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Abstract
Aparecium is an XQuery / XSLT library for reading non-XML
      data as XML, under the control of an invisible
      XML grammar describing the structure of the input.
      The use of the library is illustrated with an application, and
      some technical issues in the development of the library are
      discussed.
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   Aparecium
An XQuery / XSLT library for invisible XML

... Hermione was pulling her wand out of her bag.

    It might be invisible ink! she whispered.
She tapped the diary three times and said, Aparecium!
    
— J. K. Rowling,
    Harry Potter and the Chamber of Secrets
    


Introduction
This paper introduces Aparecium, a library intended to make
    the use of invisible XML convenient for users of
    XSLT and XQuery.  This introduction provides some background
    information on invisible XML and describes the purpose of the
    Aparecium library.  The next section illustrates the use of the
    library with a sample application to parse and evaluate arithmetic
    expressions (section “A sample application”).  Following that
    illustration the library's public interface is described and some
    technical issues are discussed.  The paper concludes with a survey
    of related work (section “Related work”) and a section on
    future tasks (section “Future work”).
    
Invisible XML
In 2013, Steven Pemberton introduced an idea he called
      invisible XML (Pemberton 2013),
      which he describes as a method for treating non-XML
      documents as if they were XML (Pemberton 2019b).  More recently, he has produced
      a more formal specification of the idea (Pemberton 2019a).  From a data creator's or author's point
      of view, invisible XML (ixml, for short) allows authors to use
      formats other than XML if they prefer, while still retaining
      access to the XML tool chain.  From the XML programmer's point
      of view, it allows people working within the XML eco-system to
      have more convenient access to non-XML data.  The only
      prerequisite is that it must be possible to describe the data
      using a context-free grammar.
A great many resources are available in specialized
      formats like CSS, wiki markup, or domain-specific notations.
      Social-science data may interleave group-level records with
      individual-level records in a way that varies from project to
      project.  Other resources are distributed in generic non-XML
      formats like comma-separated values or JSON.  Nor is it only
      entire documents, files, or web resources which may use non-XML
      formats.  SGML and XML documents have a long history of
      including elements or attributes whose value is written in a
      specialized notation: mathematical expressions are often written
      in TeX or LaTeX; pointers may be written as URLs, as other forms
      of URI, as ISSNs or ISBNs, or (not too long ago) in TEI
      extended-pointer notation; inline styles are now frequently
      written in CSS.  All of these notations make visible some of the
      structure of the information; sometimes it would be convenient
      to have easy access to that structure in XML processing.
      Invisible XML is a way of making that possible.

Context-free grammars and parse trees
The main requirement of invisible XML is that the non-XML
      data to be read should be described by a context-free grammar.
      (Readers not familiar with this concept may think of it as a
      kind of DTD or schema for non-XML data.)  For example, we might
      describe the language of arithmetic expressions like 23 *
      (2 + 7.2) with the following grammar, written in ixml
      notation:
      
    { An expression is the sum of one or more terms. }
    expression:  term, (add-op, term)*.
    
    { A term is the product of one or more factors. }
    term: factor, (mul-op, factor)*.
    { Addition operators and multiplication operators are
    +, -, *, and /. }
    add-op:  "+"; "-". 
    mul-op:  "*"; "/".

    { A factor is either a number or a parenthesized
    sub-expression. }
    factor: number; "(", expression, ")".
    number:  digit+, (".", digit*)?.
      

      
      Here, braces surround comments, each rule of the grammar
      consists of a single non-terminal symbol followed by a colon, a
      regular expression on the right-hand side of the colon, and a
      full stop.  On the right hand side, quoted strings denote
      terminal symbols, unquoted identifiers are non-terminal symbols,
      commas separate items which must appear in sequence, semicolons
      separate alternatives, parentheses enforce grouping when
      necessary, question mark signals that the immediately preceding
      expression is optional, plus that it may occur one or more
      times, and asterisk that it can occur zero or more times.
      
Parsed against the grammar above, the arithmetic
      expression 23 + 1834 / (60 - 3) - 9 has a parse
      tree of the form
      Figure 1
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It will not have escaped the reader that such a tree
      structure can readily be expressed in an XML document:

  <expr>
    <term>
      <factor>
	<number>23</number>
      </factor>
    </term>
    <add-op>+</add-op>
    <term>
      <factor>
	<number>1834</number>
      </factor>
      <mul-op>/</mul-op>
      <factor>
	<expr>
	  <term>
	    <factor>
	      <number>60</number>
	    </factor>
	  </term>
	  <add-op>-</add-op>
	  <term>
	    <factor>
	      <number>3</number>
	    </factor>
	  </term>    
	</expr>
      </factor>
    </term>
    <add-op>-</add-op>
    <term>
      <factor>
	<number>9</number>
      </factor>
    </term>    
  </expr>


      
Such deeply-nested tree structures and such a high
      markup-to-content ratio are unusual in XML vocabularies
      designed for hand authoring, but they can when well designed
      make processing the information much simpler.[1] For example, it
      should be fairly easy to see that an XSLT stylesheet is capable
      not just of displaying but of evaluating arithmetic expressions
      represented in this way.  Each node in the syntax tree which
      represents a well-formed (sub)expression can be assigned a
      value.  For leaf nodes containing numerals, the value is the
      number denoted by the numeral. Leaf nodes denoting operators and
      whitespace are not well formed arithmetic expressions and have
      no numeric value.  In the case of factors, terms, and
      expressions, the value depends on the values of their children,
      in the pattern known as compositional
      semantics (the meaning of the compound expression is
      composed from the meanings of its component
      parts).  If we label each node with its value, the syntax tree
      looks like this:
      Figure 2
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In a nutshell, the idea of invisible XML is to regard the
      XML structure as latent in the original expression: present, but
      invisible.  The task of Aparecium or any other invisible-XML
      parser is to make that invisible XML visible, so that it can be
      processed by standard XML tools.
      

