[image: Balisage logo]Balisage: The Markup Conference

Aparecium
An XQuery / XSLT library for invisible XML
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

Balisage: The Markup Conference 2019
July 30 - August 2, 2019

Copyright © 2019 by the author

How to cite this paper
Sperberg-McQueen, C. M. "Aparecium." Presented at: Balisage: The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019.
 Balisage Series on Markup Technologies vol. 23 (2019). https://doi.org/10.4242/BalisageVol23.Sperberg-McQueen01.

Abstract
Aparecium is an XQuery / XSLT library for reading non-XML
 data as XML, under the control of an invisible
 XML grammar describing the structure of the input.
 The use of the library is illustrated with an application, and
 some technical issues in the development of the library are
 discussed.

Balisage: The Markup Conference

 Aparecium

 An XQuery / XSLT library for invisible XML

 Table of Contents

 	Title Page

 	Introduction
 	Invisible XML

 	Context-free grammars and parse trees

 	Earley parsers

 	The Aparecium library

 	A sample application

 	The library
 	Basic interfaces

 	Current state of implementation

 	Data structures: representation of Earley items

 	Treatment of ambiguity

 	Related work

 	Future work

 	About the Author

 Aparecium
An XQuery / XSLT library for invisible XML

... Hermione was pulling her wand out of her bag.

 It might be invisible ink! she whispered.
She tapped the diary three times and said, Aparecium!

— J. K. Rowling,
 Harry Potter and the Chamber of Secrets

Introduction
This paper introduces Aparecium, a library intended to make
 the use of invisible XML convenient for users of
 XSLT and XQuery. This introduction provides some background
 information on invisible XML and describes the purpose of the
 Aparecium library. The next section illustrates the use of the
 library with a sample application to parse and evaluate arithmetic
 expressions (section “A sample application”). Following that
 illustration the library's public interface is described and some
 technical issues are discussed. The paper concludes with a survey
 of related work (section “Related work”) and a section on
 future tasks (section “Future work”).

Invisible XML
In 2013, Steven Pemberton introduced an idea he called
 invisible XML (Pemberton 2013),
 which he describes as a method for treating non-XML
 documents as if they were XML (Pemberton 2019b). More recently, he has produced
 a more formal specification of the idea (Pemberton 2019a). From a data creator's or author's point
 of view, invisible XML (ixml, for short) allows authors to use
 formats other than XML if they prefer, while still retaining
 access to the XML tool chain. From the XML programmer's point
 of view, it allows people working within the XML eco-system to
 have more convenient access to non-XML data. The only
 prerequisite is that it must be possible to describe the data
 using a context-free grammar.
A great many resources are available in specialized
 formats like CSS, wiki markup, or domain-specific notations.
 Social-science data may interleave group-level records with
 individual-level records in a way that varies from project to
 project. Other resources are distributed in generic non-XML
 formats like comma-separated values or JSON. Nor is it only
 entire documents, files, or web resources which may use non-XML
 formats. SGML and XML documents have a long history of
 including elements or attributes whose value is written in a
 specialized notation: mathematical expressions are often written
 in TeX or LaTeX; pointers may be written as URLs, as other forms
 of URI, as ISSNs or ISBNs, or (not too long ago) in TEI
 extended-pointer notation; inline styles are now frequently
 written in CSS. All of these notations make visible some of the
 structure of the information; sometimes it would be convenient
 to have easy access to that structure in XML processing.
 Invisible XML is a way of making that possible.

Context-free grammars and parse trees
The main requirement of invisible XML is that the non-XML
 data to be read should be described by a context-free grammar.
 (Readers not familiar with this concept may think of it as a
 kind of DTD or schema for non-XML data.) For example, we might
 describe the language of arithmetic expressions like 23 *
 (2 + 7.2) with the following grammar, written in ixml
 notation:

 { An expression is the sum of one or more terms. }
 expression: term, (add-op, term)*.

 { A term is the product of one or more factors. }
 term: factor, (mul-op, factor)*.
 { Addition operators and multiplication operators are
 +, -, *, and /. }
 add-op: "+"; "-".
 mul-op: "*"; "/".

 { A factor is either a number or a parenthesized
 sub-expression. }
 factor: number; "(", expression, ")".
 number: digit+, (".", digit*)?.

 Here, braces surround comments, each rule of the grammar
 consists of a single non-terminal symbol followed by a colon, a
 regular expression on the right-hand side of the colon, and a
 full stop. On the right hand side, quoted strings denote
 terminal symbols, unquoted identifiers are non-terminal symbols,
 commas separate items which must appear in sequence, semicolons
 separate alternatives, parentheses enforce grouping when
 necessary, question mark signals that the immediately preceding
 expression is optional, plus that it may occur one or more
 times, and asterisk that it can occur zero or more times.

Parsed against the grammar above, the arithmetic
 expression 23 + 1834 / (60 - 3) - 9 has a parse
 tree of the form
 Figure 1
[image:]

It will not have escaped the reader that such a tree
 structure can readily be expressed in an XML document:

 <expr>
 <term>
 <factor>
	<number>23</number>
 </factor>
 </term>
 <add-op>+</add-op>
 <term>
 <factor>
	<number>1834</number>
 </factor>
 <mul-op>/</mul-op>
 <factor>
	<expr>
	 <term>
	 <factor>
	 <number>60</number>
	 </factor>
	 </term>
	 <add-op>-</add-op>
	 <term>
	 <factor>
	 <number>3</number>
	 </factor>
	 </term>
	</expr>
 </factor>
 </term>
 <add-op>-</add-op>
 <term>
 <factor>
	<number>9</number>
 </factor>
 </term>
 </expr>

Such deeply-nested tree structures and such a high
 markup-to-content ratio are unusual in XML vocabularies
 designed for hand authoring, but they can when well designed
 make processing the information much simpler.[1] For example, it
 should be fairly easy to see that an XSLT stylesheet is capable
 not just of displaying but of evaluating arithmetic expressions
 represented in this way. Each node in the syntax tree which
 represents a well-formed (sub)expression can be assigned a
 value. For leaf nodes containing numerals, the value is the
 number denoted by the numeral. Leaf nodes denoting operators and
 whitespace are not well formed arithmetic expressions and have
 no numeric value. In the case of factors, terms, and
 expressions, the value depends on the values of their children,
 in the pattern known as compositional
 semantics (the meaning of the compound expression is
 composed from the meanings of its component
 parts). If we label each node with its value, the syntax tree
 looks like this:
 Figure 2
[image:]

In a nutshell, the idea of invisible XML is to regard the
 XML structure as latent in the original expression: present, but
 invisible. The task of Aparecium or any other invisible-XML
 parser is to make that invisible XML visible, so that it can be
 processed by standard XML tools.

