[image: Balisage logo]Balisage: The Markup Conference

Extending Vocabularies: The Rack and the Weeds
Social Context and Technical Consequence
Liam Quin
Visionary
Delightful Computing

<liam@fromoldbooks.org>

Balisage: The Markup Conference 2019
July 30 - August 2, 2019

Liam Quin, © 2019

How to cite this paper
Quin, Liam. "Extending Vocabularies: The Rack and the Weeds." Presented at: Balisage: The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019.
 Balisage Series on Markup Technologies vol. 23 (2019). https://doi.org/10.4242/BalisageVol23.Quin01.

Abstract
In its simplest form a vocabulary is simply a
 set of words and phrases with predefined meanings. In this paper the
 term is used to mean a controlled vocabulary and,
 in particular, a controlled vocabulary in the context of computer markup
 languages such as XML or JSON or SGML.
Vocabularies are created in specific contexts and for specific
 purposes. Like all human constructs they are flawed and need to be
 repaired and changed over time; as people use vocabularies they also
 gain understanding of the limitations in them and often want to extend
 them. Understanding these processes involves an understanding of the
 human needs involved: the social contexts in which people interact with
 and around the vocabularies. This paper characterizes some of these
 contexts and their properties, and in the light of this characterization
 describes changes to vocabularies, both successful and
 unsuccessful.

Balisage: The Markup Conference

 Extending Vocabularies: The Rack and the Weeds

 Social Context and Technical Consequence

 Table of Contents

 	Title Page

 	Introduction

 	The Social Context of Vocabularies

 	An Ontology For Extensions
 	Planned-for Extensions
 	Grammar Hooks

 	Unchecked Islands

 	Extension Names

 	Unanticipated Extensions
 	Altered Grammar

 	Usage Conventions

 	Unchecked Usage

 	Hybrid and Absorbed Extensions
 	Ambiguous Markup

 	New Vocabulary Features

 	Usage Conventions Adopted

 	Internal and Interchange Formats

 	Evaluating Extensions

 	Vocabulary Life Cycle: the Birth of an Extension
 	Committee Proposals

 	Community Proposals

 	Forks

 	Merging

 	After the Work Ends

 	Characterizing Extensions
 	Functional Extensions: New Behaviour

 	Semantic Coverage: New Meanings

 	Implicit Extensions

 	Explicit Extensions

 	Usage Conventions

 	Methods of Extension
 	Adding New Elements

 	Adding New Attributes

 	Adding New Content

 	Adding New Values

 	Subtractions

 	Combining Vocabularies: Xreole

 	Adapting Existing Markup

 	Scripting

 	Inhibiting Factors

 	Encouraging Benevolent Extensions
 	Version Numbering

 	Allowing Mixed Namespaces

 	Fallback

 	Extension Attributes and Namespaces

 	Communication

 	Conclusions

 	About the Author

 Extending Vocabularies: The Rack and the Weeds
Social Context and Technical Consequence

Introduction
The SGML standard defines the following term:4.279 SGML application: Rules
 that apply SGML to a text processing application. An SGML application
 includes a formal specification of the markup constructs used in the
 application, expressed in SGML. It can also include a non-SGML
 definition of semantics, application conventions, and/or
 processing.
— ISO 8879:1986 SGML

The SGML standard attempted to give a formal definition for what today
 might be called a markup vocabulary. When XML made the explicit document
 type declaration optional and provided other ways to share
 computer-processable specifications, such as XML Schema Documents, the
 term Document Type Definition, or DTD, gradually gave way to the more
 informal, broader, term, Vocabulary.
The non-SGML part of an SGML application, as with vocabularies in
 other systems such as XML, HTML or JSON, can include natural-language
 prose that might add constraints not easily expressed in markup:
 the n attribute shall be a Mersenne Prime Number expressed in
 Roman numerals for example. Such constraints can sometimes be
 enforced, or violations detected, with a conformance
 checker; often these are written in a special-purpose
 language such as that of Schematron [Lubell, 2009]
 and those Schematron tests in turn can be tested using frameworks such as
 XSpec [Lizzi, 2017].
Both the machine-processable part of a vocabulary definition and the
 additional human-readable part (often much larger) must change over time:
 at the very least, they change from not existing into existing, but almost
 always they change through revision and, explicitly and implicitly,
 through extension.
For the purpose of this paper, an extension to a
 vocabulary is any change to the specification of that vocabulary, whether
 in detail, in scope, or otherwise.
Before we can define implicit and
 explicit extension, we must consider the wider
 social context in which vocabularies are created and used. We can then
 characterize the extensions more precisely and go on to suggest ways to
 encourage what we will define as beneficial vocabulary
 evolution.

