEI
let $title :=
 $issue/tei:teiHeader/tei:fileDesc/tei:titleStmt/tei:title
 order by $title
 return
 {$title/string()}

Because HTML elements are valid only as children of
 or wrappers, the participants then wrap this FLWOR
 expression inside an HTML element to produce an ordered list. The participants
 save this query, which creates valid HTML output, to the database, inside the v1
 subcollection for modules for the first version of the application, as v1/list-issues.xq.[10]
Institute participants then leave eXide and navigate in their browsers to the URL that eXist-db
 exposes for their stored query: http://localhost:8080/exist/apps/punch/v1/list-issues.xq. This URL is serviced by
 eXist-db’s Jetty server, which is configured to execute queries stored within the /db/apps database collection via the /exist/apps URL space. By
 default the query returns raw XML, which is not the desired result, so the participants next learn
 how to add an XQuery serialization declaration to their query, which instructs eXist-db to return
 the HTML result of the query as a web page instead of as raw XML. Finally, the participants wrap an
 HTML link around each title, pointing to a second stored query and including a URL parameter, called
 issue, containing the issue’s unique identifier (the issue’s file name). This will be
 used to return a specified issue when a site visitor eventually clicks on an issue title in the list
 of issues.
To provide that issue view, participants next create a second module, v1/view-whole-issue.xq, which calls on eXist-db’s request:get-parameter()
 function to retrieve the issue URL parameter. The query uses this issue identifier to
 select the full textual content of the issue, its <text> element, in the
 database:
 let $issue := request:get-parameter("issue", "")
(: We take $issue, e.g. 1914-07-01.xml, and can reconstruct the path
 : to this document in the database by concatenating the base path
 : to all Punch data with the $issue parameter. :)
let $doc := doc(concat("/db/apps/punch/data/", $issue))
let $text := $doc//tei:text
(: snip :)

Because the eventual reader will require HTML, and not the TEI XML of the original source, this
 XQuery then passes the TEI XML through a function that transforms the entire TEI
 <text> node into HTML, and it then inserts the results as a well-balanced HTML
 block inside a <div>
 element:(: continued :)
let $title :=
 $doc/tei:TEI/tei:teiHeader/tei:fileDesc/tei:titleStmt/tei:title/text()
return
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>{$title}</title>
 </head>
 <body>
 <div>
 <h1>{$title}</h1>
 {
 (: The tei-to-html:render() function takes 2 arguments:
 : 1. The TEI we want to display
 : 2. An optional set of parameters. In this case, we provide
 : the "relative-image-path" for all TEI graphic elements;
 : and we use "show-page-breaks" to specify that
 : TEI pb elements should be shown.
 :)
 tei-to-html:render($text,
 <parameters xmlns="">
 <param name="relative-image-path"
 value="/exist/apps/punch/data/"/>
 <param name="show-page-breaks" value="true"/>
 </parameters>)
 }
 </div>
 </body>
 </html>

This function for transforming TEI into HTML is located in an XQuery library module supplied to
 the participants, modules/tei-to-html.xqm, which we import in the
 prolog of the view-whole-issue.xq
 query:import module namespace tei-to-html =
 "http://history.state.gov/ns/tei-to-html" at
 "../modules/tei-to-html.xqm";

The TEI-to-HTML module’s primary function, tei-to-html:render(), does a bit of
 housekeeping and then calls tei-to-html:dispatch(), which recursively walks through the
 entire TEI document, using the XQuery typeswitch expression to look at each node of the
 TEI document and pass it to the appropriate function:
 (: Typeswitch routine: Takes any node in a TEI content and
 : either dispatches it to a dedicated function that handles that
 : content (e.g. div), ignores it by passing it to the recurse()
 : function (e.g. text), or handles it directly (e.g. lb). :)
declare function tei-to-html:dispatch($node as node()*,
 $options) as item()* {
 typeswitch($node)
 case text()
 return $node
 case element(tei:TEI)
 return tei-to-html:recurse($node, $options)
 case element(tei:text)
 return tei-to-html:recurse($node, $options)
 case element(tei:front)
 return tei-to-html:recurse($node, $options)
 case element(tei:body)
 return tei-to-html:recurse($node, $options)
 case element(tei:back)
 return tei-to-html:recurse($node, $options)
 case element(tei:div)
 return tei-to-html:div($node, $options)
 case element(tei:head)
 return tei-to-html:head($node, $options)
 case element(tei:p)
 return tei-to-html:p($node, $options)
 case element(tei:hi)
 return tei-to-html:hi($node, $options)
 case element(tei:list)
 return tei-to-html:list($node, $options)
 case element(tei:item)
 return tei-to-html:item($node, $options)
 case element(tei:label)
 return tei-to-html:label($node, $options)
 case element(tei:ref)
 return tei-to-html:ref($node, $options)
 case element(tei:said)
 return tei-to-html:said($node, $options)
 case element(tei:lb)
 return

 case element(tei:figure)
 return tei-to-html:figure($node, $options)
 case element(tei:graphic)
 return tei-to-html:graphic($node, $options)
 case element(tei:table)
 return tei-to-html:table($node, $options)
 case element(tei:row)
 return tei-to-html:row($node, $options)
 case element(tei:cell)
 return tei-to-html:cell($node, $options)
 case element(tei:pb)
 return tei-to-html:pb($node, $options)
 case element(tei:lg)
 return tei-to-html:lg($node, $options)
 case element(tei:l)
 return tei-to-html:l($node, $options)
 case element(tei:name)
 return tei-to-html:name($node, $options)
 case element(tei:milestone)
 return tei-to-html:milestone($node, $options)
 case element(tei:quote)
 return tei-to-html:quote($node, $options)
 case element(tei:said)
 return tei-to-html:said($node, $options)
 default
 return tei-to-html:recurse($node, $options)
};

For example, when the typeswitch expression encounters a TEI <hi>
 element, it calls the tei-to-html:hi()
 function:declare function tei-to-html:hi($node as element(tei:hi),
 $options) as element()* {
 let $rend := $node/@rend
 return
 if ($rend eq "it") then
 {
 tei-to-html:recurse($node, $options)
 }
 else if ($rend eq "sc") then
 {
 tei-to-html:recurse($node, $options)
 }
 else
 {
 tei-to-html:recurse($node, $options)
 }
};

While this transformation module is provided as is to the participants (a concession to time
 limitations), they do have the opportunity to experiment by adding CSS specifications to the output.
 This exercise demonstrates that new users can easily learn to customize and extend the HTML
 transformation according to the needs of their particular edition.
The recursive typeswitch method above replicates the functionality of templates in
 XSLT push processing, and readers familiar with XSLT may object to this method of transforming XML
 (use XQuery to query, use XSLT to transform!). But the XQuery approach is perfectly
 valid with respect to the output it creates, and it has the pedagogical advantage in the institute
 context of allowing learners to focus their limited time on mastering XQuery. It is certainly a
 better alternative to forcing them to learn another language before being able to transform their
 data. which plainly would not be possible in the length of such a seminar. For users who have
 mastered XSLT or are interested in learning it, though, eXist-db has a
 transform:transform() function for performing XSLT transformations, which passes the
 node and stylesheet to a Saxon servlet that executes the transformation and returns the result.
 Meanwhile, though, this recursive typeswitch method empowers developers to perform
 transformations in the same, unified server language—XQuery—as the rest of their application.