Earley parsers
Many tools for using context-free grammars require that
 the grammar have particular properties which are necessary for
 particular parsing strategies to work: some tools require that
 the grammar be (as computer scientists say) LL(1), or LL(k);
 others like the classic parser generator yacc require that the
 grammar be LALR(1). I will not detain the reader with a
 description of what these different properties entail, or even
 what the abbreviations mean; suffice it to say that not all
 context-free grammars satisfy the constraints.
The advantage of such restrictions is that they allow the
 tool to use
 parsing techniques which are relatively simple, require
 relatively little storage, and are relatively fast. The
 disadvantage is that even experienced parser writers may find it
 difficult to write grammars which satisfy the constraints, and
 for existing notations such grammars may not even be possible.
 Worse, it is very difficult to explain to users of the tool even
 what the constraints are, without administering a short course
 in the relevant parsing algorithms.[2]

Invisible XML takes a different approach: users are not
 required to supply grammars that satisfy any particular set of
 implementation-related constraints. Instead, implementations
 are required to accept any context-free grammar. This in turn
 suggests that implementations will need to use one of the
 algorithms which is guaranteed to work for all context-free
 grammars without restriction. There are several such
 algorithms[3], but the invisible XML specification suggests the
 use of an Earley parser.
Earley parsers are guaranteed to handle arbitrary
 context-free grammars, including ambiguous ones. In the worst
 case they parse an input in time and space proportional to the
 cube of the length of the input, but on non-pathological
 grammars their performance is much closer to being linear in the
 length of the input. They will still however typically be
 slower than non-general parsers, because they have more
 housekeeping overhead. Issues arising in the use of functional
 languages like XQuery or XSLT to implement Earley parsing, and
 the extension of the algorithm to cover regular-right-part
 grammars (like invisible XML) instead of only grammars in
 Backus-Naur Form, have been discussed in general terms by Sperberg-McQueen 2017.

The Aparecium library
Pemberton's original description of invisible XML proposes
 that those who publish resources parseable by means of invisible
 XML should label them with the MIME type
 application/xml and including a link to the
 appropriate invisible-XML grammar in the HTTP header (Pemberton 2013). When the HTTP server is configured
 as proposed, a CSS stylesheet can be served both as
 text/css and as
 application/xml-invisible; content negotiation
 between the client and the server will determine which form is
 sent. When the client's request specifies a preference for the
 application/xml form, the server will serve the stylesheet as
 usual, but instead of the line

Content-Type: text/css

 the HTTP header will include the line

Content-Type: application/xml-invisible;
 syntax=http://example.com/syntax/css.ixml

 The syntax parameter allows suitably designed
 software on the client side to fetch the ixml grammar for
 the resource from the specified location, use it to parse
 the resource, and present the resource to the user in an XML
 form.
This design allows invisible XML to fit neatly into
 the architecture of the Web, but for the moment it has
 a certain flaw. Most of the non-XML resources which
 we might like to process as XML are served only in their
 default MIME type, not as application/xml.
The Aparecium library is intended to make it easy for
 people working in XSLT or XQuery to use invisible XML
 without requiring any cooperation from webmasters or servers
 belonging to other organizations. It does not rely on
 distant servers to label resources with the application/xml
 MIME type, although if they do, it can handle those cases,
 too.
For resources served as described by Pemberton 2013, Aparecium offers a call modeled on
 the doc() function of XPath 2.0: a call to

aparecium:doc($uri)

 will (in the normal case) return an XML representation of
 the resource at the URI given.
For resources not served in this way, Aparecium offers
 a way for the XSLT or XQuery programmer to take matters
 into their own hands by specifying both the URI of the
 resource to retrieve and the URI of an ixml grammar
 describing it:

aparecium:parse-resource($uriR, $uriG)

When the non-XML material and its grammar are not on the
 Web or in files but are available in string form, Aparecium
 offers a similar function to parse a string:

aparecium:parse-string($string, $grammar)

Since ixml grammars are themselves described by an ixml
 grammar, they also have a defined XML representation, so the
 grammar can also be supplied by the user in XML form; this
 saves parsing the grammar into XML preparatory to parsing
 the resource the user is interested in. Given the XML form
 of a grammar, Aparecium pre-processes it before using it to
 parse input; this pre-processed form can also be used. A
 family of functions is provided to allow various
 combinations of these variations: input as URI or string;
 grammar as URI or as string or as
 standard XML or as pre-processed
 XML.

A sample application
As a simple application of Aparecium, let us consider
 an evaluator for arithmetic expressions.
The ixml grammar for the expressions we would
 like to accept is similar to the one given above,
 but extended in a few ways: we allow whitespace to
 appear within expressions; we predefine two named
 constants; and we allow some alternative Unicode
 forms for symbols and constants.