The Social Context of Vocabularies
The context in which a vocabulary was first developed and the primary
 contexts in which it is subsequently maintained are also the contexts
 within which the maintainers will view extensions. Example contexts include:	An individual person inventing a vocabulary for their own
 use;

	A group of people working on a project, using a vocabulary
 between them but with no wider usage outside the group;

	An organization that publishes a vocabulary for use with
 specific software or for some other specific purpose connected with
 the organization;

	Organizations whose staff work together to produce a shared
 vocabulary;

	International and national standards organizations such as ISO,
 NISO, and ANSI; industry consortia such as W3C, WHATWG or Oasis
 Open; each of these has produced specifications that define
 vocabularies, primarily to standardize on behaviours between
 implementations or to invent new solutions to problems.

When a specification for a vocabulary exists primarily for
 interoperability between implementations, innovation is strictly limited.
 In this case, it is usually clear to the vocabulary designers that each
 vendor or implementer will need to extend the vocabulary to add support
 for the features that make their implementation a special snowflake.
 Equally, it will be clear to them that they must provide some way for
 other vendors to process marked-up documents that use those
 extensions.
The truth is rarely pure and never simple. [Wilde, 1895]

An Ontology For Extensions
In order to characterize extensions we need to introduce some
 descriptive terminology. The terms introduced in this section are a first
 attempt to provide not only phrases but clearly separated concepts in the
 area of vocabulary extensions.
Planned-for Extensions
The creators of a vocabulary foresaw a need but not the specifics,
 and so provided mechanisms to allow the vocabulary to be
 extended.
Grammar Hooks
Some vocabulary designers provide mechanisms for users to extend
 the grammar used to validate instances; this can allow subtractions or
 entire replacements, or may be restricted to adding extra terms, such
 as adding an extra element to an XML content model for a bibliography
 entry.

Unchecked Islands
A vocabulary might include a grammar for validation that
 incorporates places where names from other vocabularies can be used,
 or where validation is disabled. Example mechanisms for this are lax
 validation in XML Schema, or extension elements with content models of
 ANY in DTD-based validation.

Extension Names
Some vocabularies incorporate a convention that elements starting
 with a specific prefix (x-socks) are extensions,
 and the creators promise never to define meanings for such names. In
 XML, a vocabulary might state that elements in a specific secondary
 namespace, or any namespace but the primary one, are extension
 elements, or, like XSLT, might allow arbitrary attributes on any
 element as extension attributes. There is always
 a risk of conflict with future versions of the specification when this
 is done, however.

Unanticipated Extensions
The creators of the vocabulary did not foresee the need for
 extensions, or not of the kinds that users of the vocabulary wanted or
 needed.
Altered Grammar
Sometimes if the creators of a vocabulary did not supply a
 mechanism to add or change names, people copy the grammar definition
 and edit it in a text editor. The resulting vocabulary might in open
 source terms be called a hostile fork. Documents
 using this changed grammar might not work properly with tools for the
 original vocabulary.

Usage Conventions
Users might assign their own meanings to vocabulary terms in
 specific contexts. This is a very common way to extend any language.
 For example, one might say that the HTML cite
 element is to contain a footnote reference to a bibliography entry, or
 that it contains quoted text but not the name of the quoted author. Or
 if an XML vocabulary did not allow links, one might start using a
 shoesize element and put a URL into its
 USAorEuropean attribute. This is sometimes
 (disparagingly) called tag abuse: if an XML
 vocabulary, say, does not distinguish between italic for a foreign
 phrase and italic for emphasis, and one needs to include a foreign
 phrase, people using a text-to-speech reader to interact with the
 document will be forced to hear a raise in pitch as the foreign phrase
 is read out loud. It can be better for vocabulary creators to provide
 an italic element with a required
 because attribute than to deny the possibility
 of unforeseen italicized content, but no-one can anticipate
 everything.

Unchecked Usage
Faced with needs not met by a vocabulary, some people give up on
 grammars altogether and add terms as they see fit. This is similar to
 the hostile fork described above, except that without formal
 documentation there can be little hope that any other group will adopt
 the extensions.