Earley parsers
Many tools for using context-free grammars require that
      the grammar have particular properties which are necessary for
      particular parsing strategies to work: some tools require that
      the grammar be (as computer scientists say) LL(1), or LL(k);
      others like the classic parser generator yacc require that the
      grammar be LALR(1).  I will not detain the reader with a
      description of what these different properties entail, or even
      what the abbreviations mean; suffice it to say that not all
      context-free grammars satisfy the constraints.
The advantage of such restrictions is that they allow the
      tool to use
      parsing techniques which are relatively simple, require
      relatively little storage, and are relatively fast.  The
      disadvantage is that even experienced parser writers may find it
      difficult to write grammars which satisfy the constraints, and
      for existing notations such grammars may not even be possible.
      Worse, it is very difficult to explain to users of the tool even
      what the constraints are, without administering a short course
      in the relevant parsing algorithms.[2]
      
Invisible XML takes a different approach: users are not
      required to supply grammars that satisfy any particular set of
      implementation-related constraints.  Instead, implementations
      are required to accept any context-free grammar.  This in turn
      suggests that implementations will need to use one of the
      algorithms which is guaranteed to work for all context-free
      grammars without restriction.  There are several such
      algorithms[3], but the invisible XML specification suggests the
      use of an Earley parser.
Earley parsers are guaranteed to handle arbitrary
      context-free grammars, including ambiguous ones. In the worst
      case they parse an input in time and space proportional to the
      cube of the length of the input, but on non-pathological
      grammars their performance is much closer to being linear in the
      length of the input.  They will still however typically be
      slower than non-general parsers, because they have more
      housekeeping overhead.  Issues arising in the use of functional
      languages like XQuery or XSLT to implement Earley parsing, and
      the extension of the algorithm to cover regular-right-part
      grammars (like invisible XML) instead of only grammars in
      Backus-Naur Form, have been discussed in general terms by Sperberg-McQueen 2017.

The Aparecium library
Pemberton's original description of invisible XML proposes
      that those who publish resources parseable by means of invisible
      XML should label them with the MIME type
      application/xml and including a link to the
      appropriate invisible-XML grammar in the HTTP header (Pemberton 2013).  When the HTTP server is configured
      as proposed, a CSS stylesheet can be served both as
      text/css and as
      application/xml-invisible; content negotiation
      between the client and the server will determine which form is
      sent.  When the client's request specifies a preference for the
      application/xml form, the server will serve the stylesheet as
      usual, but instead of the line
      
Content-Type: text/css
      

      the HTTP header will include the line
      
Content-Type: application/xml-invisible;
    syntax=http://example.com/syntax/css.ixml
      

      The syntax parameter allows suitably designed
      software on the client side to fetch the ixml grammar for
      the resource from the specified location, use it to parse
      the resource, and present the resource to the user in an XML
      form.
This design allows invisible XML to fit neatly into
      the architecture of the Web, but for the moment it has
      a certain flaw.  Most of the non-XML resources which
      we might like to process as XML are served only in their
      default MIME type, not as application/xml.
The Aparecium library is intended to make it easy for
      people working in XSLT or XQuery to use invisible XML
      without requiring any cooperation from webmasters or servers
      belonging to other organizations.  It does not rely on
      distant servers to label resources with the application/xml
      MIME type, although if they do, it can handle those cases,
      too.
For resources served as described by Pemberton 2013, Aparecium offers a call modeled on
      the doc() function of XPath 2.0: a call to
      
aparecium:doc($uri)
      

      will (in the normal case) return an XML representation of
      the resource at the URI given.
For resources not served in this way, Aparecium offers
      a way for the XSLT or XQuery programmer to take matters
      into their own hands by specifying both the URI of the
      resource to retrieve and the URI of an ixml grammar
      describing it:
      
aparecium:parse-resource($uriR, $uriG)
      

      
When the non-XML material and its grammar are not on the
      Web or in files but are available in string form, Aparecium
      offers a similar function to parse a string:
      
aparecium:parse-string($string, $grammar)
      

      
Since ixml grammars are themselves described by an ixml
      grammar, they also have a defined XML representation, so the
      grammar can also be supplied by the user in XML form; this
      saves parsing the grammar into XML preparatory to parsing
      the resource the user is interested in.  Given the XML form
      of a grammar, Aparecium pre-processes it before using it to
      parse input; this pre-processed form can also be used.  A
      family of functions is provided to allow various
      combinations of these variations: input as URI or string;
      grammar as URI or as string or as
      standard XML or as pre-processed
      XML.


A sample application
As a simple application of Aparecium, let us consider
    an evaluator for arithmetic expressions.
The ixml grammar for the expressions we would
    like to accept is similar to the one given above,
    but extended in a few ways: we allow whitespace to
    appear within expressions; we predefine two named
    constants; and we allow some alternative Unicode
    forms for symbols and constants.
    
{ arith.ixml:  a simple language for four-function
  arithmetic expressions. }
  
expression: term, (s, addop, s, term)*.
term:  factor, (s, mulop, s, factor)*.
factor:  number;
         constant;
         "(", s, expression, s, ")".
addop:  "+"; "-". 
mulop:  [ "*"; #B7; #D7; "/"; #F7 ].
{ B7 = middle dot, D7 multiplication symbol, F7 division symbol. }

number: decimalnumber, exponent?.
decimalnumber:  sign?, digit+, (decimalpoint, digit*)?;
                 decimalpoint, digit+.
-decimalpoint: ".".
-sign:  ["-"; "+"].
exponent: ("e"; "E"), sign?, digit+.
-digit:  ["0"-"9"].
-s:  [#20; #0A; #0D; #09]*.
constant:  "pi"; "e"; [ #3C0 ].
{ #3C0 is pi }
    

    
Expressions we would like to accept include:
    	1 + 3 - 2

	1 * 2 - 10 / 2

	1 * (2 - 10) / 2

	1.02e3 + 3

	π * 20



    
Expressions we would like to reject (ideally with
    useful diagnostics, though that is not the case at
    the moment) include:
    	1 + 3 2

	1 * 2 +- 10 / 2

	1 * (2 = 10) / 2

	1.02e3 + 3

	π × 42^2

	r = 42; π × r^2



    
The application will allow the user to type in an
    arithmetic expression and produce an XML representation of the
    parse tree.  For example, we can type in the expression
    mentioned above into the text window:

      Figure 3
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      When the user clicks on the appropriate buttons, the
      expression is parsed and the XML representation already shown
      above is displayed.
    
Note

        Note: For pedagogical purposes, the
	demo application produces not only the
	abstract syntax tree specified in the
	ixml grammar, but also a raw or
	concrete parse tree which represents
	all non-terminal symbols as elements, eliding none and
	representing none of them as attributes.  Such behavior
	is unlikely to be of interest except to those interested
	in parser implementation.
      