Stage 2: Creating a table of contents
The first version of the application works, but participants quickly realize that it doesn’t make
 much sense to display an entire issue on one web page. Thus, in the second version of the
 application, the participants replace the view-whole-issue.xq query
 with a table of contents, view-issue-toc.xq. This query uses a
 simple XPath //tei:div expression to retrieve all TEI <div> elements
 and build a link using their child <head> element as the title of the section and
 its associated @xml:id attribute as the section’s unique identifier, which it
 incorporates, along with the issue identifier, into a link to a third query, view-section.xq. This query retrieves the two URL parameters, the issue and section
 identifiers, and uses them to select the XML fragment corresponding to the
 section:let $issue := request:get-parameter("issue", "")
let $section := request:get-parameter("section", "")
let $doc := doc(concat("/db/apps/punch/data/", $issue))
let $text := $doc/id($section)

Having selected the section, the script passes it to the tei-to-html:render()
 function.
This completes the second version of the application. The table of contents view is a major
 enhancement, but it is lacking: it displays the sections as a flat list, rather than a nested list.
 Also, it doesn’t give any sense of the length of a section, which might range from a paragraph to
 many pages. And, in the case of sections without titles, it simply displays (No
 title).

Stage 3: Enhancing the table-of-contents view
To address these limitations, in the third version of the application we focus on enhancing the
 table of contents view. We copy the contents of the v2
 subcollection into a new v3 subcollection and extend view-issue-toc.xq with a trio of related functions:
 generate-toc-from-divs(), which creates a new HTML ordered list and passes child
 <div> elements to toc-div(), which handles the text of the section,
 calls the get-pages-from-div() function to dynamically generate a page range (which
 could be useful for citations or inferring the length of a section), and then recursively passes any
 child sections back through the generate-toc-from-divs() function. This exercise
 demonstrates that developers can easily customize their table of contents around the needs of their
 edition.

Stage 4: Creating a library module and packing the application
In the final version of the application, we refactor the code base by moving repeated code into a
 library module, creating a style:assemble-page() function, to which we send each page’s
 title and content and which applies a common layout to our HTML page, and adding an application-wide
 search box, served by a search.xq query that presents the results
 and is accessed through an eXist-db full text index.[11]
The final step is to add a few files needed to distribute our application as an EXPath Package
 [Package Repository]. The final project is available in a GitHub repository. [Punch]

Discussion
The result is a fairly polished application that is highly customized around the needs of our
 edition. Editions vary in their functionality according to the types of research they are designed
 to support, but the application demonstrates core techniques that will be needed to build almost any
 edition, which here include a collection view listing all issues, a table of contents view of each
 issue, and an item-level view of each section; the use of URL parameters to pass identifiers needed
 to locate items in the database; the use of XQuery to transform whole TEI documents or portions
 thereof into HTML; the use of functions and library modules to encapsulate code and facilitate its
 reuse; the use of the EXPath Package specification to facilitate distribution and sharing of code;
 and the use of eXist-db’s full text index to facilitate searching within the collection.
Institute participants were not expected to master all of these techniques in the course of the
 seminar. Rather, the purpose was to expose them to the iterative approach to hand-crafting one’s own
 edition using pure XQuery, as implemented by eXist-db, limiting dependencies on external libraries,
 which means using XQuery for querying data, transforming it, and publishing it via web
 technologies.
This approach has obvious merits both in general and as a way of introducing new developers to
 building editions that use TEI XML content, and its primary weaknesses are its mixing of concerns
 and its dependence on XQuery expertise. For example, some projects have modest-sized teams that
 enjoy a division of labor between members: a visual designer, a programmer, and a text encoding
 specialist. In the Punch application, in which all HTML output is
 generated directly by XQuery script, a visual designer would need to learn XQuery to alter the HTML
 structures generated by the XQuery, and the editor whose focus is the TEI encoding itself would need
 to learn XQuery to understand and adjust how the TEI is transformed into HTML.
Recognizing these challenges, the eXist-db and TEI user communities have developed new techniques
 to accomplish a finer-grained separation of concerns required by many teams in practice. These
 include support for HTML templating and TEI Publisher, described below.

Apps with HTML templating
Like most CMS products, eXist-db has a templating functionality, one that is powerful and completely
 transparent in view components, and that supports annotations. The eXist-db templating functionality
 uses standard HTML5 @data-* attributes, e.g. @data-template for the template
 and @data-template-* for optional parameters, and that functionality can be extended with
 user-specified namespaced templating functions, e.g.:
 <div data-template="core:peanut-butter" data-template-coating="chocolate"/>

 Even if not using HTML5, the HTML @class attribute can be used for template names and
 static parameters, e.g.:
 <div class="core:peanut-butter?coating=chocolate" />

Within templating, the current element is available via the %templates:wrap annotation,
 and nested template calls have access to application data through the $model variable.
 Manual processing control is achieved by calling templates:process.
The templating module can be referenced in the XQuery code:
 import module namespace templates="http://exist-db.org/xquery/templates";

 Within the controller, the user can activate suitable templating processing, which is not necessary if
 you just use the built-in templating functions.
Of the built-in functions, templates:surround is probably the most powerful one. For
 example, it can be used with:
 templates:surround?with=templates/page.html&at=produce
 to insert
 the content into the template specified by the with template (here pages.html) at the element with the @id of produce.
Thanks to the power of nested template calls, major benefits of the HTML templating approach in
 eXist-db are 1) a clean separation between HTML and the XQuery code that populates the HTML and 2) the
 ability produce both mock-ups and production view components with more advanced search forms and result
 pages without turning to other solutions. The separation of concerns means that, for example,
 people should be able to look at the HTML view of an application and modify its look and feel
 without knowing XQuery [HTML templating], addressing one of the limitations
 identified with the previous architecture.
HTML templating uses parameter injection to identify query parameters
 automatically, without requiring explicit calls to the request:get-parameter() function,
 and it also performs automatic type conversion. The logic underlying parameter injection means that the
 template processing makes best guesses about what the developer intends, which requires the developer to
 observe certain conventions. This has the virtue of reducing the behaviours that must be described
 through project-specific code, including annoyingly long and repetitive sequences of assignments from
 request:get-parameter() calls, but because some aspects of processing are no longer coded
 explicitly by the developer, it requires that the developer remember how eXist-db prioritizes the steps
 it takes to resolve a parameter reference. Developers who have tried to fix a misbehaved XSLT template
 or Schematron rule or CSS specification only to discover that a different rule that applies to the same
 context is at fault may appreciate that at least when you get a parameter value only by asking for it
 specifically with request:get-parameter(), you are less likely to become confused about
 where it comes from.
Beyond the inherent cost (and benefit) of ceding control to implicit behaviours, the principal cost of
 HTML templating is the possible need to translate idiosyncrasies of the templates as implemented inside
 eXist-db to a different template language. However, even in that case the initial domain knowledge and
 modeling remain intact and reusable.