Hybrid and Absorbed Extensions
Extensions are sometimes adopted back into a vocabulary; in most
 cases this is done in such a way that people previously using the
 extension have to change their usage to conform, because people making
 extensions usually do not share exactly the same constraints and
 perspectives as the vocabulary’s creators.
An absorbed extension, then, is one that was
 originally an extension but became part of the vocabulary. A
 hybrid extension shares characteristics of
 planned-for and unanticipated extensions and may also be, or become,
 officially absorbed.
Ambiguous Markup
Declarative markup admits the possibility of multiple ways to
 process a single document; ambiguous markup goes
 one step further and admits the possibility that a term can be
 interpreted by the reader. An example in XML is the use of the
 Chameleon XML Schema Pattern, in which a fragment of a grammar might
 be included in multiple language definitions but, because of differing
 prologues, have radically different interpretations, for example with
 a different default namespace in use.

New Vocabulary Features
A new version of a vocabulary might incorporate new terms that
 were previously an extension. The vocabulary itself might be said to
 have been extended compared to previous versions, but the new terms or
 features are no longer themselves considered an extension.

Usage Conventions Adopted
The creators of a vocabulary may decide that a usage convention is
 reasonable and adopt it into their language. This is sometimes
 referred to as paving the cowpaths, although
 anyone who has lived around cows know that they don’t always follow
 very useful or wise routes. A common example here is languages that
 adopt special meanings to comments in a particular format, such as
 Encapsulated PostScript using %%page at the start of a line; regular
 comments in that language start with a %, but the convention is that
 PostScript comments should not start with %% unless they conform to
 the Encapsulated PostScript convention.
Note that usage conventions, in the sense used in this paper, are
 not themselves part of the vocabulary.

Internal and Interchange Formats
These are not strictly speaking a type of
 extension, but rather a context and
 situation: The context is one in which an
 organization has needs not met by a vocabulary; the situation is one
 where documents produced internally must be shared with other
 organizations, and are transformed in some way at the institutional
 boundaries so that what is shared is conformant.

Evaluating Extensions
Extensions can have an effect wider than on a single individual or
 organization. Some extensions become widely used, and these may be adopted
 by the maintainers of the vocabulary, or they may be seen as
 disruptive.
In either case, extensions that are in use in interchange between
 organizations necessarily lead to fragmentation: any given tool or tool
 chain may or may not be able to process the extension. For example, if one
 were to share with someone else an XSLT transformation document that made
 use of EXpath extension modules, the recipient would be unable to use the
 transformation unless they had an XSLT implementation that supported the
 extension. So, there would then be two languages: XSLT with EXPath and
 XSLT without EXPath. But if there were three EXpath extension modules, and
 implementations may have any combination, there would then be
 six different languages, since the increase is
 combinatorial.
An extension, then, reduces interoperability. But when an extension is
 widely implemented, it generally increases the scope, or applicability, of
 the vocabulary, and gives an overall benefit. This would be a
 beneficial extension.
An extension sometimes is created by people who are not well-connected
 to the user community, or who have very different views from the majority
 of the people creating the original vocabulary. Or, sometimes, one or more
 of the original creators has a change of heart in some way. The extension
 might violate what users perceive to be underlying principles, or might
 feel out of place. For example, consider an extension to a declarative
 content-oriented XML interchange vocabulary that introduces procedural
 commands such as Switch to a larger type size until otherwise notified.
 Such an extension changes the way that people think about the vocabulary,
 and even though it may increase applicability, it can cause damage. The
 extension doesn't fit in well, is harder to learn, and users become
 confused by a new lack of orthogonality. So, this would be an example of a
 harmful extension.
It should be admitted that there is no easy and clear-cut way to
 determine whether an extension is beneficial or harmful. Sometimes it is
 only apparent after several years. Sometimes the damage of an extension is
 that it precluded a better solution being adopted.