{ arith.ixml: a simple language for four-function
 arithmetic expressions. }

expression: term, (s, addop, s, term)*.
term: factor, (s, mulop, s, factor)*.
factor: number;
 constant;
 "(", s, expression, s, ")".
addop: "+"; "-".
mulop: ["*"; #B7; #D7; "/"; #F7].
{ B7 = middle dot, D7 multiplication symbol, F7 division symbol. }

number: decimalnumber, exponent?.
decimalnumber: sign?, digit+, (decimalpoint, digit*)?;
 decimalpoint, digit+.
-decimalpoint: ".".
-sign: ["-"; "+"].
exponent: ("e"; "E"), sign?, digit+.
-digit: ["0"-"9"].
-s: [#20; #0A; #0D; #09]*.
constant: "pi"; "e"; [#3C0].
{ #3C0 is pi }

Expressions we would like to accept include:
 	1 + 3 - 2

	1 * 2 - 10 / 2

	1 * (2 - 10) / 2

	1.02e3 + 3

	π * 20

Expressions we would like to reject (ideally with
 useful diagnostics, though that is not the case at
 the moment) include:
 	1 + 3 2

	1 * 2 +- 10 / 2

	1 * (2 = 10) / 2

	1.02e3 + 3

	π × 42^2

	r = 42; π × r^2

The application will allow the user to type in an
 arithmetic expression and produce an XML representation of the
 parse tree. For example, we can type in the expression
 mentioned above into the text window:

 Figure 3
[image:]

	
 When the user clicks on the appropriate buttons, the
 expression is parsed and the XML representation already shown
 above is displayed.

Note

 Note: For pedagogical purposes, the
	demo application produces not only the
	abstract syntax tree specified in the
	ixml grammar, but also a raw or
	concrete parse tree which represents
	all non-terminal symbols as elements, eliding none and
	representing none of them as attributes. Such behavior
	is unlikely to be of interest except to those interested
	in parser implementation.

To illustrate the possible exploitation of the XML
 structure, the application also provides a button to find the
 numeric value of the expression. To make it easier (possibly)
 to understand the evaluation process, the values of all
 subexpressions in the tree are also shown:
<expression value="46.1754385964912">
 <term value="23">
 <factor value="23">
 <number value="23">
 <decimalnumber value="23"/>
 </number>
 </factor>
 </term>
 <addop>+</addop>
 <term value="32.1754385964912">
 <factor value="1834">
 <number value="1834">
 <decimalnumber value="1834"/>
 </number>
 </factor>
 <mulop>/</mulop>
 <factor value="57">
 <expression value="57">
 <term value="60">
 <factor value="60">
 <number value="60">
 <decimalnumber value="60"/>
 </number>
 </factor>
 </term>
 <addop>-</addop>
 <term value="3">
 <factor value="3">
 <number value="3">
 <decimalnumber value="3"/>
 </number>
 </factor>
 </term>
 </expression>
 </factor>
 </term>
 <addop>-</addop>
 <term value="9">
 <factor value="9">
 <number value="9">
 <decimalnumber value="9"/>
 </number>
 </factor>
 </term>
</expression>

 The internals of the demo application are not of great
 interest except as they illustrate the use of the Aparecium
 library. The user interface is provided by an XForm displayed
 by a web browser, which sends the expression typed by the user
 to the server and accepts the XML representation of the
 expression's parse tree in return. The actual parsing takes
 place on the server (although it could in principle be
 performed in the browser using an implementation of XQuery or
 XSLT 3.0 in the browser). The arithmetic evaluation of the
 expression is handled by an XSLT 1.0 stylesheet running in the
 browser, the only non-trivial part of which are the templates
 to calculate the values of expressions and terms, which
 requires coping with an indeterminate number of child
 expressions and applying the specified operators in the
 appropriate left-to-right sequence.
The part of the application of most concern for purposes of
 this paper is the XQuery module that turns a string containing
 an arithmetic expression into an XML document representing its
 parse tree. In this case, it could consist essentially of a
 single call to the Aparecium parse-string()
 function, like this:[4]

declare variable $expression as xs:string external;

import namespace a = "http://blackmesatech.com/2019/iXML/Aparecium";

a:parse-string(
 $expression,
 unparsed-text(
 "http://blackmesatech.com/2019/demos/arith/arith.ixml"
)
)

 To explain why this is not the way the demo application is
 actually implemented will require a short discussion of some
 of the internal organization of the library.

Ignoring the fact that at various times things
 move from one machine to another, the overall flow of
 the application is as shown in this diagram:
 Figure 4
[image:]

 There are two inputs (the expression and the ixml
 grammar for arithmetic expressions) and one output (the number
 denoted by the expression). Within the function
 parse-resource(), however, the grammar
 goes through several transformations, as shown in this
 expansion of the diagram:
 Figure 5
[image:]

Since the grammar does not change between calls to the demo
 application, there is no advantage in parsing it each time and
 preparing it for use. Instead, the XML version is generated
 and prepared for use once as part of application development,
 and the core module of the application uses that prepared
 grammar rather than the original ixml form:[5]	

declare variable $expression as xs:string external;

import namespace a = "http://blackmesatech.com/2019/iXML/Aparecium";

a:parse-string-with-compiled-grammar(
 $expression,
 "http://blackmesatech.com/2019/demos/arith/arith.gl.xml"
)

 A real application will of course
 insert as many sanity checks on the input and recover
 from as many user errors as possible here; the demo
 application does not currently do any error checking.

If the design of the interface has been successful, the
 reader will now be thinking something like That's all there
 is to it? And, as far as making the non-XML input
 available as XML is concerned, yes, that is all there is
 to it. It will sometimes happen that providing the
 grammar needed to describe the non-XML resource will be
 non-trivial[6] but one goal of
 Aparecium is that once such a grammar is available, actually
 gaining access to non-XML resources that follow that grammar
 should be as easy as a call to the doc()
 function.

The library
The preceding sections have reviewed some background
 information and given a simple example of the library use. We
 turn in this section to a discussion of the library itself: its
 interfaces, its current state of development, and some
 technical issues which arise in its development.
Basic interfaces
The implementation of Aparecium is spread across several
 modules; all public-facing functions are gathered into one
 module, so only one import instruction should
 be needed. The functions which need the least explanation
 have already been mentioned:
 	
 aparecium:parse-string($Input,
	 $Grammar) takes two strings as arguments: one
	 is the input to be parsed, the second is the ixml grammar
	 to be used.
First the grammar is itself parsed against the ixml
	 grammar for ixml grammars to produce XML, and then the XML
	 is annotated. To be more specific: the elements representing
	 symbols on the right-hand side of rules are given
	 additional attributes which all the rule to be interpreted
	 as a Gluschkov automaton, following the algorithm given by
	 Brüggemann-Klein 1993a. The annotated grammar is then
	 used to parse the input, and the resulting XML document is
	 returned.

	
 aparecium:parse-resource($Resource,
	 $Grammar) takes two URIs as arguments. The first
	 is the URI of the input to be parsed, the second is that
	 of the ixml grammar to be used.
Each is dereferenced into a string (using the
	 unparsed-text() function); from this point on
	 the course of events is as described for
	 parse-string().