TEI Publisher
TEI Publisher is packaged and distributed as an eXist-db web application that can be installed into
 any running eXist-db instance. It consists of two main parts. The first is a core library, which
 implements the TEI Processing Model (PM), introduced above and described in greater detail below. The
 second is a development environment to create customized standalone web applications with built-in
 facilities for navigation, pagination, search, facsimile display, faceted browsing, etc. Such
 applications, like TEI Publisher itself, can be distributed as xar
 archives and installed into any running eXist-db instance.[12]
PM is a TEI-native vocabulary for expressing how XML documents should be transformed and rendered into
 various output formats (HTML, EPUB, PDF, etc.). It builds on the TEI ODD (one document does it
 all, ODD), a specification originally designed to integrate formalized
 documentation into customizations and modifications of the TEI. Because no document is likely to make
 use of the almost six hundred elements provided by the TEI, developers can use the ODD to constrain
 their project-specific schemas by including, excluding, modifying, or extending TEI components. The ODD
 can then export schemas in Relax NG, W3Schema, and DTD format, and because the ODD incorporates
 formalized, machine-actionable documentation, the developer can also generate reference documentation to
 be consulted during tagging. Although this is not always the way developers operate, the TEI intends
 that all TEI projects should be customized and documented with ODD.[13] In its early days the TEI regarded the E part of its name as definitive: the TEI was about text encoding, and not about text processing. PM moves beyond that earlier perspective by
 incorporating processing information, in a formalized declarative and output-agnostic format, into the
 ODD alongside the information needed to create schemas and human-readable documentation.
PM lets users map TEI structures onto some two dozen fundamental abstract processing or rendering
 primitives called behaviours, which can be used to declare abstract
 rendering information like render <p> elements as blocks, render <hi> elements as inline, render <list> and <item> elements as
 components of list structures, etc.[14] The PM thus provides
 formal, machine-actionable declarative processing instructions, expressed in TEI, that are independent
 of any specific output format or implementation language. The instructions were conceived with the
 twofold aim of being simple enough to be used by a human editor who is not an XML-technologies engineer,
 while also being sufficiently formalized to serve as operable instructions by a machine. Editors record
 their editorial intentions and expectations about the rendering (in a generic sense) of their elements
 by adding <model> child elements to the specification of an element in the ODD file,
 and the <model> elements use attributes to bind these processing expectations for an
 element (either globally or in a narrower XPath context) to a behaviour. For example, a user could
 specify how a <hi> element should be rendered along the lines of:
 <elementSpec ident="hi" mode="change">
 <model predicate="@rend ='it'" behaviour="inline">
 <param name="content" value="."/>
 <outputRendition>font-style: italic;</outputRendition>
 </model>
</elementSpec>

 The <model> declaration above matches <hi> elements with a
 @rend attribute value of it and expresses the intended rendition (italics)
 with a child element <outputRendition>. The content of this element is expressed with
 CSS syntax, but it is not restricted to CSS environments; the value represents a generic assertion of
 italics that may be transformed into a processing instruction in another syntax, as required by the
 desired output format. The content parameter in this case specifies that the entire matched
 <hi> element should be rendered, but it is also possible to specify not the entire
 content, but perhaps an attribute value, or the result of applying an XPath function to the
 content.
Three kinds of high level decisions are incorporated into the <model>. The first is
 the content, expressed through a content parameter, which uses XPath expressions to specify
 the content to be rendered. The other two pertain to how the content is
 rendered, one aspect of which is structural (expressed through
 @behaviour values like block or inline) and the other of which
 involves appearance values for the <outputRendition>
 child element, which might specify italics or small caps. As a more complex example, to render related
 regularization (TEI <reg>) and original (TEI <orig>) values inside
 a TEI <choice> wrapper, the developer can specify the @behaviour value
 as alternate. With HTML output, this might put the content of the regularization in the
 base text and the original source text in a tooltip displayed on mouseover, or vice versa, but because
 the PM specification is high-level, abstract, and declarative, it can also be used during print output
 to write one value into the running text and the other after it inside parentheses. The PM specification
 for these two combines types of behaviour might look like:
 <elementSpec ident="choice" mode="change">
 <model output="web" predicate="orig and reg" behaviour="alternate">
 <param name="default" value="reg[1]"/>
 <param name="alternate" value="orig[1]"/>
 </model>
 <modelSequence output="print" predicate="orig and reg">
 <model behaviour="inline">
 <param name="content" value="reg"/>
 </model>
 <model behaviour="inline">
 <param name="content" value="orig"/>
 <outputRendition scope="before">content:" (";</outputRendition>
 <outputRendition scope="after">content:") ";</outputRendition>
 </model>
 </modelSequence>
</elementSpec>
<elementSpec ident="reg" mode="change">
 <model behaviour="inline"/>
</elementSpec>
<elementSpec ident="orig" mode="change">
 <model behaviour="inline"/>
</elementSpec>

 If no output rendition is specified, the built-in XQuery function for the designated combination of
 behaviour and output format will be used. In the preceding example, alternate is a
 predefined behaviour that creates the tooltip rendering for web output.
The value of @behaviour can be set to omit if the matched element is not to
 be included in the output. For example, TEI page beginning (<pb>) elements can be
 omitted during rendering with:
 <elementSpec mode="change" ident="pb">
 <model behaviour="omit"/>
</elementSpec>

PM was developed initially in connection with the definition of the TEI Simple schema, a schema
 offering explicit and standardized options for displaying and querying texts that a developer could make
 use of to build transformations for a given output format (e.g., web, print, epub, etc.).[15] TEI Publisher implements PM with a library of built-in behaviours defined as
 XQuery functions for each output format. This implementation strategy offers sane default mapping from
 PM’s CSS-based style language to the various output formats. It also supports overriding these defaults
 with custom, output format-specific affordances, such as LaTeX boilerplate or XSL-FO font definitions,
 and it exposes extension hooks for XQuery functions for cases where the default PM defined in the TEI
 Simple schema alone cannot accomplish the desired results. For example, if we look through the lens of
 TEI Publisher at the tei-to-html:hi() XQuery function in the Punch tutorial described above, we see that it requires mapping a <hi>
 element with a @rend attribute set to it (<hi[@rend='it']>)
 in a way that is not served in the list of common behaviours defined by the TEI Guidelines and used
 mainly in the TEI Simple schema that serves as a default PM specification for TEI Publisher. Earlier
 versions of TEI Publisher provided a way to extend the behaviours defined in the TEI Guidelines by
 writing additional XQuery functions. For example, if this new behaviour was to be called emphasis, it could be written
 as:declare function pmf:emphasis($config as map(*), $node as node(),
 $class as xs:string+, $content) {
 {pmf:apply-children($config, $node, $content)}
};
The
 corresponding ODD model specification could then be mapped to this new behaviour as
 follows:<elementSpec ident="hi" mode="change">
 <model predicate="@rend ='it'" behaviour="emphasis">
 <param name="content" value="."/>
 </model>
</elementSpec>

The library part of TEI Publisher (tei-publisher-lib) release 2.5.0
 introduced support for templates and user-defined behaviours within the ODD that lets the user write the
 same new behaviour directly in the ODD. For example, this emphasis behaviour could (= should) now be
 written as:
 <pb:behaviour ident="emphasis">
 <desc xml:lang="en">custom emphasis</desc>
 <pb:template>
 <em xmlns="">[[content]]
 </pb:template>
</pb:behaviour>
The
 added value here is that some discursive documentation can be added in the <desc>
 element.
TEI Publisher even leverages PM’s potential to support documents encoded in non-TEI vocabularies,
 which it illustrates by shipping with support for DocBook-encoded documents. The most recent major
 release, 4.0, was redesigned to use Web Components in its views, allowing users to freely add, remove,
 and combine panels containing different views, such as facsimile, translations, and maps.[16]
Web Components are an upcoming W3C standard (or meta-specification) that provides web developers with
 a means to create reusable UI building blocks that encapsulates all the HTML-, CSS-, and
 JavaScript-based logic required for rendering. The large number of Web Components already available
 makes most adaptations possible with just some foundational knowledge of HTML, but users with advanced
 requirements can implement additional components on the basis of modeling experience and knowledge of
 the HTML5 specification, and specifically of defining new Web Components. As TEI Publisher 4.0 includes
 a collection of Web Components targeted at creating digital editions, users are likely to find that
 without customization it already provides ways to embed texts into an application context, supporting
 the integration of navigation, pagination, search, facsimile display, and more.
The principal advantage of TEI Publisher, emphasized in the documentation, is that by relying on
 reusable high-level, generic behaviours, it can substantially reduce the amount of code needed to create
 transformation, a benefit that inheres both in code creation and in code maintenance. For example,
 Turska and Cummings write that: For the Office of Historian project figures suggest
 code reduction by at least two-thirds in size. Numbers are even more impressive realizing that the
 resulting ODD file is not only smaller, but much less dense, consisting mostly of formulaic
 <model> expressions that make it easier to read, understand and maintain, even by less
 skilled developers. [Turska and Cummings 2016]