Vocabulary Life Cycle: the Birth of an Extension
Vocabularies are created, born, grow, live and flourish, or wither and
 are forgotten, but they rarely die. It is very difficult to withdraw
 features from vocabularies once those features are in widespread use.
 Furthermore, the slightest change to the specification may mean new
 documents do not work correctly in existing implementations. Features can
 be marked as deprecated, but both users and
 implementers will have to deal with documents containing such deprecated
 markup.
Some common reasons for extensions include:
	As people started to use a vocabulary they found they needed (or
 wanted) it to handle more cases than it already did: the vocabulary
 grows;

	The requirements changed, or priorities changed, and with it the
 focus of usage. For example, rotary-dial telephones are no longer
 ubiquitous, and a shared way to describe telephones for retailers to
 choose items to stock no longer needs to mention the speed of the dial
 return, but should probably mention whether a 3.5mm headphone socket
 is provided. It might be that the vocabulary does not need to grow,
 but rather that there will be increased detail in some areas and
 perhaps reduced detail in others.

	Someone involved in the vocabulary came up with an idea:
 this specification is fabulous; we could use it for
 selling wedding cakes if only it had.; or, it’s
 really useful that you can work with numbers and decimals but what
 about fractions? So an extension can be
 systemic: adding fractions to every numeric
 value, for example, or it might be modular,
 offering a self-contained new facility such as the ability to
 manipulate Zip archives in EXPath.

	The way the vocabulary is used has varied over time. For example,
 before the availability of CSS, the HTML blockquote
 element was often used for indented text, regardless of the reason for
 the indenting. Similarly, people using vocabularies with markup for
 italics as rhetorical or grammatical emphasis but
 without plain italics may find themselves marking up book titles or
 phrases in foreign languages as emphasized rather than merely
 differentiated. This is sometimes called tag abuse, but it is really a
 symptom of needs not being met, and can healthily evolve into the
 first case listed above.

	Often people use built-in extension mechanisms, or invent their
 own mechanisms, to remain within the broad communion, or user base, of
 a particular vocabulary while supporting their own workflows.
 Sometimes one sees Web pages that use a custom DTD, for example, or
 DocBook articles with custom elements: the additional markup is
 usually not intended to be public in these cases, but rather is a
 symptom of a private extension.

	Very occasionally, two or more vocabularies merge, or one subsumes
 another. The individual vocabularies may continue to be maintained
 separately, as with HTML 5 incorporating MathML and SVG. The original
 vocabulary appears to grow in size and complexity but, since the most
 common cases of this is to absorb widely-used extensions, there may be
 no increase in practice.

As with any change to a specification, whether explicit or implied,
 changes can originate internally, from the people maintaining the
 specification of the vocabulary, or can originate from sources external to
 that group, as the next two sections describe.
Committee Proposals
Very often a new feature starts out as a proposal from someone
 already participating in whichever group or committee maintains a
 particular vocabulary. Such an extension may go into a future version of
 the vocabulary, in which case it people using that next version do not
 generally consider it to be an extension. Sometimes the committee will
 reject the proposal, and in that case it may later become part of some
 third-party extension. Eventually it may return to become part of the
 main specification, as SVG did with HTML 5.
The important thing about proposals from within the committee is
 that because they are very often developed in a context of what Applen
 and McDaniel refer to as tacit knowledge
 [Applen & McDaniel 2009], they tend to fit in well with the overall
 design of the vocabulary or specification in question.

Community Proposals
Sometimes people who are on the periphery of a committee, whether
 outside but following closely or inside but not part of the cognoscenti
 or not well respected, will come up with a proposal; at other times it’s
 committee members but the proposal falls outside the scope of the
 committee work, or is of a nature that means the details could not
 easily be agreed upon within the group.
At other times, a user or implementer group outside the original or
 main committee decides to extend the specification. This can happen
 through dissatisfaction with the main group (as, for example, with HTML
 5 and the WHAT WG) or a need for something faster than full consensus
 allows, or sometimes simply because the outsiders did not understand
 that they could have been more closely involved.

Forks
Strictly speaking a fork can happen from within
 a committee or from the outside, or even a combination of both. The term
 comes from open source programming: a fork of a
 piece of code (whether a complete application or just a single library)
 comes when someone copies the original, changes it, and starts
 redistributing their changed version. This can be for several reasons:
 the original maintainer might have wandered off, leaving the work
 orphaned; the maintainer might have refused to make changes someone
 wanted; sometimes the original maintainer passes on the flag to someone
 else, or agrees there will be two versions with two different areas of
 focus. Thus a fork can be amicable or can be hostile.
In the world of markup vocabularies and specifications a fork most
 often happens when the original standards committee doesn’t recognise a
 particular need as valid (rightly or wrongly). It can also happen if a
 group needs a smaller subset of a specification, as happened with the
 Mallard subset of DocBook for the GNOME project. Usually in the case
 that the new fork is not intended to replace or supplant the original
 specification there is no need for hostility: Mallard was made for use
 by a specific community, for example.