The workhorse function of the library requires that the
 grammar be provided neither as a URI nor as a string, but
 already pre-processed into annotated XML:
 	
 aparecium:parse-string-with-compiled-grammar($Input,
	 $Grammar) takes a string representing the input and
	 an annotated XML form of the grammar. It calls the Earley
	 parser with these as arguments and returns the resulting
	 XML document.
In the simple case, the resulting XML document will be
	 a parse tree for the input as specified in the ixml
	 grammar: terminal symbols will all be included by default,
	 but may be omitted from the tree if marked with a minus
	 sign. Non-terminal symbols will by default be represented
	 as elements, but if marked
 -
 they will
	 be elided (though their children will continue to
	 appear). If marked with
 @
 , a
	 non-terminal will become an attribute on the nearest
	 ancestor node in the parse tree that becomes an element;
	 this will normally be the parent, but it may be a
	 grandparent or other ancestor if the parent and other
	 intervening ancestors are elided. This is all as
	 described in Pemberton 2013. (Note: in
	 the current implementation the parse function returns a
	 full parse tree and a separate process is needed to
	 perform the elisions and conversions from element to to
	 attribute.)
	
If the input does not parse against the grammar, an XML
	 document with trace and diagnostic information is
	 returned. (In the current implementation, this
	 essentially dumps all the relevant data structures, in a
	 way that the intended users of the library will not find
	 helpful; it is hoped that future revisions of the library
	 will produce better diagnostics.)
	
If the input is ambiguous, multiple trees are
	 returned; this topic is discussed further below (section “Treatment of ambiguity”).
	

Aparecium also provides a function for fetching resources
 whose publishers provide access to them with the MIME type
 application/invisible-xml and a pointer to an
 appropriate ixml grammar, as described in Pemberton 2013.
 	
 aparecium:doc($Resource) takes a
	 string containing the URI of an invisible-XML resource,
	 retrieves it, checks the HTTP header of the response for a
	 pointer to the ixml grammar, retrieves and parses the
	 grammar, and then parses the resource against the grammar
	 and returns the resulting XML.
Note: this function is not yet implemented (though it
	 should be by the time of Balisage 2019); testing it
	 will require configuring an HTTP server to behave as
	 required by Pemberton 2013.

Several functions are also available for preparing
 grammars.
 	
 aparecium:parse-grammar-from-string($Grammar)
	 takes a string containing an ixml grammar, parses it
	 against the ixml grammar for ixml grammars, and returns
	 the resulting XML.

	
 aparecium:parse-grammar-from-uri($Grammar)
	 takes a string containing the URI of an ixml grammar,
	 fetches the grammar by dereferencing the URI, parses it
	 against the ixml grammar for ixml grammars, and returns
	 the resulting XML.

	
 aparecium:compile-grammar-from-string($Grammar)
	 takes a string containing an ixml grammar, parses the
	 grammar, compiles (annotates) it as
	 described above, and returns the resulting annotated XML.

	
 aparecium:compile-grammar-from-uri($Grammar)
	 takes a string containing the URI of an ixml grammar,
	 fetches the grammar by dereferencing the URI, and then
	 proceeds as for compiling from a string.

	
 aparecium:compile-grammar-from-xml($Grammar)
	 takes as input the XML representation of an ixml grammar,
	 annotates it as described above, and returns the annotated
	 XML.

Current state of implementation
The current implementation of Aparecium is probably best
 described as a proof of concept. The parsing functions work
 (on at least some inputs) and produce XML which does
 represent the abstract syntax tree specified in the relevant
 ixml grammar. The results are satisfactory enough to allow
 simple demo applications like the arithmetic-expression
 parse described above to be built.
On the other hand, a great deal of work remains to be
 done before the library reaches production quality. The
 current test suite contains 75 or so grammars, including
 some chosen to exhibit odd or pathological behavior like the
 infinite ambiguity described below, but many more are
 needed. The set of available unit tests also needs to be
 expanded greatly. Better diagnostics are needed for cases
 where things go wrong. And the code needs to be improved so
 that things go wrong less frequently.
Currently, the implementation is written only in XQuery;
 it has been tested with BaseX and with Saxon, but it has not
 yet been tested with eXist, MarkLogic, or any other XQuery
 processor.
The biggest single shortcoming of the current
 implementation, however, is speed. This results in part
 from a conscious decision to worry not about speed but only
 about correctness, and to postpone optimization until a more
 complete test suite has been developed and the code is
 passing all the tests. The current implementation has no
 trouble with short inputs like those foreseen in the
 arithmetic-expression demo, but parse times for larger
 documents, even ones of only a few hundred bytes, are
 painfully slow, measured in minutes rather than in seconds.
 Fortunately, there are a number of fairly obvious ways to
 improve performance, and the current code is as far as
 possible written to hide low-level details of data
 representation from the high-level functions that perform
 parsing.