To illustrate the possible exploitation of the XML
    structure, the application also provides a button to find the
    numeric value of the expression.  To make it easier (possibly)
    to understand the evaluation process, the values of all
    subexpressions in the tree are also shown:
<expression value="46.1754385964912">
  <term value="23">
    <factor value="23">
      <number value="23">
        <decimalnumber value="23"/>
      </number>
    </factor>
  </term>
  <addop>+</addop>
  <term value="32.1754385964912">
    <factor value="1834">
      <number value="1834">
        <decimalnumber value="1834"/>
      </number>
    </factor>
    <mulop>/</mulop>
    <factor value="57">
      <expression value="57">
        <term value="60">
          <factor value="60">
            <number value="60">
              <decimalnumber value="60"/>
            </number>
          </factor>
        </term>
        <addop>-</addop>
        <term value="3">
          <factor value="3">
            <number value="3">
              <decimalnumber value="3"/>
            </number>
          </factor>
        </term>
      </expression>
    </factor>
  </term>
  <addop>-</addop>
  <term value="9">
    <factor value="9">
      <number value="9">
        <decimalnumber value="9"/>
      </number>
    </factor>
  </term>
</expression>


    

      The internals of the demo application are not of great
      interest except as they illustrate the use of the Aparecium
      library. The user interface is provided by an XForm displayed
      by a web browser, which sends the expression typed by the user
      to the server and accepts the XML representation of the
      expression's parse tree in return.  The actual parsing takes
      place on the server (although it could in principle be
      performed in the browser using an implementation of XQuery or
      XSLT 3.0 in the browser). The arithmetic evaluation of the
      expression is handled by an XSLT 1.0 stylesheet running in the
      browser, the only non-trivial part of which are the templates
      to calculate the values of expressions and terms, which
      requires coping with an indeterminate number of child
      expressions and applying the specified operators in the
    appropriate left-to-right sequence.
The part of the application of most concern for purposes of
    this paper is the XQuery module that turns a string containing
    an arithmetic expression into an XML document representing its
    parse tree.  In this case, it could consist essentially of a
    single call to the Aparecium parse-string()
    function, like this:[4]
    
declare variable $expression as xs:string external;

import namespace a = "http://blackmesatech.com/2019/iXML/Aparecium";

a:parse-string(
    $expression,
    unparsed-text(
        "http://blackmesatech.com/2019/demos/arith/arith.ixml"
    )
)
    

    To explain why this is not the way the demo application is
    actually implemented will require a short discussion of some
    of the internal organization of the library.
    
Ignoring the fact that at various times things
    move from one machine to another, the overall flow of
    the application is as shown in this diagram: 
    Figure 4
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    There are two inputs (the expression and the ixml
    grammar for arithmetic expressions) and one output (the number
    denoted by the expression).  Within the function
    parse-resource(), however, the grammar
    goes through several transformations, as shown in this
    expansion of the diagram: 
    Figure 5
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Since the grammar does not change between calls to the demo
    application, there is no advantage in parsing it each time and
    preparing it for use.  Instead, the XML version is generated
    and prepared for use once as part of application development,
    and the core module of the application uses that prepared
    grammar rather than the original ixml form:[5]	
    
declare variable $expression as xs:string external;

import namespace a = "http://blackmesatech.com/2019/iXML/Aparecium";

a:parse-string-with-compiled-grammar(
  $expression,
  "http://blackmesatech.com/2019/demos/arith/arith.gl.xml"
)
    

    

      A real application will of course
      insert as many sanity checks on the input and recover
      from as many user errors as possible here; the demo
      application does not currently do any error checking.
    
If the design of the interface has been successful, the
    reader will now be thinking something like That's all there
    is to it? And, as far as making the non-XML input
    available as XML is concerned, yes, that is all there is
    to it.  It will sometimes happen that providing the
    grammar needed to describe the non-XML resource will be
    non-trivial[6] but one goal of
    Aparecium is that once such a grammar is available, actually
    gaining access to non-XML resources that follow that grammar
    should be as easy as a call to the doc()
    function.
    

The library
The preceding sections have reviewed some background
    information and given a simple example of the library use.  We
    turn in this section to a discussion of the library itself: its
    interfaces, its current state of development, and some
    technical issues which arise in its development.
Basic interfaces
The implementation of Aparecium is spread across several
      modules; all public-facing functions are gathered into one
      module, so only one import instruction should
      be needed.  The functions which need the least explanation
      have already been mentioned:
      	
            aparecium:parse-string($Input,
	    $Grammar) takes two strings as arguments: one
	    is the input to be parsed, the second is the ixml grammar
	  to be used.
First the grammar is itself parsed against the ixml
	  grammar for ixml grammars to produce XML, and then the XML
	  is annotated.  To be more specific: the elements representing
	  symbols on the right-hand side of rules are given
	  additional attributes which all the rule to be interpreted
	  as a Gluschkov automaton, following the algorithm given by
	  Brüggemann-Klein 1993a.  The annotated grammar is then
	  used to parse the input, and the resulting XML document is
	  returned.

	
            aparecium:parse-resource($Resource,
	    $Grammar) takes two URIs as arguments.  The first
	    is the URI of the input to be parsed, the second is that
	  of the ixml grammar to be used.
Each is dereferenced into a string (using the
	  unparsed-text() function); from this point on
	  the course of events is as described for
	  parse-string().



      
The workhorse function of the library requires that the
      grammar be provided neither as a URI nor as a string, but
      already pre-processed into annotated XML:
      	
            aparecium:parse-string-with-compiled-grammar($Input,
	    $Grammar) takes a string representing the input and
	    an annotated XML form of the grammar.  It calls the Earley
	    parser with these as arguments and returns the resulting
	  XML document.
In the simple case, the resulting XML document will be
	  a parse tree for the input as specified in the ixml
	  grammar: terminal symbols will all be included by default,
	  but may be omitted from the tree if marked with a minus
	  sign. Non-terminal symbols will by default be represented
	  as elements, but if marked 
          -
           they will
	  be elided (though their children will continue to
	  appear). If marked with 
          @
          , a
	  non-terminal will become an attribute on the nearest
	  ancestor node in the parse tree that becomes an element;
	  this will normally be the parent, but it may be a
	  grandparent or other ancestor if the parent and other
	  intervening ancestors are elided.  This is all as
	  described in Pemberton 2013.  (Note: in
	  the current implementation the parse function returns a
	  full parse tree and a separate process is needed to
	  perform the elisions and conversions from element to to
	  attribute.)
	  
If the input does not parse against the grammar, an XML
	  document with trace and diagnostic information is
	  returned.  (In the current implementation, this
	  essentially dumps all the relevant data structures, in a
	  way that the intended users of the library will not find
	  helpful; it is hoped that future revisions of the library
	  will produce better diagnostics.)
	  