Merging
Sometimes two specifications merge into a single larger one*; usually the resulting vocabulary is the union of the
 original specifications before the merge, often with some additions
 since if one is revising a vocabulary it can be hard to argue with
 people who want to add to it.
A merge can be done to include one vocabulary inside another, such
 as HTML 5 incorporating MathML and SVG, rather in the manner of a shark
 eating a jellyfish. The result can remain separate specifications or can
 become one larger one. Another reason for a merger is when there are
 variants of the original specification in use and incorporating the
 variations seems best for everyone.

After the Work Ends
Sometimes a maintainer wanders off, loses interest, loses the
 ability to continue the work, or even dies. An organization can be taken
 over (such as Sun Microsystems by Oracle), or can cancel a project (such
 as Oracle canceling Solaris). Sometimes the specification may remain
 frozen, and may even become difficult or impossible to obtain. But if
 the vocabulary is in widespread use then new needs will emerge, and a
 new group will probably carry the torch forward.
Sometimes a committee will mark a particular vocabulary or version
 as deprecated. On other occasions a specification
 may be actively withdrawn by its publisher, for
 example for legal reasons. And of course at times a specification is
 perfect: the committee can be disbanded because the work is
 finished.

Characterizing Extensions
The terms defined in this section are intended to be of use in
 describing extensions to vocabularies and will be used in the rest of the
 paper to characterize specific extensions and extension mechanisms.
Functional Extensions: New Behaviour
A behavioural extension is one that changes the
 behaviour, or enables such changes, in software processing marked-up
 documents.
In HTML, for example, code running in the client (that is, in a Web
 browser) makes use of the extensions: for example, a browser might
 interpret rel=toc to provide a toolbar button or
 keyboard shortcut to access a table of contents entirely outside the
 containing document. Markup to extend behaviour is often very specific
 to the behaviour however: early HTML examples included
 blink and marquee elements
 whose purpose was to affect the display of contents rather than to
 indicate meaning.
A vocabulary or a system using a vocabulary might also be extended
 by missing or adding entirely different languages. For example, one
 might include OpenGraph or Schema.org features in an XML vocabulary, and
 these might be expressed in a JASON-LD syntax inside XML elementsor
 attributes. Or, a system might be extended by supporting scripting, and
 this might become visible inside documents. Such extensions can be
 pernicious, tying documents down to use by specific software in specific
 contexts and limiting reuse.

Semantic Coverage: New Meanings
In the semantic coverage case, the purpose of
 the extension is to represent information in documents. For example, in
 HTML, one might use a span element with a
 class attribute value of
 place to mark up places mentioned in a document.
 Although this information might then enable new functionality, such as
 connecting the prose to a map view, the markup is not tied to any
 particular behaviour.

Implicit Extensions
Sometimes when we use a specification and share our documents or
 data, we do not realize that we have created an extension. For example,
 people marking up HTML documents might find they have used common
 class attribute values, or people might take a
 specification like SCXML and use it for subject domains that the Working
 Group that developed it never envisioned, and to which the prose in the
 specification applies at best poorly. Over time the result can be to
 broaden the scope of the original language.
An implicit extension, then, is one where the
 fact that a vocabulary has been extended is not necessarily obvious to
 an observer.

Explicit Extensions
Many specifications provide methods for extension, some of which are
 covered later in this paper. In most cases the fact that something is an
 extension is made explicitly visible: for example, by the use of an XML
 namespace, or by including a module or library.
An explicit extension, then, is one whose use
 (and not just whose description or specification) makes it clear both to
 software and to any human working with the vocabulary that an extension
 has been used.

Usage Conventions
Sometimes it seems easier to decide on a particular way of using a
 vocabulary than extending it. With a vocabulary that does not include
 section titles, one might decide to use the first paragraph of each
 section as a title, even if formatting software does not embolden it.
 Strictly speaking a usage convention is not an extension to a
 vocabulary, but it extends the scope of the vocabulary without
 introducing any new terms or markup.