 Wicentowski and Turska describe
 the advantage of TEI Publisher for this same set of projects as follows: [T]he new
 TEI Processing Model (TEI PM) played a key role in the site’s plan for scalability and sustainability.
 By replacing custom-written code with TEI PM, the project shed years of legacy, custom-written
 code–laden with duplication and conditional branches for different publications and output formats–and
 replaced it with a light and lean ODD file containing a single set of TEI Processing Model instructions
 that form the basis of all transformations for the site’s TEI-based publications: HTML, EPUB, and PDF.
 [Wicentowski and Turska 2016]

The principal costs of TEI Publisher, as with other web publishing frameworks, are twofold. The first
 cost lies in the start-up, that is, in the time and resource requirements to perform a technology
 switch. While TEI Publisher builds on ODD and XQuery, which users may have encountered in other
 contexts, they are unlikely to have learned and worked with PM previously. The second cost, also shared
 with any web publishing framework, involves the potential for lock-in, since building a site within a
 particular framework implicitly discourages migration to a different framework at a later date. TEI
 Publisher cannot eliminate these costs, but it mitigates both by using Free Software and open formats,
 and by following both actual (such as HTML5) and de facto (such as TEI) standards, it reduces both the
 start-up cost and the cost of potential future migration.
With regard to the question of potential future migration, it is illuminating to reverse the
 perspective and see it throught the implementation of the TEI Processing Model as documentation driven.
 If one accepts the possibility that in the long term HTML and Web Components might become outdated and
 replaced by other technologies, the technology-agnostic aspect of the formal documentation within PM
 will nonetheless continue to provide consistent and sufficient information about the logic of the
 intended processing and rendering of the elements. Eventual transformation to new output code may be
 inevitable, but the output-independent aspects of PM can at least shorten the portion of the pipeline
 that will need to be rewritten. It is also likely that instead of migration from a translation of Web
 Components into a new technology it will prove more efficient to start anew at the source of the
 intention, that is, the formal TEI expression of user output expectations or instructions. From that
 perspective, within PM the publication framework is documentation driven. By this we mean that because
 PM forces the user to define these instructions in a declarative manner, it can be said that it enforces
 format- and software-agnostic documentation, which may provide the best guarantee we can have for a long
 term transmission if not of the result, at least of the scholarly editorial intention.
The TEI Publisher implementation of PM acts, then, in a controller context, establishing an efficient
 binding from model to view that is also largely independent of the latter. Using the technology of Web
 Components, the views may be seen as modeling streams of documents as autonomous APIs, which can be
 fitted together like assemblable modular blocks, and which will constitute a collection of standardized
 base units that are highly reusable. To illustrate this design orientation towards web standards and the
 reusability principle, the blog post written by TEI Publisher's principal developer, Wolfgang Maier,
 employs the metaphor of Lego blocks: Moving towards the emerging web component
 standard, TEI Publisher 4.0 implements all this functionality as small lego blocks to be
 freely arranged, recombined and extended.[17]

The TEI Publisher documentation states that: You do not need to know much about Web Components
 to use them in TEI Publisher. In fact, users need to understand only how the web components they
 want to use can be connected to the corresponding PM specification in an associated ODD, a connection
 that is implemented by setting the Components properties via attributes. As the Web Components shipped
 in the TEI Publisher are presented in the form of API documentation, users will be able to understand
 which attributes they will need to use. When setting themselves the task of designing a new template
 page for an edition, they will then have to specify the interface Components they wish to use either
 from among the TEI Publisher built-in Web Components or from external libraries, such as Polyfills. But
 insofar as the user will have mastered the data model of the corpus of XML encoded files—the model—they
 will be able to establish that connection successfully and in a way that is appropriate for their
 editorial purposes. Doing that within the framework of TEI Publisher, they will then produce new
 template designs—or views—that could potentially be shared by pushing them to the Open Source code
 repository of TEI Publisher.
To be sure, what is at stake here is not only, or even primarily, the technical reusability of the UI
 web blocks; it is also the underlying theoretical approach supporting the design of the interface
 template. For that reason, the theoretical potential of TEI Publisher will be for fully attained when
 collections of built-in Web Components will be grounded in a robust editorial theory or a series of
 editorial theories, each potentially populated by a subcollection of Web Components, all supported by
 communities of users commited to sharing them through an Open Source digital ecosystem. Insofar as the
 design of the view is a legitimate part of the scholarship, it, too, requires an open infrastructure for
 peer review and reuse. In this way it could be possible that the Lego blocks interface design approach
 implemented by TEI Publisher could play a major role in simplifying the design tasks of the digital
 scholarly editor, thus realizing not only a toolbox to build interfaces, but also a toolbox to elaborate
 proposals of scholarly editorial models that are theoretically and editorially based,
 offering a stable infrastructure for digital editions and allowing a community of
 academic users to reflect on the features that the scholarly community will consider essential to
 a particular type of text or scholarly problem and to agree on some essential models which take into
 account the new affordances offered by the digital.. [Pierazzo 2019] In other word,
 the architecture underlying TEI Publisher may be regarded not only a new flavor accidentally brought to
 the market, but as a laboratory of taste, helping users to collectively invent, experiment, compare, and
 refine the new flavors and meals adapted to their lifestyles and aspirations.

Conclusion
The interface and the scholarship
Two presentations at the 2016 University of Graz DiXiT conference Digital scholarly editions as
 interfaces offered compelling arguments for regarding the vehicle for presenting edition data,
 that is, the interface, as a scholarly product. This means that researchers who develop digital editions
 not only have a legitimate interest in the interface, but may also regard themselves as under a
 scholarly obligation to consider its meaning, because with or without their active intellectual
 engagement, the way a digital edition communicates with its readers is part of how it expresses and
 argues for a theory of the text. And this, in turn, means, among other things, that the way TEI XML is
 rendered in an edition is not a neutral presentation of a scholarly argument that inheres entirely in
 the TEI XML markup, but an inalienable part of that argument. Tara Andrews and Joris van Zundert write
 that: The user interface of digital scholarly editions is often treated as a
 content-free and ideally interchangeable appendage to that which is actually considered the scholarly
 effort or work–the examination and preparation of the text and the scholarly justification for how this
 preparation was carried out. (4) [… but …] Just as there is no clean separation between data and
 interpretation, there is no clean separation between the scholarly content of an argument and its
 rhetorical form (Galey 94).[18] We contend, moreover, that visual display and interactive
 functionality are an integral part of rhetorical form. The interface is thus an integral part of the
 argument that an edition makes about a text. (8) […] User interfaces are a means of communication of a
 scholarly argument, and the decisions that go into their design are informed by the message or messages
 that the editor wishes to convey about the text. (30) [Andrews and van Zundert 2018]