Data structures: representation of Earley items
The central data structure of the Earley algorithm is the
 Earley item: a triple (x,
 y, L), where
 	
 x is a number between 0 and the
	 length of the input, inclusive (the start
	 position)

	
 y is a number between
 x and the length of the input,
 inclusive (the end position)

	
 L is a location
 in a rule of the grammar

In grammars written in Backus/Naur Form, each grammar
 rule consists of a single non-terminal symbol on the
 left-hand side and a sequence of symbols on the right-hand
 side. If the rules of the grammar are numbered, therefore,
 each Earley item can be represented by a tuple of four
 integers (x, y,
 r, i) giving the start
 position, end position, rule number, and index into the
 rule.
In regular-right-part grammars like those of invisible
 XML, the right-hand side of a rule is not a flat sequence of
 symbols but a regular expression whose basic symbols are
 symbols in the vocabulary of the grammar. It is possible in
 principle to translate a grammar from regular-right-part
 notation to the simpler structures of BNF-style grammars,
 and the translation could remain in ixml notation. But
 it seemed easier (as well as more fun) to make
 the Earley algorithm work directly with regular-right-part
 grammars, following the discussion in Sperberg-McQueen 2017.

The most convenient way to package together the bits of
 disparate information that constitute an Earley item is (or so
 it seemed to the implementor) to represent each Earley item as
 an XML element of type item, with
 from and to attributes
 giving the start and end points. The location information is
 given by including a rule element as the
 only child of the item, and giving the location within the rule
 in an attribute named ri (rule
 index). This in turn means that we need a way to denote
 positions within a rule; a brief digression on the
 representation of grammar rules in Aparecium appears to be
 necessary.
In the XML notation prescribed for ixml grammars, the
 first rule of the arithmetic grammar given above looks
 something like this:[7]

 <rule name="expression">
 <def>
 <alt>
 <nonterminal name="term"/>
 <repeat0>
 <def>
 <alt>
 <nonterminal name="s"/>
 <nonterminal name="addop"/>
 <nonterminal name="s"/>
 <nonterminal name="term"/>
 </alt>
 </def>
 </repeat0>
 </alt>
 </def>
 </rule>	

The XML element structure of the def
 element corresponds in a straightforward way to the
 structure of the regular expression on the right-hand side
 of the ixml rule, which was, it may be recalled:

 expression: term, (s, addop, s, term)*.

 The def element and each of its descendants
 represents an expression, and like all regular expressions,
 these may be interpreted as defining regular languages.
 The usual way to determine whether a given sequence of
 symbols is in the language so defined is to translate
 the regular expression into a finite state automaton (FSA).	

One common way of doing so is the Thompson
 construction (Thompson 1968),
 descriptions of which are readily and widely available. But
 the Thompson construction involves first creating an FSA
 with a potentially large number of states and
 epsilon-transitions (transitions that move from one state of
 the automaton to another without consuming any tokens of the
 input) and then performing a tedious and expensive process
 to eliminate the epsilon transitions again and reduce the
 number of states. The relation between the resulting FSA
 and the original regular expression is typically
 obscure.
For our purposes, a better algorithm is that given by
 Brüggemann-Klein 1993a, which constructs the
 Gluschkov automaton for the regular
 expression (so called for the Russian mathematician Viktor
 Gluschkov, whose work Brüggemann-Klein extends). I will not
 attempt to describe the algorithm here, but limit myself to
 a few observations. In the Gluschkov automaton, each state
 corresponds one-to-one with (or just: is) one
 of the basic symbols in the original regular expression[8]; the automaton also has an additional
 start state which corresponds to no symbol in the
 expression. In the Gluschkov automaton, we move to a given
 state s whenever we read in the input a
 symbol matching the symbol associated with s.
 The relation between the regular expression and the
 automaton is thus very simple and straightforward, and the
 number of states in the FSA is predictable from the regular
 expression.

To simplify description and calculation of the automaton,
 it is convenient if each state (and each subexpression) has
 a name. So the first modification we make to the
 representation of the rule is to add an identifier for each
 state. With identifiers added, the rule for
 expression looks something like this:

 <rule name="expression">
 <def xml:id="exp_def_1">
 <alt xml:id="exp_alt_1">
 <nonterminal name="term" xml:id="term_1"/>
 <repeat0 xml:id="exp_repeat0_1">
 <def xml:id="exp_def_1" nullable="false">
 <alt xml:id="exp_alt_1" nullable="false">
 <nonterminal name="s" xml:id="s_1"/>
 <nonterminal name="addop" xml:id="addop_1"/>
 <nonterminal name="s" xml:id="s_2"/>
 <nonterminal name="term" xml:id="term_2"/>
 </alt>
 </def>
 </repeat0>
 </alt>
 </def>
 </rule>	

Following Brüggemann-Klein's algorithm, we then calculate
 for each sub-expression (down to and including the basic
 symbols themselves, here all nonterminal
 elements) a number of properties:
 	The set of states which can be visited
 first in paths across the
 expression.

	The set of states which can be visited
	 last.

	Whether the expression matches the empty string (if
 so, the expression is nullable).

	For each symbol in the subexpression, what other
	 symbols in the subexpression can follow it in a path: the
	 follow set for the symbol.

 This information is supplied as an attribute on each
 expression; the follow sets are given by attributes in a
 namespace created for the purpose: the attribute value
 specification follow:term_1 = "s_1" on the outermost
 def element means that within that
 expression, state s_1 can follow state term_1.
The process of calculating the values for these properties
 and assigning the appropriate attributes has been referred to
 elsewhere as compiling or
 annotating the grammar. The fully annotated rule
 now looks something like this:

 <rule name="expression"
	xmlns:follow =
	 "http://blackmesatech.com/2016/nss/ixml-gluschkov-automata-followset">
 <def xml:id="exp_def_1"
	 nullable="false"
	 first="term_1" last="term_1 term_2"
	 follow:term_1=" s_1"
	 follow:s_1=" addop_1"
	 follow:addop_1=" s_2"
	 follow:s_2=" term_2"
	 follow:term_2="s_1">
 <alt xml:id="exp_alt_1"
 nullable="false"
 first="term_1" last="term_1 term_2"
	 follow:term_1=" s_1"
	 follow:s_1=" addop_1"
	 follow:addop_1=" s_2"
	 follow:s_2=" term_2"
	 follow:term_2="s_1">
 <nonterminal name="term" xml:id="term_1"
		 nullable="false"
		 first="term_1" last="term_1"
		 follow:term_1=""/>
 <repeat0 xml:id="exp_repeat0_1"
		 nullable="true" first="s_1" last="term_2"
		 follow:s_1=" addop_1"
		 follow:addop_1=" s_2"
		 follow:s_2=" term_2"
		 follow:term_2="s_1">
 <def xml:id="exp_def_1"
	 nullable="false" first="s_1" last="term_2"
	 follow:s_1=" addop_1"
	 follow:addop_1=" s_2"
	 follow:s_2=" term_2"
	 follow:term_2="">
 <alt xml:id="exp_alt_1"
		 nullable="false" first="s_1" last="term_2"
		 follow:s_1=" addop_1"
		 follow:addop_1=" s_2"
		 follow:s_2=" term_2"
		 follow:term_2="">
 <nonterminal name="s" xml:id="s_1"
			 nullable="false"
			 first="s_1" last="s_1"
			 follow:s_1=""/>
 <nonterminal name="addop" xml:id="addop_1"
			 nullable="false"
			 first="addop_1"
			 last="addop_1"
			 follow:addop_1=""/>
 <nonterminal name="s" xml:id="s_2"
			 nullable="false"
			 first="s_2" last="s_2"
			 follow:s_2=""/>
 <nonterminal name="term" xml:id="term_2"
			 nullable="false"
			 first="term_2"
			 last="term_2"
			 follow:term_2=""/>
 </alt>
 </def>
 </repeat0>
 </alt>
 </def>
 </rule>	

The finite state automaton whose states are the basic
 symbols of the expression rule (plus an
 extra start state) and whose transitions and other properties
 are given by the attributes first,
 last, and follow:*
 attributes on the outermost def element can
 be illustrated by the following diagram:
 Figure 6
[image:]

	

Our digression into the structure of rules is almost
 complete. It remains only to be observed that the current
 state of an FSA which has partially recognized a string is
 given fully by the name (the identity, really) of the state.
 (That is pretty much a defining feature of a finite state
 automaton: its future behavior is defined solely by the
 identity of the current state.)
So we can represent the current position in the
 right-hand side of a rule by recording the name of the
 current state: that is, given the way the Gluschkov
 automaton is constructed, the identifier assigned in the
 rule to the corresponding terminal or non-terminal symbol.
 If nothing has yet been read, we are in the start state
 for the rule. By convention, the start state of any rule
 is named q0.
This concludes the digression onto the structure of
 grammar rules in Aparecium.
We can now show an example of an Earley item as
 represented in the current implementation. At position 20 in
 the string 23 + 1834 / (60 - 3) - 9
 (that is, just after the right parenthesis), the parsing
 algorithm will generate an Earley item that means, in effect,
 after reading the input string from position 0 to
 position 20, the FSA for rule expression is
 in state term_2. That Earley item
 will have the following form:

<item from="0" to="20" ri="term_2">
 <rule name="expression"
 xmlns:follow="http://blackmesatech.com/2016/nss/ixml-gluschkov-automata-followset">
 <def xml:id="exp_def_1"
 nullable="false"
 first="term_1" last="term_1 term_2"
 follow:term_1=" s_1"
 follow:s_1=" addop_1"
 follow:addop_1=" s_2"
 follow:s_2=" term_2"
 follow:term_2="s_1">
 <alt xml:id="exp_alt_1"
 nullable="false"
 first="term_1" last="term_1 term_2"
 follow:term_1=" s_1"
 follow:s_1=" addop_1"
 follow:addop_1=" s_2"
 follow:s_2=" term_2"
 follow:term_2="s_1">
 <nonterminal name="term" xml:id="term_1"
 nullable="false"
 first="term_1" last="term_1"
 follow:term_1=""/>
 <repeat0 xml:id="exp_repeat0_1"
 nullable="true"
 first="s_1" last="term_2"
 follow:s_1=" addop_1"
 follow:addop_1=" s_2"
 follow:s_2=" term_2"
 follow:term_2="s_1">
 <def xml:id="exp_def_1"
 nullable="false"
 first="s_1" last="term_2"
 follow:s_1=" addop_1"
 follow:addop_1=" s_2"
 follow:s_2=" term_2"
 follow:term_2="">
 <alt xml:id="exp_alt_1"
 nullable="false"
 first="s_1" last="term_2"
 follow:s_1=" addop_1"
 follow:addop_1=" s_2"
 follow:s_2=" term_2"
 follow:term_2="">
 <nonterminal name="s" xml:id="s_1"
 nullable="false"
 first="s_1" last="s_1"
 follow:s_1=""/>
 <nonterminal name="addop" xml:id="addop_1"
 nullable="false"
 first="addop_1"
 last="addop_1"
 follow:addop_1=""/>
 <nonterminal name="s" xml:id="s_2"
 nullable="false"
 first="s_2" last="s_2"
 follow:s_2=""/>
 <nonterminal name="term" xml:id="term_2"
 nullable="false"
 first="term_2"
 last="term_2"
 follow:term_2=""/>
 </alt>
 </def>
 </repeat0>
 </alt>
 </def>
 </rule>
</item>

This representation is convenient for the programmer but
 has a practical flaw. There will be at least one Earley
 item for each terminal symbol in the input; in ixml
 grammars, that means one for each character. Making the
 rule element a child of the
 item element makes it extremely convenient to
 consult the rule when needed, but it also requires that the
 XQuery or XSLT implementation make a new copy of the rule
 for each Earley item created (because each copy of the rule
 will have a different parent element). The frequent copying
 creates a perceptible strain on memory in the current
 implementation of Aparecium. A simpler representation of
 the Earley item would not reproduce the rule but merely
 point at it, thus:

<item from="0" to="20" rulename="expression" ri="term_2"/>

 Better performance can also come from representing the Earley
 item not as an element but as a map which points at, rather than
 naming, the rule and state (assuming that the variables
 $rule and $state have
 been appropriately initialized:

map {
 "from": 0,
 "to": 20,
 "rule": $rule,
 "ri": $state
 }

 Changing the representation of items to use maps instead of
 elements reduced parse time for grammars in the test suite
 between 15% and 30%. This was much less than had been
 expected. A much more dramatic effect (seven-fold speedup)
 came from changing the representation of the set of Earley
 items being calculated by the algorithm to make the search
 for Earley items with specific properties faster.