Methods of Extension
We have considered some of the contexts in which vocabularies are
 commonly extended. We are now in a position to consider the methods by
 which they are extended in those various contexts and to understand the
 reasons for the technical design choices.
Some vocabularies provide explicit extension methods in which users
 can add new elements or attributes, or can change what is allowed at any
 given point, using extension points built in to the various schema
 languages used to describe those vocabularies. For example, a DTD might
 provide parameter entities included in each content model, so that a
 document can override the definition of one of the parameter entities to
 add a new element to the corresponding content model. This permits
 extended documents to be validated, but software processing the documents
 will still need to be modified appropriately to understand the new
 markup.
Adding New Elements
One of the most obvious ways to extend an XML vocabulary, or one in
 any similar language, is to add new terms to the vocabulary. We might,
 for example, decide that the title element of an HTML
 document is insufficient for our purposes because it does not allow
 nested elements within it; instead, we add a pagetitle
 element that’s richer.
One obvious problem with this is that existing software doesn’t
 understand it. The second is that we still need a title
 element in each document for existing software to use, so now there is
 duplicated information. The new element reduces interoperability of
 documents, but if the usage is confined to a well-defined group then
 this is not a problem.
The use of XML namespaces is the most common way to identify
 extension elements. Namespaces are a fragile mechanism, often failing
 silently if there’s a typo in the namespace name (the URL) and in some
 implementations even failing if a document uses a different prefix.
 However, the fragility seems more than compensated for by avoiding
 conflicts, where two groups add elements of the same name. One of the
 original use cases for XML namespaces was to allow the mixing of
 vocabularies in this way.
In all cases, anyone adding an element of their own to documents
 that otherwise conform to someone else’s vocabulary needs to ensure that
 receiving software that does not understand the new element will behave
 sensibly: this is known as fallback. For example, a
 Web browser receiving a document containing a dblookup
 element will (in the absence of scripting) simply display the contents
 of the element. The document author therefore needs to include
 appropriate fallback contents. The design of extensibility in HTML
 places burdens on document authors.

Adding New Attributes
Very often, software processing a vocabulary will ignore attributes
 that are not recognized. Schemas need to be modified, but that’s true of
 any change. XML extension attributes can be associated with an XML
 namespace to avoid conflicts, as with elements.
A benefit of using attributes for extensions is that they tend to be
 less disruptive than elements. On the other hand they are restricted to
 simple string content and cannot be marked for language or text
 direction (e.g. RTL). Attributes are therefore not in general suitable
 for human-readable content: for example, you can’t easily have Taiwanese
 alt text for an SVG image in a Chinese HTML page, and
 this matters because Unicode code points are shared between those
 languages, so that language marking is needed for the text to be
 readable. In addition, there can only be one attribute of a given name
 on any particular element, limiting some sorts of extensibility.
The HTML 5 specification reserves attributes whose names begin with
 data- to be extension attributes, but this naming
 convention is not always acceptable to other groups extending
 HTML.

Adding New Content
Additional content is not usually considered to
 be an extension, since it does not affect the vocabulary itself. But
 consider including multiple translations of each paragraph of a
 document, one after the other; a usage convention
 might be used to say that the first paragraph is Romanian and the second
 the Italian translation, marked as Italian with
 xml:lang but not otherwise as a
 translation.

Adding New Values
New attribute values or element contents make an obvious way to
 extend many specifications. Attributes with names like role
 seem good candidates. It can be difficult to avoid collisions here,
 however, and there can be problems with fallback.
Examples in HTML include adding new meta or
 rel values, using data:*
 attribute values instead of linking to external resources, or using
 non-standard ARIA role attribute values. Note that this is different
 from extending HTML using Custom Elements or new
 class attribute values, because those are
 intended to be used for customization.

Subtractions
It may seem odd to consider removing part of a
 vocabulary as an extension. Such a change, however, can greatly
 facilitate implementation and can also help with authoring (by reducing
 choices). A diminished version of a vocabulary is sometimes known as a
 subset and sometimes as a
 profile, depending mostly on whether the speaker
 approves of it or not. Subsets (or profiles) can reduce
 interoperability, because an implementation might support one dialect
 and not another. They are therefore most suited for well-targeted use
 cases and communities.
One well-known example of a profile, or subset, is XML: every
 well-formed and DTD-valid XML document is also a valid SGML document.
 Admittedly this took a change to SGML to achieve, but the change (or
 rather, set of changes) was not unreasonable. Although XML was
 originally made by a group who did not think they could get the SGML
 committee to make changes in a timely fashion, if at all, in the end the
 committee turned out to be generally (overall) amenable to changes, and
 the design of XML could have been somewhat simplified had this been
 anticipated.