Wout Dillen advocates for a similar perspective:[D]ata visualisations or interfaces
 are not the endpoints of our research, they are just the beginning. We use them to try to make a point
 about our data (36) …[T]he interface can be regarded as a second layer of editorial interpretation:
 after offering an interpretation of the edition’s documents by transcribing them, the editor offers the
 user an interpretation of her transcriptions when she decides on how to present them. Stronger still, it
 can be argued that the visualisation itself is at least as important for conveying the editor’s
 interpretation as the transcription on which it is based: as the main text the average (non-TEI
 proficient) user will come into contact with, the interface displays the edited text in a way that
 determines how the user will read and interpret the edition’s documents. The same goes for the edition’s
 navigation, lay-out, and its selection of tools. In a way, the interface is the digital scholarly
 edition’s new paratext: not exactly part of the edited text itself, it still has an undeniable impact on
 the way the user reads and understands the edition. This makes the interface an important place for the
 editor to convey her views on the material. 42) [Dillen 2018 36]

To the extent that the presentation of the edition data, then, is a
 scholarly product, it is the proper business of scholars.[19] The TEI
 XML alone is not the full or only scholarly product, and neither is its transformation with a generic
 presentation script, such as those provided by uncustomized use of TEI Boilerplate or the TEI
 Stylesheets. [TEI Boilerplate, TEI Stylesheets] If it is to fulfill its
 scholarly potential, then, a digital edition publishing framework, such as the four explored in this
 study, should be 1) maximally configurable and 2) usable by digitally capable and digitally willing
 textual scholars. Each of the four frameworks is fully configurable, although they differ in their ease
 of use, perhaps in general, and certainly according to an individual researcher’s technical expertise.
 Those differences are explored below.
In his 2019 consideration of, among other things, the extent to which the data and the presentation
 contribute to constituting the digital edition, James Cummings acknowledges the fundamental role of the
 data; the analytical, interpretive, and communicative scholarly importance of the interface; and the
 unique value of API-mediated access in supporting reuse, that is, scholarship that the original editor
 may not have envisioned. About the centrality of the data Cummings writes that The encoded data
 is a good representation of the scholarly edition and one I care about deeply. That is, the data
 are essential. This echoes Dillen’s Without […] data, there are no editions–be they digital or in
 print. The same cannot be said about interfaces. [Dillen 2018 36] Turning to
 interface, Cummings then adds that [i]f part of the point of editing a work is to make it more
 accessible, in all senses of that word, then usually some presentation view of the edition is
 required. That is, the presentation is a way of facilitating scholarship by communicating
 scholarly interpretation. In part this echoes Andrews and van Zundert, cited above: The interface
 is thus an integral part of the argument that an edition makes about a text. Dillen writes,
 similarly: […] it is exactly by reconfiguring our materials in new ways, by constructing an
 interface around those materials, by interacting with other people, and by seeing how the interface
 shapes their interpretation of the data, that we keep developing our
 own interpretations of those materials. [Dillen 2018 36]
Cummings, however, concentrates on the communicative potential of the interface in a way that seems to
 downplay what Andrews, van Zundert, and Dillen see as its added value as scholarly analysis and
 interpretation, and not merely the communication of scholarly analysis and interpretation that happens
 elsewhere. We thus disagree with the implicitly invidious rhetorical use of merely in
 Cummings’s the presentation layer is merely one or more additional views on the data. But
 insofar as a view on the data is analytical and interpretive, and therefore informational, Cummings’s
 position may be understood as valorizing the scholarly value of the presentation while emphasizing that
 no interpretation should be regarded as exhaustive or definitive, and that edition data can and should
 be made reusable for alternative analyses and interpretations.
Cummings advocates for the importance of this reuse when he writes that a truly conceptual
 editorial object is malleable and recombinable, and an encoded edition, by itself, is not […] the true
 form of a scholarly digital edition would be better expressed as a well-documented API for the
 manipulation and description of editorial objects following an open international standard for the
 representation of digital text. We disagree with the rhetorical use of the true
 form, where the definite article invidiously implies that there is only one, and
 true invidiously implies that others are false. But insofar as presentations may be
 limited by what the editor has anticipated, envisioned, recognized, understood, and facilitated, we
 agree completely that TEI XML plus specific presentational decisions do not exhaust the potential
 information value of an edition.
Cummings focuses on the primacy—at least in some cases—of reuse of the editorial objects underlying an
 edition by others when he writes the following:[…] the underlying data may in fact
 have been created not for a scholarly digital edition as a publication, but as a resource to be
 interrogated, analysed, or queried, rather than published. The publication of a scholarly digital
 edition can, and perhaps more often should, be a mere byproduct of the real research undertaken. That
 such information resources, in this case datasets of editorial objects, become corpora for research
 analysis. [Cummings 2019]

 This view is compatible with regarding
 the original editor, that is, the person who encodes the digital objects, as the first such researcher.
 In that capacity, fixed digital objects (in, for example, TEI XML) are one scholarly product, the
 interpretive and rhetorical views created by the editor are a different scholarly product (thus Andrews and van Zundert 2018 and Dillen 2018), and the API is yet another scholarly product (thus
 Cummings 2019). All, then, are digital scholarly components of a digital scholarly
 edition.

General
Each of the four architectures outlined above is capable of generating a digital edition from TEI XML
 source using eXist-db, and the differences among them may be understood as including, among other
 things, the extent to which they rely on eXist-db-specific functionality. Increasing reliance on
 eXist-db for executing the transformation from model to view typically conveys an increasing advantage
 of lessening the extent to which the developer is required to write and maintain bespoke code for the
 edition, since the developer instead takes advantage, to varying extents, of what eXist-db (or eXist-db
 enhanced with PM support) already knows how to do. But with this reliance comes a greater dependence on
 functionality implemented in a specific way in (or perhaps available only within) eXist-db. That
 eXist-db HTML templating and TEI Publisher are implemented entirely with standardized technologies like
 XQuery and Web Components mitigates the lock-in effect because it means that the implementations
 could be ported to a different DBMS/CMS environment. But that
 transparency may be of limited immediate value to a user who is comfortable at the application level
 with XQuery, but not at the higher level required for migrating from the eXist-db infrastructure to that
 of BaseX or MarkLogic. On the other hand, the extent to which a commitment to one of the four methods
 described above entails a commitment to a specific platform, such as eXist-db, may be less important
 when we consider the lock-in aspects of the eXist-db URL rewriting facility, its Lucene-based full text
 index and query functions, and its newest feature in the forthcoming eXist-db 5, faceted browsing (which
 also uses Lucene). A project concerned about lock-in might be advised to worry more about those layers
 than about HTML templating or TEI Publisher per se.
TEI Publisher, by any fair measure, exemplifies an integrated and well-developed, whole-cloth
 conception of a starter system for publishing editions. The philosophy underlying TEI Publisher
 prioritizes exposing more control over the output specification while requiring less programming
 expertise. With that said, each project needs to evaluate which model serves it best, assessing the
 importance of each of the following considerations in the context of the project: 	minimizing the dependence on any specific DBMS, so that the M layer of the LAMP stack
 is limited to the storage and retrieval of data, using, as much as possible, open and broadly supported
 standards, such as pure XQuery and XPath

	minimizing the number of
 layers and languages (XQuery does it all)

	separating concerns and
 required skills by segregating HTML templates from the XQuery code that dynamically populates the
 templates (XQuery does it all except HTML scaffolding and superstructure)

	minimizing custom transformation code and leveraging common behaviours (One Document Does it All,
 except HTML scaffolding, with XQuery limited to extension behaviours)

Different projects might reasonably make different choices from this menu.