If the input is ambiguous, multiple trees are
	  returned; this topic is discussed further below (section “Treatment of ambiguity”).
	  



      
Aparecium also provides a function for fetching resources
      whose publishers provide access to them with the MIME type
      application/invisible-xml and a pointer to an
      appropriate ixml grammar, as described in Pemberton 2013.
      	
            aparecium:doc($Resource) takes a
	    string containing the URI of an invisible-XML resource,
	    retrieves it, checks the HTTP header of the response for a
	    pointer to the ixml grammar, retrieves and parses the
	    grammar, and then parses the resource against the grammar
	  and returns the resulting XML.
Note: this function is not yet implemented (though it
	  should be by the time of Balisage 2019); testing it
	  will require configuring an HTTP server to behave as
	  required by Pemberton 2013.



      
Several functions are also available for preparing
      grammars. 
      	
            aparecium:parse-grammar-from-string($Grammar)
	    takes a string containing an ixml grammar, parses it
	    against the ixml grammar for ixml grammars, and returns
	  the resulting XML.

	
            aparecium:parse-grammar-from-uri($Grammar)
	    takes a string containing the URI of an ixml grammar,
	    fetches the grammar by dereferencing the URI, parses it
	    against the ixml grammar for ixml grammars, and returns
	  the resulting XML.

	
            aparecium:compile-grammar-from-string($Grammar)
	    takes a string containing an ixml grammar, parses the
	    grammar, compiles (annotates) it as
	  described above, and returns the resulting annotated XML.

	
            aparecium:compile-grammar-from-uri($Grammar)
	    takes a string containing the URI of an ixml grammar,
	    fetches the grammar by dereferencing the URI, and then
	  proceeds as for compiling from a string.

	
            aparecium:compile-grammar-from-xml($Grammar)
	    takes as input the XML representation of an ixml grammar,
	    annotates it as described above, and returns the annotated
	  XML.



      

Current state of implementation
The current implementation of Aparecium is probably best
      described as a proof of concept.  The parsing functions work
      (on at least some inputs) and produce XML which does
      represent the abstract syntax tree specified in the relevant
      ixml grammar.  The results are satisfactory enough to allow
      simple demo applications like the arithmetic-expression
      parse described above to be built.
On the other hand, a great deal of work remains to be
      done before the library reaches production quality.  The
      current test suite contains 75 or so grammars, including
      some chosen to exhibit odd or pathological behavior like the
      infinite ambiguity described below, but many more are
      needed.  The set of available unit tests also needs to be
      expanded greatly.  Better diagnostics are needed for cases
      where things go wrong.  And the code needs to be improved so
      that things go wrong less frequently.
Currently, the implementation is written only in XQuery;
      it has been tested with BaseX and with Saxon, but it has not
      yet been tested with eXist, MarkLogic, or any other XQuery
      processor.
The biggest single shortcoming of the current
      implementation, however, is speed.  This results in part
      from a conscious decision to worry not about speed but only
      about correctness, and to postpone optimization until a more
      complete test suite has been developed and the code is
      passing all the tests.  The current implementation has no
      trouble with short inputs like those foreseen in the
      arithmetic-expression demo, but parse times for larger
      documents, even ones of only a few hundred bytes, are
      painfully slow, measured in minutes rather than in seconds.
      Fortunately, there are a number of fairly obvious ways to
      improve performance, and the current code is as far as
      possible written to hide low-level details of data
      representation from the high-level functions that perform
      parsing.

Data structures:  representation of Earley items
The central data structure of the Earley algorithm is the
      Earley item: a triple (x,
      y, L), where
      	
            x is a number between 0 and the
	    length of the input, inclusive (the start
	  position)

	
            y is a number between
            x and the length of the input,
            inclusive (the end position)

	
            L is a location
            in a rule of the grammar



      
In grammars written in Backus/Naur Form, each grammar
      rule consists of a single non-terminal symbol on the
      left-hand side and a sequence of symbols on the right-hand
      side.  If the rules of the grammar are numbered, therefore,
      each Earley item can be represented by a tuple of four
      integers (x, y,
      r, i) giving the start
      position, end position, rule number, and index into the
      rule.
In regular-right-part grammars like those of invisible
      XML, the right-hand side of a rule is not a flat sequence of
      symbols but a regular expression whose basic symbols are
      symbols in the vocabulary of the grammar.  It is possible in
      principle to translate a grammar from regular-right-part
      notation to the simpler structures of BNF-style grammars,
      and the translation could remain in ixml notation.  But
      it seemed easier (as well as more fun) to make
      the Earley algorithm work directly with regular-right-part
      grammars, following the discussion in Sperberg-McQueen 2017.
      
The most convenient way to package together the bits of
      disparate information that constitute an Earley item is (or so
      it seemed to the implementor) to represent each Earley item as
      an XML element of type item, with
      from and to attributes
      giving the start and end points.  The location information is
      given by including a rule element as the
      only child of the item, and giving the location within the rule
      in an attribute named ri (rule
      index).  This in turn means that we need a way to denote
      positions within a rule; a brief digression on the
      representation of grammar rules in Aparecium appears to be
      necessary.
In the XML notation prescribed for ixml grammars, the
      first rule of the arithmetic grammar given above looks
      something like this:[7]
      

  <rule name="expression">
    <def>
      <alt>
        <nonterminal name="term"/>
        <repeat0>
          <def>
            <alt>
              <nonterminal name="s"/>
              <nonterminal name="addop"/>
              <nonterminal name="s"/>
              <nonterminal name="term"/>
            </alt>
          </def>
        </repeat0>
      </alt>
    </def>
  </rule>	    
      
The XML element structure of the def
      element corresponds in a straightforward way to the
      structure of the regular expression on the right-hand side
      of the ixml rule, which was, it may be recalled:
      
  expression: term, (s, addop, s, term)*.
      

      The def element and each of its descendants
      represents an expression, and like all regular expressions,
      these may be interpreted as defining regular languages.
      The usual way to determine whether a given sequence of
      symbols is in the language so defined is to translate
      the regular expression into a finite state automaton (FSA).	  
      