Combining Vocabularies: Xreole
Merging specifications to make a superset has already been discussed
 above. Another possibility when merging is to pick and choose, resulting
 in what is perhaps best considered to be an entirely new markup
 vocabulary, a sort of XML Creole, that was influenced by its ancestors
 but is not compatible with them.
This may sound the province of Igor in the basement, but can have
 the advantage of reduced training costs and sometimes even reduced
 tooling costs. Consider a vocabulary that uses DocBook element names for
 structure, HTML names for paragraphs and below, and DITA-style assembly
 from fragments. We could call it DitaWebBook. The HTML names for italic
 and bold, the accessibility attributes, the p element, all
 add a (perhaps false and misleading) sense of familiarity. Authors may
 then be surprised when MathML or SVG or JavaScript are not
 supported.

Adapting Existing Markup
When you don’t have an element to mark up a foreign phrase that’s to
 be italicized, and there’s no element for meaningless (semantically
 unweighted) italics, what’s an author to do except look for some other
 element that displays in italics? Emphasis, perhaps, resulting in
 documents in which text-to-speech software reads out foreign phrases (or
 book titles, perhaps) in a louder or higher-pitched voice as if they
 were really important.
More pernicious them poorly-accessible italics, hover, are values
 that are interpreted by software: our vocabulary didn’t have an
 element for postcode, so we used email address, because we aren’t
 allowed to store those. This is payback for vocabulary
 designers who did not allow for extensibility. The three-level postal
 address that doesn’t work in other countries; the telephone number field
 that doesn’t allow for an office extension number. Every example
 represents a design failure.
Adapting markup is sometimes derogatorily called tag abuse, although
 it can also be a form of usage convention.

Scripting
It is often tempting to make a system user-extensible by
 incorporating a scripting language. The result, as suggested above, can
 be that documents become tied to a particular system used in a
 particular configuration, because they contain fragments of programs or
 hooks for extension scripts to use.
An example is HTML Custom Elements, where the language is extended
 not by editing the grammar in some way, but through a JavaScript API
 which itself is subject to change.

Inhibiting Factors
Some vocabularies and languages have designs that make it harder to
 evolve them over time. .
 HTML has always defined that an unknown element in the document body
 should be rendered as if its tags were missing, which allows for
 experimental elements to be added easily. Unfortunately there was also a
 decision that the first unknown element would end the head, which
 considerably complicated adding new metadata and which the IETF HTML
 Working Group later regretted.
But inhibiting factors can come from other directions. For example,
 the technique known as literate programming, in which
 a program is intertwined with extensive documentation, can discourage many
 programmers from making changes, especially if they are not comfortable
 with writing prose. Or, they may make changes to the code but not update
 the prose, which to them maybe a harder task.
Literate programming is an extreme example, but any extension can make
 existing documentation obsolete, because you wouldn’t do it that
 way any more.
There can also be legislative inhibitors, for example if a specific
 version of a vocabulary is required, and implementation inhibitors, for
 example if a particular language version is very widely implemented, as
 with XSLT 1. Infrastructure inhibitors can be very difficult to
 surmount.
Sometimes incompatible changes in a new version of a vocabulary can
 discourage or even prevent adoption; this was the case with XML 1.1, where
 in some (admittedly obscure) cases existing documents could have their
 meaning changed, and where existing XML processors were required to reject
 XML 1.1 documents.

Encouraging Benevolent Extensions
There are a number of techniques that have emerged through experience
 as ways to encourage extensions that improve an ecosystem. Even though the
 combinatorial bifurcation problem is always present with extensions, the
 techniques either mitigate this problem or give benefits that outweigh
 it.
Version Numbering
if an XML vocabulary includes its version number in its namespace,
 any change to the version number will generally break all processing
 tool chains. This is appropriate if it would always be an error for
 version N software to attempt to process version N + 1 input, but more
 often there are compatible changes, or new features added to the
 vocabulary such that every version N+1 document that does
 not use the new features is also a conforming
 version N document. This can be managed by separating the namespace (if
 used) from a version attribute on the top-level
 element, as is done by XSLT and DocBook 5.
It also helps to use a version number scheme that says that minor
 revisions are compatible in the way mentioned above; this is often done
 using a decimal point in the version number, so that a processor for
 version 3.2 of a vocabulary can process input marked as 3.* (where *
 represents any number, such as 3.9), but would report an error if given
 a version 4 document, where the first part of the number, before the
 dot, was higher than the processor understood. The 4 here is called a
 major revision number and the par after the dot
 (or the entire number) a minor revision
 number.