Treatment of ambiguity
A sentence is ambiguous if it has more
 than one derivation that follows the rules of the grammar.
 One of the great advantages of Earley parsing is that it
 is robust in the presence of ambiguity: if there is
 exactly one derivation of a sentence, the Earley parser
 will find it; if there is more than one, the Earley parser
 will find more than one. This contrasts sharply with most
 widely used parsing techniques, which cannot function if
 the grammar has any ambiguous sentences. Unfortunately,
 existing parsing tools are often not much help detecting
 ambiguity or helping the grammar author remove it. So a
 great deal of time can be spent, with tools like yacc,
 trying more or less random changes to the grammar in an
 attempt to eliminate the parsing conflicts detected by the
 tool.
For ambiguous sentences, Pemberton 2013
 prescribes that an ixml parse should return any one of the
 parse trees, with a flag to signal that there are other
 parse trees for the input. This is clearly satisfactory if
 it is known that any ambiguity is inconsequential. If a
 grammar for arithmetic expressions is ambiguous only because
 whitespace may be regarded either as a child of a term or as
 the child or an expression, then it does not matter for
 numerical evaluation which tree is selected: whitespace
 plays no role. The rule may be less satisfactory, however,
 if the two parses would assign different meanings to the
 sentence. In such a case, it may be useful for a grammar
 writer (though perhaps not a grammar user) to be able to
 compare the two parses; that comparison may help make the
 source of the ambiguity clear.
For this reason, the current version of Aparecium
 deviates from the rule enunciated by Pemberton: for
 ambiguous sentences Aparecium returns multiple parse trees.
 In some simple cases, it returns all parse
 trees, but that is not and cannot be true in general: in
 some cases, a sentence may have an infinite number of parse
 trees.
Consider the following grammar:

A: A; "a".	

	
 An A consists either of another
 A or of the letter a. The
 only sentence in the language defined by this grammar is
 a, but it has an infinite number of parse trees.
 XML representations of a few of these include:

<A>a
<A><A>a
<A><A><A>a
...

Another small grammar illustrates a different kind of
 infinity in parse trees:

S: (X)*. X: "x"; {nil}.	

 Here the language consists of strings of zero or more
 occurrences of x, but each sentence has an
 infinite number of parse trees. For the sentence
 x, the parse trees include the following.

<X>x</X>
<X><X/>x</X>
<X>x<X/></X>
<X><X/><X/>x</X>
<X><X/>x<X/></X>
<X>x<X/><X/></X>
...

In both of these cases, Aparecium will detect the
 infinite ambiguity and return only a finite number of
 parse trees.

Related work
Related work falls into several groups: other work on the
 implementation of invisible XML; other parser tools and
 techniques for XSLT and XQuery; other implementations of
 Earley parsing; and other tools for making non-XML data
 accessible in XML.

 Implementations of invisible
 XML. As far as the author knows, there are at the
 moment three implementations of invisible XML, only one of which
 has been published. Steven Pemberton has (I believe) a
 prototype or proof of concept implementation, but his ixml web
 page says only Software to support ixml will be made
 available at a later date (Pemberton 2018). John Snelson created an
 implementation in the MarkLogic dialect of XQuery but found its
 performance unsatisfactory and has abandoned it. The only
 published implementation I know of is the Perl package called
 XML::Invisible, attributed to Ed J and available
 from the Comprehensive Perl Archive Network, CPAN (ETJ 2018). It uses the PEG (parsing expression
 grammars) engine Pegex to generate functions to parse input that
 conforms to the given grammar; its notation is that of Pegex
 rather than the grammar notation proposed by Pemberton 2013.

Note

 Note: The author has not yet been able to
 experiment with either Snelson's parser or the XML::Invisible
 package; when such experimentation is possible it should be
 possible to say something more about how they compare to the
 work described here.

 Other parsing tools and techniques for
 XSLT and XQuery. There are, moreover, other tools and
 techniques for parsing in XQuery and/or XSLT. The most
 prominent of these is probably the tool REx, developed by
 Gunther Rademacher and made available on the Web at https://www.bottlecaps.de/rex/.
 REx accepts as its input a grammar written in a notation based
 on that used in the XML, XPath, XQuery, and other related
 specifications (with some extensions to the notation in the area
 of lexical analysis), and generates as output an executable
 parser in any of a variety of languages (notably including
 XQuery and XSLT as well as several imperative languages). The
 user may specify how much lookahead to perform and may select a
 backtracking parser (effectively allowing unlimited lookahead);
 one of the options is for the parser to emit an XML
 representation of the parse tree. For well known notations,
 therefore, parsers generated by REx are a plausible alternative
 to the use of ixml for parsing non-XML data; the REx site offers
 grammars in REx notation for several specifications of interest,
 e.g. XPath, XQuery, and JSON.
Another relevant tool is the LR-1 parser provided by Dimitre
 Novatchev as part of his FXSL package for functional programming
 in XSLT (Novatchev 2006b; on FXSL, but not the
 parser, see also Novatchev 2003 and Novatchev 2006a). Like REx, the FXSL parser is
 designed as a tool to aid in the development of software that
 needs a parser. It has a relatively steep learning curve: the
 parsing function requires that the user provide functions for
 lexical scanning and for grammar-rule reduction, as well as an XML
 representation of the LR parsing tables, which appear to be most
 conveniently created by post-editing the output of a customized
 version of Berkeley Yacc provided as part of the FXSL
 distribution.

There has also been some discussion of writing recursive
 descent parsers in XSLT and XQuery (Sperberg-McQueen 2013),
 but the approach does not currently seem to be widely used.
The current work differs from these in sacrificing the goal
 of speed for greater generality and easier usage. The LR parser
 of FXSL requires that the grammar be LALR(1); recursive-descent
 parsing requires that it be LL(1); REx does not restrict its
 grammars in the same way, but does require that they be free of
 left recursion and ambiguity. The library presented here will in
 contrast accept any context-free grammar, with or without left
 recursion, with or without bounded lookahead, whether the grammar
 is ambiguous or unambiguous.