One common way of doing so is the Thompson
      construction (Thompson 1968),
      descriptions of which are readily and widely available.  But
      the Thompson construction involves first creating an FSA
      with a potentially large number of states and
      epsilon-transitions (transitions that move from one state of
      the automaton to another without consuming any tokens of the
      input) and then performing a tedious and expensive process
      to eliminate the epsilon transitions again and reduce the
      number of states.  The relation between the resulting FSA
      and the original regular expression is typically
      obscure.
For our purposes, a better algorithm is that given by
      Brüggemann-Klein 1993a, which constructs the
      Gluschkov automaton for the regular
      expression (so called for the Russian mathematician Viktor
      Gluschkov, whose work Brüggemann-Klein extends).  I will not
      attempt to describe the algorithm here, but limit myself to
      a few observations.  In the Gluschkov automaton, each state
      corresponds one-to-one with (or just: is) one
      of the basic symbols in the original regular expression[8]; the automaton also has an additional
      start state which corresponds to no symbol in the
      expression.  In the Gluschkov automaton, we move to a given
      state s whenever we read in the input a
      symbol matching the symbol associated with s.
      The relation between the regular expression and the
      automaton is thus very simple and straightforward, and the
      number of states in the FSA is predictable from the regular
      expression.
      
To simplify description and calculation of the automaton,
      it is convenient if each state (and each subexpression) has
      a name.  So the first modification we make to the
      representation of the rule is to add an identifier for each
      state.  With identifiers added, the rule for
      expression looks something like this:

  <rule name="expression">
    <def xml:id="exp_def_1">
      <alt xml:id="exp_alt_1">
        <nonterminal name="term" xml:id="term_1"/>
        <repeat0 xml:id="exp_repeat0_1">
          <def xml:id="exp_def_1" nullable="false">
            <alt xml:id="exp_alt_1" nullable="false">
              <nonterminal name="s" xml:id="s_1"/>
              <nonterminal name="addop" xml:id="addop_1"/>
              <nonterminal name="s" xml:id="s_2"/>
              <nonterminal name="term" xml:id="term_2"/>
            </alt>
          </def>
        </repeat0>
      </alt>
    </def>
  </rule>	    
      
Following Brüggemann-Klein's algorithm, we then calculate
      for each sub-expression (down to and including the basic
      symbols themselves, here all nonterminal
      elements) a number of properties:
      	The set of states which can be visited
          first in paths across the
          expression.

	The set of states which can be visited
	  last.

	Whether the expression matches the empty string (if
          so, the expression is nullable).

	For each symbol in the subexpression, what other
	  symbols in the subexpression can follow it in a path: the
	  follow set for the symbol.



      This information is supplied as an attribute on each
      expression; the follow sets are given by attributes in a
      namespace created for the purpose:  the attribute value
      specification follow:term_1 = "s_1" on the outermost
      def element means that within that
      expression, state s_1 can follow state term_1.
The process of calculating the values for these properties
      and assigning the appropriate attributes has been referred to
      elsewhere as compiling or
      annotating the grammar.  The fully annotated rule
      now looks something like this:
      

  <rule name="expression"
	xmlns:follow =
	 "http://blackmesatech.com/2016/nss/ixml-gluschkov-automata-followset"> 
    <def xml:id="exp_def_1"
	 nullable="false"
	 first="term_1" last="term_1 term_2"
	 follow:term_1=" s_1"
	 follow:s_1=" addop_1"
	 follow:addop_1=" s_2"
	 follow:s_2=" term_2"
	 follow:term_2="s_1">
      <alt xml:id="exp_alt_1"
           nullable="false"
           first="term_1" last="term_1 term_2"
	   follow:term_1=" s_1"
	   follow:s_1=" addop_1"
	   follow:addop_1=" s_2"
	   follow:s_2=" term_2"
	   follow:term_2="s_1">
        <nonterminal name="term" xml:id="term_1"
		     nullable="false"
		     first="term_1" last="term_1"
		     follow:term_1=""/>
        <repeat0 xml:id="exp_repeat0_1"
		 nullable="true" first="s_1" last="term_2"
		 follow:s_1=" addop_1"
		 follow:addop_1=" s_2"
		 follow:s_2=" term_2"
		 follow:term_2="s_1">
          <def xml:id="exp_def_1"
	       nullable="false" first="s_1" last="term_2"
	       follow:s_1=" addop_1"
	       follow:addop_1=" s_2"
	       follow:s_2=" term_2"
	       follow:term_2="">
            <alt xml:id="exp_alt_1"
		 nullable="false" first="s_1" last="term_2"
		 follow:s_1=" addop_1"
		 follow:addop_1=" s_2"
		 follow:s_2=" term_2"
		 follow:term_2="">
              <nonterminal name="s" xml:id="s_1"
			   nullable="false" 
			   first="s_1" last="s_1"
			   follow:s_1=""/>
              <nonterminal name="addop" xml:id="addop_1"
			   nullable="false" 
			   first="addop_1"
			   last="addop_1"
			   follow:addop_1=""/>
              <nonterminal name="s" xml:id="s_2"
			   nullable="false" 
			   first="s_2" last="s_2"
			   follow:s_2=""/>
              <nonterminal name="term" xml:id="term_2"
			   nullable="false" 
			   first="term_2"
			   last="term_2"
			   follow:term_2=""/>
            </alt>
          </def>
        </repeat0>
      </alt>
    </def>
  </rule>	    
      
The finite state automaton whose states are the basic
      symbols of the expression rule (plus an
      extra start state) and whose transitions and other properties
      are given by the attributes first,
      last, and follow:*
      attributes on the outermost def element can
      be illustrated by the following diagram:
      Figure 6
[image: ]


	  
      
Our digression into the structure of rules is almost
      complete.  It remains only to be observed that the current
      state of an FSA which has partially recognized a string is
      given fully by the name (the identity, really) of the state.
      (That is pretty much a defining feature of a finite state
      automaton:  its future behavior is defined solely by the
      identity of the current state.)
So we can represent the current position in the
      right-hand side of a rule by recording the name of the
      current state: that is, given the way the Gluschkov
      automaton is constructed, the identifier assigned in the
      rule to the corresponding terminal or non-terminal symbol.
      If nothing has yet been read, we are in the start state
      for the rule.  By convention, the start state of any rule
      is named q0.
This concludes the digression onto the structure of
      grammar rules in Aparecium.
We can now show an example of an Earley item as
      represented in the current implementation.  At position 20 in
      the string 23 + 1834 / (60 - 3) - 9
      (that is, just after the right parenthesis), the parsing
      algorithm will generate an Earley item that means, in effect,
      after reading the input string from position 0 to
      position 20, the FSA for rule expression is
      in state term_2. That Earley item
      will have the following form:

<item from="0" to="20" ri="term_2">
  <rule name="expression"
        xmlns:follow="http://blackmesatech.com/2016/nss/ixml-gluschkov-automata-followset">
    <def xml:id="exp_def_1"
         nullable="false"
         first="term_1" last="term_1 term_2"
         follow:term_1=" s_1"
         follow:s_1=" addop_1"
         follow:addop_1=" s_2"
         follow:s_2=" term_2"
         follow:term_2="s_1">
      <alt xml:id="exp_alt_1"
           nullable="false"
           first="term_1" last="term_1 term_2"
           follow:term_1=" s_1"
           follow:s_1=" addop_1"
           follow:addop_1=" s_2"
           follow:s_2=" term_2"
           follow:term_2="s_1">
        <nonterminal name="term" xml:id="term_1"
                     nullable="false"
                     first="term_1" last="term_1"
                     follow:term_1=""/>
        <repeat0 xml:id="exp_repeat0_1"
                 nullable="true"
                 first="s_1" last="term_2"
                 follow:s_1=" addop_1"
                 follow:addop_1=" s_2"
                 follow:s_2=" term_2"
                 follow:term_2="s_1">
          <def xml:id="exp_def_1"
               nullable="false"
               first="s_1" last="term_2"
               follow:s_1=" addop_1"
               follow:addop_1=" s_2"
               follow:s_2=" term_2"
               follow:term_2="">
            <alt xml:id="exp_alt_1"
                 nullable="false"
                 first="s_1" last="term_2"
                 follow:s_1=" addop_1"
                 follow:addop_1=" s_2"
                 follow:s_2=" term_2"
                 follow:term_2="">
              <nonterminal name="s" xml:id="s_1"
                           nullable="false"
                           first="s_1" last="s_1"
                           follow:s_1=""/>
              <nonterminal name="addop" xml:id="addop_1"
                           nullable="false"
                           first="addop_1"
                           last="addop_1"
                           follow:addop_1=""/>
              <nonterminal name="s" xml:id="s_2"
                           nullable="false"
                           first="s_2" last="s_2"
                           follow:s_2=""/>
              <nonterminal name="term" xml:id="term_2"
                           nullable="false"
                           first="term_2"
                           last="term_2"
                           follow:term_2=""/>
            </alt>
          </def>
        </repeat0>
      </alt>
    </def>
  </rule>           
</item>
      
This representation is convenient for the programmer but
      has a practical flaw.  There will be at least one Earley
      item for each terminal symbol in the input; in ixml
      grammars, that means one for each character.  Making the
      rule element a child of the
      item element makes it extremely convenient to
      consult the rule when needed, but it also requires that the
      XQuery or XSLT implementation make a new copy of the rule
      for each Earley item created (because each copy of the rule
      will have a different parent element).  The frequent copying
      creates a perceptible strain on memory in the current
      implementation of Aparecium.  A simpler representation of
      the Earley item would not reproduce the rule but merely
      point at it, thus:
      
<item from="0" to="20" rulename="expression" ri="term_2"/>
      

      Better performance can also come from representing the Earley
      item not as an element but as a map which points at, rather than
      naming, the rule and state (assuming that the variables
      $rule and $state have
      been appropriately initialized:
      
map {
      "from": 0,
      "to": 20,
      "rule": $rule,
      "ri": $state
    }    
      

      Changing the representation of items to use maps instead of
      elements reduced parse time for grammars in the test suite
      between 15% and 30%.  This was much less than had been
      expected.  A much more dramatic effect (seven-fold speedup)
      came from changing the representation of the set of Earley
      items being calculated by the algorithm to make the search
      for Earley items with specific properties faster.
      

Treatment of ambiguity
A sentence is ambiguous if it has more
      than one derivation that follows the rules of the grammar.
      One of the great advantages of Earley parsing is that it
      is robust in the presence of ambiguity: if there is
      exactly one derivation of a sentence, the Earley parser
      will find it; if there is more than one, the Earley parser
      will find more than one.  This contrasts sharply with most
      widely used parsing techniques, which cannot function if
      the grammar has any ambiguous sentences.  Unfortunately,
      existing parsing tools are often not much help detecting
      ambiguity or helping the grammar author remove it.  So a
      great deal of time can be spent, with tools like yacc,
      trying more or less random changes to the grammar in an
      attempt to eliminate the parsing conflicts detected by the
      tool.
For ambiguous sentences, Pemberton 2013
      prescribes that an ixml parse should return any one of the
      parse trees, with a flag to signal that there are other
      parse trees for the input.  This is clearly satisfactory if
      it is known that any ambiguity is inconsequential.  If a
      grammar for arithmetic expressions is ambiguous only because
      whitespace may be regarded either as a child of a term or as
      the child or an expression, then it does not matter for
      numerical evaluation which tree is selected: whitespace
      plays no role.  The rule may be less satisfactory, however,
      if the two parses would assign different meanings to the
      sentence.  In such a case, it may be useful for a grammar
      writer (though perhaps not a grammar user) to be able to
      compare the two parses; that comparison may help make the
      source of the ambiguity clear.
For this reason, the current version of Aparecium
      deviates from the rule enunciated by Pemberton: for
      ambiguous sentences Aparecium returns multiple parse trees.
      In some simple cases, it returns all parse
      trees, but that is not and cannot be true in general: in
      some cases, a sentence may have an infinite number of parse
      trees.
Consider the following grammar:
      
A: A; "a".	      
      
	  
      An A consists either of another
      A or of the letter a. The
      only sentence in the language defined by this grammar is
      a, but it has an infinite number of parse trees.
      XML representations of a few of these include:
      
<A>a</A>
<A><A>a</A></A>
<A><A><A>a</A></A></A>
...
      

      
Another small grammar illustrates a different kind of
      infinity in parse trees:
      
S: (X)*. X: "x"; {nil}.	      
      

      Here the language consists of strings of zero or more
      occurrences of x, but each sentence has an
      infinite number of parse trees.  For the sentence
      x, the parse trees include the following.
      
<X>x</X>
<X><X/>x</X>
<X>x<X/></X>
<X><X/><X/>x</X>
<X><X/>x<X/></X>
<X>x<X/><X/></X>
... 
      

      
In both of these cases, Aparecium will detect the
      infinite ambiguity and return only a finite number of
      parse trees.


Related work
Related work falls into several groups: other work on the
    implementation of invisible XML; other parser tools and
    techniques for XSLT and XQuery; other implementations of
    Earley parsing; and other tools for making non-XML data
    accessible in XML.