Sustainability
All methods described above except the middleware one can use eXist-db’s xar packaging for one-step replication, distribution, and deployment. In contrast, porting a
 middleware implementation means configuring PHP and eXist-db to communicate, which is much more
 complicated to set up, to troubleshoot, and to maintain. A researcher end-user can more easily install
 eXist-db on a laptop and deploy an edition as a drop-in xar file than
 install eXist-db, load data and XQuery into it, and also install and configure Apache, install and
 configure PHP scripts, and ensure that the pieces all communicate effectively.

Ease of use
 Cummings argues that as much as possible editors of scholarly digital editions should not be
 distracted from editorial tasks by technological concerns if these technological
 concerns do not affect their edition. [Cummings 2019, emphasis
 added] This idea, and the way it is worded, strikes a wise middle ground between two extremes. One
 extreme is the largely unrealistic requirement, implicit in the complexity of some infrastructure and
 application architectures, that the scholar will have highly developed programming skills. This is true
 of some digital scholarly editors, but not of all. The other extreme is the naive assumption, implicit
 in tools that wholly isolate the researcher from the methods implemented in the software, that if the
 researcher focuses on the content, the technology can be left in the hands of programmers. Among other
 things, software may embed scholarly assumptions that researchers need to understand if they are to
 accept responsibility for adopting the decisions the software makes on their behalf.[20] Ease of use may thus be understood
 as not requiring unnecessary technological expertise from the researcher, while also recognizing that
 some technological concerns affect the edition, and thus must be made accessible to the
 researcher.
Ease of use may be measured in different ways. On the one hand, the four methods described above, in
 order from first to last, increasingly simplify configuration and customization within anticipated,
 supported parameters, requiring less—and often much less—custom code than a traditional LAMP
 architecture. On the other hand, in distributing responsibilities these more CMS-like methods may
 require increasingly greater coordination across parts of the CMS. For example, all of the code for the
 middleware approach, as the developer sees it, it located in just two places: the scripting language
 (such as PHP), which processes user input and creates output views, and the XQuery inside eXist-db,
 which retrieves information from the model. At the other extreme, TEI Publisher information may be
 distributed over multiple files in multiple libraries, and while in many cases the user may not have to
 interact explicitly with most of them, customization (such as the incorporation of a new behaviour
 written in XQuery) requires the ability to navigate a more complex resource structure. It may be helpful
 in this context to think of different roles in the development process. From this perspective, the
 greater complexity of the TEI Publisher model may fall only to a professional developer, who can
 reasonably be expected to have or to acquire the necessary skill. Meanwhile, the scholar-editor may need
 only to choose among supported behaviours and CSS-like rendering instructions, which is a low
 requirement for technical expertise. In comparison, the middleware organization, while architecturally
 simpler overall than TEI Publisher, requires much more advanced programming skills from the user because
 it does not aim to distinguish clearly a scholar-editor role and a developer role.

So what about those peanut butter cups?
If we return to our analogy of eXist-db’s XML DBMS services as the peanut butter core of a Reese’s
 Peanut Butter Cup and other eXist-db services (not only Jetty HTTPS services, but now also app
 processing, HTML templating, and PM) as the chocolate around that core, we might say that the researcher
 has a choice. With any of the frameworks described above the developer has control over the selection,
 arrangement, and presentation of the information. But to what extent do you want to combine your own
 peanut butter with your own chocolate and to what extent do you feel that the combination offered by
 Reese’s is superior to what you might produce yourself?

Works cited
[Andrews and van Zundert 2018] Andrews, Tara L. and Joris J. van
 Zundert. What are you trying to say? The interface as an integral element of argument. In
 Roman Bleier, Martina Bürgermeister, Helmut W. Klug, Frederike Neuber, Gerlinde Schneider, ed., Digital scholarly editions as interfaces, Schriften des Instituts für Dokumentologie
 und Editorik 12. Books on Demand, 2018, 3–33. https://kups.ub.uni-koeln.de/9085/1/SIDE_12_digital_scholarly_editions_as_interfaces.pdf
[Apache]
 Apache HTTP server project.
 https://httpd.apache.org

[BaseX] BaseX. The XML framework.
 http://basex.org/
[Burnard et al. 2017] Burnard, Lou Martin Mueller, Sebastian Rahtz, James
 Cummings, and Magdalena TurskaAn introduction to TEI simplePrint.
 https://tei-c.org/release/doc/tei-p5-exemplars/html/tei_simplePrint.doc.html
[Cagle 2007] Cagle, Kurt. XQuery, the server language.
 2007-06-06. https://www.xml.com/pub/a/2007/06/01/xquery-the-server-language.html
[Cayless and Viglianti 2018] Cayless, Hugh, and Raffaele Viglianti.
 CETEIcean: TEI in the browser. Presented at Balisage: The Markup Conference 2018, Washington,
 DC, July 31–August 3, 2018. In Proceedings of Balisage: The Markup Conference
 2018. Balisage Series on Markup Technologies, vol. 21 (2018).
 doi:https://doi.org/10.4242/BalisageVol21.Cayless01. Available at
 https://www.balisage.net/Proceedings/vol21/html/Cayless01/BalisageVol21-Cayless01.html.
[CETEIcean] CETEIcean.
 https://github.com/TEIC/CETEIcean
[Configuring database indexes] Configuring database indexes.
 http://exist-db.org/exist/apps/doc/indexing
[Cummings 2012] Cummings, James. The compromises and
 flexibility of TEI customisation. In Mills, Clare, Michael Pidd, and Esther Ward, eds, Proceedings of the Digital Humanities Congress 2012. Studies in the Digital
 Humanities. Sheffield: The Digital Humanities Institute, 2014. Available online at:
 https://www.dhi.ac.uk/openbook/chapter/dhc2012-cummings.
[Cummings 2019] Cummings, James. Opening the book: data
 models and distractions in digital scholarly editing. July 2019, Volume 1, Issue 2, pp 179–93.
 International journal of Digital Humanities (2019) 1: 179.
 doi:https://doi.org/10.1007/s42803-019-00016-6.
 https://link.springer.com/article/10.1007%2Fs42803-019-00016-6
[Dillen 2018] Dillen, Wout. The editor in the interface: guiding
 the user through texts and images. In Roman Bleier, Martina Bürgermeister, Helmut W. Klug, Frederike
 Neuber, Gerlinde Schneider, ed., Digital scholarly editions as interfaces,
 Schriften des Instituts für Dokumentologie und Editorik 12. Books on Demand, 2018, 35–59.
 https://kups.ub.uni-koeln.de/9085/1/SIDE_12_digital_scholarly_editions_as_interfaces.pdf
[Django] Django. https://www.djangoproject.com
[eXist-db]
 eXist-db.
 https://exist-db.org

[Flask] Flask.
 https://palletsprojects.com/p/flask/
[HTML templating]
 eXist-db: HTML Templating Module.
 https://exist-db.org/exist/apps/doc/templating.xml