Allowing Mixed Namespaces
Allowing foreign, or secondary, namespace can help demarcate
 extensions from the primary vocabulary, and can make sure there are no
 conflicts. For example, both DocBook and SVG have
 title elements, but DocBook documents that use
 SVG elements associate them with the SVG namespace, so there is no
 conflict. However, the DocBook 5 specification indicates where SVG
 elements are allowed to appear.

Fallback
One of the places where CSS design has improved upon HTML design is
 the notion of fallback; that is, in considering
 what an implementation will do if it encounters CSS it does not
 understand, and making sure the base language is designed so that a
 sensible fallback is always possible, meaning that the document should
 always be readable even if some features (such as coloured borders, for
 example) are not rendered.
Constraints such as CSS FallBack places on designers of language
 extensions can be very helpful to user communities.

Extension Attributes and Namespaces
The HTML 5 specification allows any number of attributes whose names
 start with data- to appear on any element as an
 extension. In an XML environment one might supply a specific extension
 namespace, or one might say, as XSLT says, that attributes in any
 namespace other than that of XSLT are extension attributes. The goal is
 to make sure there can never be conflict between extensions and the
 original vocabulary as it grows and changes over time. Requiring people
 writing extensions to use their own namespaces means that any two
 different extensions will not conflict either.
The same techniques can be used with any names, including
 elements.
It should be noted that a large proliferation of XML namespaces can
 cause problems with implementations; there have been XSLT engines, for
 example, with limits of 256 namespaces per element, or even per
 document. In addition, users can find it confusing to remember which
 namespace to use. A possible strategy is to stick to one for the main
 vocabulary, and one for each organization making extensions, rather than
 one per extension.

Communication
The single most important factor in writing a successful language
 extension is to be in communication with both the original language
 maintainers and the primary user community. Therefore, a wise vocabulary
 designer will provide a place for people to get in touch at an early
 stage both with the developers of the vocabulary and with users.

Conclusions
There are many ways to extend vocabularies, only a few of which were
 covered in this paper. When vocabularies are not created with
 extensibility in mind, a fist punched through the wall makes a new window
 but it is not always pretty. Therefore, a combination of anticipation and
 feedback from users is to be recommended. Fallback must always be
 considered, along with accessibility and internationalization.

Bibliography
[ISO 8879:1986 SGML] ISO/IEC, Information processing — Text and office
 systems — Standard Generalized Markup Language
 (SGML).
[Applen & McDaniel 2009] Applen, J.D. and McDaniel, Rudy, The Rhetorical Nature of
 XML, Routledge, 2009.
[Lizzi, 2017] Lizzi, Vincent M.,
 Testing Schematron using XSpec. Presented at
 Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017.
 In Proceedings of Balisage: The Markup Conference
 2017. Balisage Series on Markup Technologies, vol. 19 (2017).
 doi:https://doi.org/10.4242/BalisageVol19.Lizzi01.
[Lubell, 2009] Lubell,
 Joshua, Documenting and Implementing Guidelines with
 Schematron. Presented at Balisage: The Markup Conference
 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies, vol. 3 (2009).
 doi:https://doi.org/10.4242/BalisageVol3.Lubell01.
[Wilde, 1895] Wilde, Oscar,
 The Importance of Being Earnest, A Trivial Comedy for Serious
 People. First performed at St James’s Theatre in London in
 1895 and in 1998 published from exile in Paris by Leonard
 Smithers.

* Specifications very rarely shrink except by virtue of splitting
 into several separate documents.

Balisage: The Markup Conference

Extending Vocabularies: The Rack and the Weeds
Social Context and Technical Consequence
Liam Quin
Visionary
Delightful Computing

<liam@fromoldbooks.org>
Liam Quin runs an information design company, Delightful
 Computing, and previously was XML Activity Lead at the World
 Wide Web Consortium; before that they were involved in the creation of
 XML itself and in SGML, most notably at SoftQuad Inc. in Toronto.
 Their background is in digital typography, text processing and
 computer science.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