      Implementations of invisible
      XML. As far as the author knows, there are at the
      moment three implementations of invisible XML, only one of which
      has been published.  Steven Pemberton has (I believe) a
      prototype or proof of concept implementation, but his ixml web
      page says only Software to support ixml will be made
      available at a later date (Pemberton 2018).  John Snelson created an
      implementation in the MarkLogic dialect of XQuery but found its
      performance unsatisfactory and has abandoned it.  The only
      published implementation I know of is the Perl package called
      XML::Invisible, attributed to Ed J and available
      from the Comprehensive Perl Archive Network, CPAN (ETJ 2018).  It uses the PEG (parsing expression
      grammars) engine Pegex to generate functions to parse input that
      conforms to the given grammar; its notation is that of Pegex
      rather than the grammar notation proposed by Pemberton 2013.
    
Note

        Note: The author has not yet been able to
        experiment with either Snelson's parser or the XML::Invisible
        package; when such experimentation is possible it should be
        possible to say something more about how they compare to the
        work described here.


      Other parsing tools and techniques for
      XSLT and XQuery. There are, moreover, other tools and
      techniques for parsing in XQuery and/or XSLT.  The most
      prominent of these is probably the tool REx, developed by
      Gunther Rademacher and made available on the Web at https://www.bottlecaps.de/rex/.
      REx accepts as its input a grammar written in a notation based
      on that used in the XML, XPath, XQuery, and other related
      specifications (with some extensions to the notation in the area
      of lexical analysis), and generates as output an executable
      parser in any of a variety of languages (notably including
      XQuery and XSLT as well as several imperative languages).  The
      user may specify how much lookahead to perform and may select a
      backtracking parser (effectively allowing unlimited lookahead);
      one of the options is for the parser to emit an XML
      representation of the parse tree. For well known notations,
      therefore, parsers generated by REx are a plausible alternative
      to the use of ixml for parsing non-XML data; the REx site offers
      grammars in REx notation for several specifications of interest,
      e.g. XPath, XQuery, and JSON.
Another relevant tool is the LR-1 parser provided by Dimitre
    Novatchev as part of his FXSL package for functional programming
    in XSLT (Novatchev 2006b; on FXSL, but not the
    parser, see also Novatchev 2003 and Novatchev 2006a).  Like REx, the FXSL parser is
    designed as a tool to aid in the development of software that
    needs a parser.  It has a relatively steep learning curve: the
    parsing function requires that the user provide functions for
    lexical scanning and for grammar-rule reduction, as well as an XML
    representation of the LR parsing tables, which appear to be most
    conveniently created by post-editing the output of a customized
    version of Berkeley Yacc provided as part of the FXSL
    distribution.
    
There has also been some discussion of writing recursive
    descent parsers in XSLT and XQuery (Sperberg-McQueen 2013),
    but the approach does not currently seem to be widely used.
The current work differs from these in sacrificing the goal
    of speed for greater generality and easier usage.  The LR parser
    of FXSL requires that the grammar be LALR(1); recursive-descent
    parsing requires that it be LL(1); REx does not restrict its
    grammars in the same way, but does require that they be free of
    left recursion and ambiguity.  The library presented here will in
    contrast accept any context-free grammar, with or without left
    recursion, with or without bounded lookahead, whether the grammar
    is ambiguous or unambiguous.
    

      Other Earley parsers. A
      prominent implementation of Earley parsing is the open-source
      Perl module Marpa (Kegler 2018).  The author,
      Jeffrey Kegler, has implemented a number of optimizations which
      mean that in many cases parsing takes O(N) time, where
      N is the length of the input.
    

      Other work on making non-XML resources
      accessible to XML tools. The idea of making non-XML
      resources accessible for processing with XML tools is not a new
      one.  One antecedent is the Data Format Definition Language
      (DFDL) (Rose 2005, Zhu 2005,
      Beckerle / Hanson 2014); it was developed by the Open Grid
      Forum to allow non-XML data (textual or binary) to be presented
      as XML.  It involves writing an XSD schema to describe the XML
      format (using a subset of XSD) and adding DFDL annotations to
      define the mapping between the XML format at the non-XML format.
      Another antecedent is the concept of XML lenses
      (which make everything look XML-colored), implemented for
      example in the product Data Direct Connectors (Lavinio 2007).  In the Data Direct case, such
      connectors involve Java code which intercepts calls to
      dereference URIs, fetches the data, and translates it into XML
      for presentation to the XQuery or XSLT caller; analogous
      translations in the reverse direction can map from XML into the
      non-XML format.  Because the mappings are implemented in Java
      code, they can involve any operation a Turing-complete language
      can perform.  A more distant antecedent are the
      DATATAG and SHORTREF facilities of
      SGML, which allowed text without visible markup to be parsed as
      structured SGML.  Unfortunately, very few people seem to have
      developed any facility with either DATATAG or
      SHORTREF; the MARK-IT parser from SoBeMaP (later
      SEMA Group) did include an example in which a Pascal-like
      programming language was defined using pure SGML facilities, but
      this approach does not seem to have found many followers.  Ever
      since XML defined a subset of SGML in which DATATAG
      and SHORTREF were removed, there have been periodic
      suggestions to specify and build similar functionality; perhaps
      the regular fragmentations proposal of Simon
      St. Laurent and the STnG system of Ari Krupnikov can stand as
      two examples for many in this line (St. Laurent 2001, Krupnikov 2003).
    
For some people (including the author of this paper),
    invisible XML appears to have achieved more traction than its
    antecedents.  It is less ambitious than some: it targets textual
    data only, leaving binary data aside.  It is more ambitious than
    others: it allows arbitrary context-free grammars, rather than
    restricting itself to regular expressions or to grammars with
    particular look-ahead properties.  It is high-level, working with
    context-free grammars instead of arbitrary executable code.  It
    requires some understanding of context-free grammars and how to
    write them, and it benefits from some understanding of what one
    will want the XML representation to look like, but it requires
    very little tool-specific knowledge beyond the details of the ixml
    grammar syntax. As the library presented here illustrates, it is
    also possible to use ixml grammars to parse non-XML data on the
    Web even without any effort by the owners or publishers of that
    data, and without making dramatic changes to the network
    infrastructure of the uers's machine (so: no Java code to
    intercept HTTP requests, no proxy server setup, only the
    installation of an XQuery or XSLT module and calls to that
    module).