[Meier 2003] Meier, Wolfgang. eXist: An Open Source Native XML
 Database. In Chaudhri A.B., Jeckle M., Rahm E., Unland R. (eds) Web,
 Web-Services, and Database Systems. NODe 2002. Lecture Notes in Computer Science, vol 2593.
 Springer, Berlin, Heidelberg. doi:https://doi.org/10.1007/3-540-36560-5_13. https://link.springer.com/chapter/10.1007/3-540-36560-5_13
[Jetty] Eclipse Jetty.
 https://www.eclipse.org/jetty/
[Marklogic] MarkLogic | Data Integration and NoSQL Databases for Your
 Business. https://www.marklogic.com/
[Mitford] Digital Mitford: the Mary Russell Mitford archive.
 https://digitalmitford.org/
[MVC architecture] Wideskills. Introduction to MVC
 architecture.
 https://www.wideskills.com/struts/introduction-to-mvc-architecture
[ODD] TEI: getting started with P5 ODDs.
 https://tei-c.org/guidelines/customization/getting-started-with-p5-odds/
[Package Repository] eXist-db Package Repository.
 http://exist-db.org/exist/apps/doc/repo.xml
[PHP]
 PHP: hypertext preprocessor.
 https://www.php.net/

[Pierazzo 2019] Pierazzo, Elena. What future for digital
 scholarly editions? From Haute Couture to Prêt-à-Porter. July 2019, Volume 1, Issue 2, pp 209–20.
 International journal of Digital Humanities (2019) 1: 179.
 doi:https://doi.org/10.1007/s42803-019-00019-3
[Punch] Wicentowski, Joe. Punch. A simple application written in
 XQuery for eXist-db demonstrating how to create a dynamic, searchable website for TEI text.
 https://github.com/joewiz/punch
[Proxying eXist-db] Production use - Proxying eXist-db behind a
 Web Server. https://exist-db.org/exist/apps/doc/production_web_proxying
[RESTXQ] XQuery in eXist-db: RESTXQ.
 https://exist-db.org/exist/apps/doc/xquery#restxq
[URL Rewriting Facility] URL Rewriting.
 https://exist-db.org/exist/apps/doc/urlrewrite
[React] React. A JavaScript library for building user interfaces.
 https://reactjs.org/
[Reenskaug] Reenskaug, Trygve M. H. MVC. Xerox PARC
 1978–79. http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
[Reese’s]
 Vintage 80s Reese’s peanut butter cups commercial with walkers.
 https://www.youtube.com/watch?v=DJLDF6qZUX0

[Ruby on Rails] Ruby on Rails.
 https://rubyonrails.org
[Saxon] Saxon. https://www.djangoproject.com
[Saxon-JS] Saxon-JS.
 http://www.saxonica.com/saxon-js/index.xml
[Siegel and Retter 2014] Siegel, Erik and Adam Retter. eXist. A NoSQL document database and application platform. Sebastopol, CA: O’Reilly.
 2014.
[TEI Boilerplate] TEI Boilerplate.
 http://dcl.ils.indiana.edu/teibp/
[TEI Lite] TEI: TEI Lite.
 https://tei-c.org/guidelines/customization/lite/
[TEI Processing Model] Processing models. (Part of
 P5: Guidelines for electronic text encoding and interchange.)
 https://www.tei-c.org/release/doc/tei-p5-doc/en/html/TD.html#TDPMPM
[TEI Publisher]
 TEI Publisher.
 https://teipublisher.com

[TEI Publisher 4.0] TEI Publisher 4.0. Product
 announcement. 2018-12-20.
 https://teipublisher.com/exist/apps/tei-publisher/doc/blog/tei-publisher-40.xml
[TEI Publisher 5.0] TEI Publisher 5.0. Product
 announcement. 2019-08-02.
 https://teipublisher.com/exist/apps/tei-publisher/doc/blog/tei-publisher-50.xml
[TEI Publisher Quickstart]
 TEI Publisher Quickstart.
 https://teipublisher.com/exist/apps/tei-publisher/doc/documentation.xml

[Turska 2015] TEI Simple self-documenting abstraction layer for
 XML processing. (Slide deck) https://slides.com/magdalenaturska/deck#/
[TEI Stylesheets] TEI stylesheets.
 https://github.com/TEIC/Stylesheets
[Turska and Cummings 2016] Turska, Magdalena and James Cummings.
 A lesson in applied minimalism: adopting the TEI processing model. ADHO 2016 abstracts,
 698–99. Retrieved from
 https://webcache.googleusercontent.com/search?q=cache:w5zPkR4yTbMJ:dh2016.adho.org/static/data/475.html+&cd=1&hl=en&ct=clnk&gl=ee
[Upton 2013] Upton, Emily. The fascinating rise of Reese’s Peanut
 Butter Cups. Business insider. June 30, 2013.
 https://www.businessinsider.com/the-fascinating-rise-of-reeses-peanut-butter-cups-2013-6
[van Zundert and Haentjens Dekker 2017] van Zundert, Joris J. and Ronald
 Haentjens Dekker. Code, scholarship, and criticism: when is code scholarship and when is it
 not? Digital scholarship in the humanities, Vol. 32, Supplement 1,
 2017, i121–33. doi:https://doi.org/10.1093/llc/fqx006
[Versioning Machine] Versioning Machine 5.0 A tool for displaying and
 comparing different versions of a literary text. http://v-machine.org/
[Web applications]
 eXist-db: Getting started with Web application development.
 https://exist-db.org/exist/apps/doc/development-starter

[Web Components] webcomponents.org. Introduction.
 https://www.webcomponents.org/introduction
[Web Components (TEI Publisher)] TEI Publisher. Web
 Components.
 https://teipublisher.com/exist/apps/tei-publisher/doc/documentation.xml?odd=docbook.odd&root=2.7.12.8
[Wicentowski and Turska 2016] Wicentowski, Joseph C. and
 Magdalena Turska. Bringing TEI PM to Foggy Bottom. Claudia Resch, Vanessa Hannesschläger, and
 Tanja Wissik, eds. TEI conference and member’s meeting 2016. Book of
 abstracts, 155–56. Vienna: Austrian Centre for Digital Humanities, Austrian Academy of Sciences.
 http://tei2016.acdh.oeaw.ac.at/sites/default/files/TEIconf2016_BookOfAbstracts.pdf

[1] The release of TEI Publisher 5.0 was announced
 on August 2, 2019, too late for it to be included in this report. For details see TEI Publisher 5.0.
[2] By or more we mean not only that
 different witnesses in a critical edition might be stored in separate files, but also that an edition might
 draw on information stored in ancillary documents. For example, an edition that includes epistolary
 correspondence, such as Digital Mitford [Mitford], encodes each letter as a separate TEI
 XML document, but metadata about persons, places, etc. for all letters is stored not in the individual
 letters (which would create massive repetition), but in a shared resource called the site index. An edition of a letter as exposed to readers must incorporate information drawn from
 the site index.
[3] For a history of MVC see Reenskaug.
[4] Two areas of variation in
 the description of MVC are:	In some descriptions, although the Controller
 translates user interaction (in the View) into instructions to the Model, the Model returns directly to the
 View, without passing through the Controller.

	The dividing line between
 the Controller and the Model is not always clear. Basic XQuery support (that is, support for XQuery syntax
 and the function library) is part of the Model, but whether a particular XQuery script is part of the Model
 (perhaps stored inside the database) or the Controller (perhaps constructed with PHP and then passed into
 the database) is less certain. The boundaries may be even harder to discern when all three parts of the MVC
 architecture are implemented inside eXist-db.

[5] Some other such languages have already been mentioned above, and include
 Python, Ruby, and JavaScript.
[6] As of Version 4.6.1 (March 2019) eXist-db
 supports a custom transform:transform() function in a custom namespace, but not yet the
 standard XPath 3.1 fn:transform() function.
[7] See
 https://exist-db.org/exist/apps/fundocs/browse.html for eXist-db modules,
 http://docs.basex.org/wiki/Module_Library for BaseX modules, and
 https://docs.marklogic.com/all for MarkLogic modules.
[8] The risk of lock-in with a controller outside eXist-db should also not
 be minimized. Migration among PHP, Flask, Ruby on Rails, and Django is not always seamless, and dominant
 middleware products eventually go out of fashion (e.g., Perl CGI). Migration across major versions of
 robust, mature, and widely used CMS products may also be painful, as was the case for many users with
 the migration from Drupal 6 to Drupal 7.
[9] The eXist-db documentation provides advice about deploying the database
 in production with a reverse proxy for security [Proxying eXist-db].
[10] Each of the four versions of the application project
 are saved to different subfolders, labeled v1, v2, v3, and v4.
[11] eXist-db supports several types
 of persistent indexes, one of which is a full-text index implemented via Apache Lucene. See Configuring database indexes for details.
[12] eXist-db app packaging is
 described in Package Repository.
[13] Each and
 every project using the TEI Guidelines is already dependent upon some form of customisation even if it
 is the tei_all example customisation with absolutely everything in the
 TEI Guidelines. For many projects this is enough, but it does projects a disservice if they do not
 constrain and control the data entry for their project and document it with a TEI customisation.
 [Cummings 2012]
[14] For more
 information about PM behaviours see TEI Processing Model.
[15] TEI Simple was later renamed TEI simplePrint, and is described at Burnard et al. 2017. Like
 TEI Lite [TEI Lite], TEI simplePrint offers a subset of TEI elements and attributes
 regarded as adequate for a wide variety of encoding projects. But TEI simplePrint goes beyond merely
 customizing the TEI schema by also specifying rendering preferences in a formal way through the use of
 PM.
[16] This functionality could be achieved with other View components, such as by building reusable
 components with React.js [React], which brings it closer to web apps, as described
 above.
[17] See also the new menu entry "vision" that
 outlines the positioning of TEI Publisher as a community effort firmly grounded in the principles of
 Open Source, standards, and reusability.
[18] Galey, Alan. The human presence in digital
 artifacts. Willard McCarty, ed., Text and genre in reconstruction: effects
 of digitalization on ideas, behaviours, products and institutions, 93–118. Open Book
 Publishers, 2010.
[19] The acknowledgement that
 interface is scholarship should not be misconstrued as advocating against providing full and open access
 to all research data, which may include TEI XML document instances and the ODD that defines and
 documents how TEI has been used in the edition. There is no incompatibility between regarding the
 interface as scholarship and providing reusable access to all work products.
[20] For
 a thoughtful perspective on how the use of software may or may not entail the acceptance of scholarly
 judgments by others see van Zundert and Haentjens Dekker 2017.

Balisage: The Markup Conference

The integration of XML databases and content management systems in digital editions
Understanding eXist-db through Reese’s Peanut Butter Cups
David Birnbaum
Professor and Chair
Department of Slavic Languages and Literatures, University of Pittsburgh (US)

<djbpitt@gmail.com>
David J. Birnbaum is Professor and Chair of the Department of Slavic Languages and Literatures at
 the University of Pittsburgh. He has been involved in the study of electronic text technology since
 the mid-1980s, has delivered presentations at a variety of electronic text technology conferences,
 and has served on the board of the Association for Computers and the Humanities, the editorial board
 of Markup languages: theory and practice, and the Text Encoding
 Initiative Technical Council. Much of his electronic text work intersects with his research in
 medieval Slavic manuscript studies, but he also often writes about issues in the philosophy of
 markup.

Hugh Cayless
Senior Digital Humanities Developer
Duke University (US)

<philomousos@gmail.com >
Hugh Cayless is Senior Digital Humanities Developer at Duke University, where he provides
 architecture, design, and programming support for the Duke Collaboratory for Classics Computing
 (DC3). He has served as an elected member of the TEI Technical Council since 2012 (as its Chair from
 2015–2017), and he is a founding member of the EpiDoc Collaborative. Hugh earned a PhD in Classics
 and an MSIS, both from UNC Chapel Hill. His research interests focus on digital critical editions
 and Linked Open Data.

Emmanuelle Morlock
Digital Humanities Research Officer
French National Center for Scientific Research (CNRS) - HiSoMA Reserch Center (UMR
 5189)

<emmanuelle.morlock@mom.fr>
Emmanuelle Morlock works as an engineer in Digital Humanities at the French National Center for
 Scientific Research (CNRS). Educated in French literature and Library and Information Science, she
 has specialized in the application of the encoding standard TEI EpiDoc. She is also involved in the
 French-speaking digital humanities association Humanistica as a member of the steering commitee and
 co-director of the digital open access journal Humanités
 numériques.
Partial support for her contribution to this work was provided by the Consortium CAHIER
 (https://cahier.hypotheses.org/).

Leif-Jöran Olsson
Systems Developer
Språkbanken, Department of Swedish, University of Gothenburg (Sweden)

<leif-joran.olsson@svenska.gu.se>
Leif-Jöran Olsson has been employed since 2005 as a systems developer at Språkbanken, the Swedish
 Language bank, University of Gothenburg, where he develops research infrastructure for language
 technology, both nationally and within CLARIN ERIC. His project management experience involves both
 long-term partner projects (e.g., the Swedish Literary Bank, the Selma Lagerlöf Archive, the Swedish
 Drama web) and short-term domain-specific toolboxes (including training and use case analysis). He
 has extensive experience with teaching in language technology and programming. Leif-Jöran obtained
 his MA in Language Technology from Uppsala University in 2004, and he is one of the core developers
 of the open-source eXist-db native XML database.

Joseph Wicentowski
Digital History Advisor
Office of the Historian, US Department of State

<joewiz@gmail.com>
Joseph Wicentowski is a historian who specializes in the use of open standards to improve the
 accessibility and utility of scholarly editions. Since completing his Ph.D. in History at Harvard
 University in 2007, he has spearheaded a project to convert a major diplomatic documentary edition
 to TEI, leveraging the XML family of technologies to enable editors, researchers, and the public to
 access texts online in multiple open formats. Wicentowski has led workshops on the XQuery language
 and the eXist-db open source native XML database at TEI@Oxford Summer School in 2010–11 and Digital
 Humanities 2017, serves as a community liaison for the eXist-db community, and is co-author of a
 forthcoming book on XQuery for digital humanists in the Coding for Humanists series from Texas
 A&M University Press.
Wicentowski’s contributions to this paper represent his views only, and not the view or policies
 of the U.S. Department of State or the U.S. Government.

Balisage: The Markup Conference

content/images/Birnbaum01-003.jpg
Java Application Server
(e.q., Jetty/other)

r

~\

A

i eXist

A 4

7

A

XForms Filter

(+

' \

REST Server

~——
)

SOAP Server

<

v

-~
CE—

\4

<

v

RESTXQ
-)

)

WebDAV

v

User/Application
HTTP Request

A 4

Servlet Request

A

XQueryURLRewrite

A 4

~—

.)
XML:DB

A 4

v

Remote API
———

'Y
L

A 4

A\ 4

Axis SOAP

A 4

A

v

\ J

v

eXist Core

content/images/Birnbaum01-002.jpg

content/images/Birnbaum01-001.jpg

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Birnbaum01-004.png
Controller
Client (written in
Program any

(view) programming
language)

Client machine Application Server Database Server

Figure: 3-tier MVC architecture