Future work
The immmediate task for the ongoing work on the library is
    to change it from a proof of concept to a reliable practical tool
    for use by XQuery and XSLT programmars.  A systematic suite of
    unit tests and system tests is important both to help establish
    correctness of the code and to help ensure that ensuing attempts
    to improve performance do not introduce incorrect behavior.
When complete (or less incomplete), the library will be
    released under an open-source license; dual licensing may be
    available for those who require other terms.
Performance improvements are necessary before the library
    can be a useful tool for more than specialized applications and
    short inputs.  The obvious place to start is with the
    representation of Earley items.  Reducing the amount of copying
    that need be done, and the amount of memory needed, as the set of
    items grows, may make a signficant difference.  Improving the
    processor's ability to find the needed Earley item in a search of
    the current set is also desirable.  Earley's original algorithm is
    built around a data structure in which items are in effect indexed
    by their start value; it seems straightforward to do the same
    using maps in XQuery and XSLT 3.0.
Performance comparisons with other available tools will
    also be of interest.  It is to be expected that Earley parsing
    will often be slower than parsing using other techniques[9]; it
    will be interesting to see how much slower it is.
Some additional features seem potentially desirable.  On
    the assumption that many users will want to parse non-XML
    resources conforming to some widely known notations like CSS,
    JSON, XPath, or XPointer, it might be helpful to package
    grammars for such notations with the library.  That in turn
    would make it possible to let the aparecium:doc()
    function select an ixml grammar based on the MIME type of the
    resource, even if the publisher has not provided a grammar.
    Since many published notations are designed to be parseable
    with existing parser tools, it might also be feasible to
    package parsing functions for some notations with the libary,
    and use a faster algorithm when possible.  This suggests
    outfitting Aparecium with a pre-populated repository of
    grammars and parsers and providing methods to allow the user
    to add and delete items from the repository.
    
In a related vein, it would be desirable to have a library
    of functions for the analysis of grammars.  Given an ixml
    grammar, such a library could determine whether the grammar as
    given is LL(1) or LR(1) and thus suitable for parsing with
    other tools.  It would also be desirable to be able to test
    grammars for ambiguity.  This is not, in general, a soluble
    problem:  there is no algorithm for detecting ambiguity that
    will work in all cases.  But there are methods which will
    detect at least some ambiguities, and which can explain and
    illustrate the ambiguity usefully.  Utilities for translating
    grammars between notations might also be useful, although
    few grammatical notations have free-standing specifications
    in the style of ixml:  many are tied to specific pieces
    of software and have documentation which is at best
    imperfect.
I hope to have shown in this paper that invisible XML can
    be made useful to XSLT and XQuery programmers, independent of
    the willingness of information publishers to provide invisible
    XML grammars for their information, by providing a library
    that allows them to supply the grammars themselves.  Using
    non-XML resources for which an invisible XML grammar is
    available thus becomes as simple as using XML resources: a
    call to a single function, to load the resource as an XML
    document.  The current implementation of Aparecium provides a
    demonstration that such a library can exist; what is needed
    next is work to move it from a proof of concept to a useful
    tool.
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[1] The proposition that deep nesting can make processing
      simpler is one of a number of important insights into markup
      which Lynn Price worked for a long time to get into my head.
      She often gave it as a motivation for the presence in SGML of
      markup minimization features like OMITTAG, SHORTREF, and
      DATATAG: in the ideal case, they provide a notation simple
      enough to be suitable for human authoring and rich enough to
      make processing easier.
[2] 
	In many cases, a grammar can be reworked to become LL(1), or
	LR(1), or whatever is required.  Unfortunately, there is no
	simple set of rules (and in fact no reliable set of rules at
	all) to say what changes we can make in a grammar without
	changing the language recognized by the grammar.  If there
	were such rules, the tool could do the transformation for us.
	Intuitively, experience with existing parser-generation tools
	leads many users to believe that any reasonable
	language can be defined by a grammar satisfying the
	constraints of the tool, and that languages which persist in
	being unreasonable can usefully be improved by
	modifying them until they become reasonable again.  This
	belief may have some truth to it, although at first glance it
	looks as if the parsing tool were merely training its users
	not to want what it cannot provide.
	
[3] 
	Among those best known are the Cocke / Younger / Kasami (CYK)
	algorithm, the Earley algorithm, and a number of
	generalized algorithms (generalized LR,
	generalized LL, generalized LC) and backtracking algorithms.
	By far the best source for descriptions of these and other
	parsing algorithms is Grune/Jacobs 2008.
      
[4] 
      Just as parse-resource() takes two URIs for the
      input and the grammar as arguments, so
      parse-string() takes two strings.  It is thus
      necessary to dereference the URI for the grammar, as shown in
      the example.
[5] 
      The gl in the filename
      arith.gl.xml reflects the fact that (as is
      about to be explained below) this version of the grammar has
      annotations that allow it to be interpreted as a set of
      Gluschkov automata.
    
[6] As a case in point: the
    arithmetic grammar shown is not the first draft; several
    errors have needed to be fixed, and the version shown here
    still has a potentially painful problem in the handling of
    whitespace characters.  Grammar development is not very hard,
    but it can raise some tricky issues.  Whitespace handling is
    consistently one of them.  SGML users may remember
    nostalgically the observation known as Goldfarb's Law: if a
    text processing application has bugs, at least one of them
    will have to do with whitespace handling.  Grammar development
    appears to be subject to this law.
[7] The syntax shown is that currently used by Aparecium; it
      is based on the grammar exhibited in Pemberton 2013 and on a 2016 revision of the grammar.
      In the current version of the ixml specification (Pemberton 2019a) the structure for this rule is the same,
      but the def element has been renamed
      alts.  Other changes in the syntax are not
      visible in this example.
[8] Formally, a finite state automaton has a set
      of states, but it is immaterial what the states actually
      are: the only intrinsic property they need to possess is
      that they must be distinguishable from each other, which is
      implicit in the phrase set of states: if we cannot
      distinguish the elements of a set from each other, then we
      cannot handled it as a set after all.
      It follows from this that there is
      no necessity to imagine a set of states that correspond 1:1
      to the symbols of the regular expression; we can take the
      set of symbols (symbol tokens, to be exact) in the
      expression, and make that be the set of states in our
      automaton.
[9] Grune and Jacobs say (p. 547 of Grune/Jacobs 2008)
    It should be noted that if any of the general parsers
    performs in linear time, it may still be a factor of ten or so
    slower than a deterministic method, due to the much heavier
    administration they need.
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Type an expression into the text window. Then click the button labeled update
parse tree; a representation of the concrete syntax tree will appear. (Or in some
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about the point of failure.)
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