 Other Earley parsers. A
 prominent implementation of Earley parsing is the open-source
 Perl module Marpa (Kegler 2018). The author,
 Jeffrey Kegler, has implemented a number of optimizations which
 mean that in many cases parsing takes O(N) time, where
 N is the length of the input.

 Other work on making non-XML resources
 accessible to XML tools. The idea of making non-XML
 resources accessible for processing with XML tools is not a new
 one. One antecedent is the Data Format Definition Language
 (DFDL) (Rose 2005, Zhu 2005,
 Beckerle / Hanson 2014); it was developed by the Open Grid
 Forum to allow non-XML data (textual or binary) to be presented
 as XML. It involves writing an XSD schema to describe the XML
 format (using a subset of XSD) and adding DFDL annotations to
 define the mapping between the XML format at the non-XML format.
 Another antecedent is the concept of XML lenses
 (which make everything look XML-colored), implemented for
 example in the product Data Direct Connectors (Lavinio 2007). In the Data Direct case, such
 connectors involve Java code which intercepts calls to
 dereference URIs, fetches the data, and translates it into XML
 for presentation to the XQuery or XSLT caller; analogous
 translations in the reverse direction can map from XML into the
 non-XML format. Because the mappings are implemented in Java
 code, they can involve any operation a Turing-complete language
 can perform. A more distant antecedent are the
 DATATAG and SHORTREF facilities of
 SGML, which allowed text without visible markup to be parsed as
 structured SGML. Unfortunately, very few people seem to have
 developed any facility with either DATATAG or
 SHORTREF; the MARK-IT parser from SoBeMaP (later
 SEMA Group) did include an example in which a Pascal-like
 programming language was defined using pure SGML facilities, but
 this approach does not seem to have found many followers. Ever
 since XML defined a subset of SGML in which DATATAG
 and SHORTREF were removed, there have been periodic
 suggestions to specify and build similar functionality; perhaps
 the regular fragmentations proposal of Simon
 St. Laurent and the STnG system of Ari Krupnikov can stand as
 two examples for many in this line (St. Laurent 2001, Krupnikov 2003).

For some people (including the author of this paper),
 invisible XML appears to have achieved more traction than its
 antecedents. It is less ambitious than some: it targets textual
 data only, leaving binary data aside. It is more ambitious than
 others: it allows arbitrary context-free grammars, rather than
 restricting itself to regular expressions or to grammars with
 particular look-ahead properties. It is high-level, working with
 context-free grammars instead of arbitrary executable code. It
 requires some understanding of context-free grammars and how to
 write them, and it benefits from some understanding of what one
 will want the XML representation to look like, but it requires
 very little tool-specific knowledge beyond the details of the ixml
 grammar syntax. As the library presented here illustrates, it is
 also possible to use ixml grammars to parse non-XML data on the
 Web even without any effort by the owners or publishers of that
 data, and without making dramatic changes to the network
 infrastructure of the uers's machine (so: no Java code to
 intercept HTTP requests, no proxy server setup, only the
 installation of an XQuery or XSLT module and calls to that
 module).

Future work
The immmediate task for the ongoing work on the library is
 to change it from a proof of concept to a reliable practical tool
 for use by XQuery and XSLT programmars. A systematic suite of
 unit tests and system tests is important both to help establish
 correctness of the code and to help ensure that ensuing attempts
 to improve performance do not introduce incorrect behavior.
When complete (or less incomplete), the library will be
 released under an open-source license; dual licensing may be
 available for those who require other terms.
Performance improvements are necessary before the library
 can be a useful tool for more than specialized applications and
 short inputs. The obvious place to start is with the
 representation of Earley items. Reducing the amount of copying
 that need be done, and the amount of memory needed, as the set of
 items grows, may make a signficant difference. Improving the
 processor's ability to find the needed Earley item in a search of
 the current set is also desirable. Earley's original algorithm is
 built around a data structure in which items are in effect indexed
 by their start value; it seems straightforward to do the same
 using maps in XQuery and XSLT 3.0.
Performance comparisons with other available tools will
 also be of interest. It is to be expected that Earley parsing
 will often be slower than parsing using other techniques[9]; it
 will be interesting to see how much slower it is.
Some additional features seem potentially desirable. On
 the assumption that many users will want to parse non-XML
 resources conforming to some widely known notations like CSS,
 JSON, XPath, or XPointer, it might be helpful to package
 grammars for such notations with the library. That in turn
 would make it possible to let the aparecium:doc()
 function select an ixml grammar based on the MIME type of the
 resource, even if the publisher has not provided a grammar.
 Since many published notations are designed to be parseable
 with existing parser tools, it might also be feasible to
 package parsing functions for some notations with the libary,
 and use a faster algorithm when possible. This suggests
 outfitting Aparecium with a pre-populated repository of
 grammars and parsers and providing methods to allow the user
 to add and delete items from the repository.

In a related vein, it would be desirable to have a library
 of functions for the analysis of grammars. Given an ixml
 grammar, such a library could determine whether the grammar as
 given is LL(1) or LR(1) and thus suitable for parsing with
 other tools. It would also be desirable to be able to test
 grammars for ambiguity. This is not, in general, a soluble
 problem: there is no algorithm for detecting ambiguity that
 will work in all cases. But there are methods which will
 detect at least some ambiguities, and which can explain and
 illustrate the ambiguity usefully. Utilities for translating
 grammars between notations might also be useful, although
 few grammatical notations have free-standing specifications
 in the style of ixml: many are tied to specific pieces
 of software and have documentation which is at best
 imperfect.
I hope to have shown in this paper that invisible XML can
 be made useful to XSLT and XQuery programmers, independent of
 the willingness of information publishers to provide invisible
 XML grammars for their information, by providing a library
 that allows them to supply the grammars themselves. Using
 non-XML resources for which an invisible XML grammar is
 available thus becomes as simple as using XML resources: a
 call to a single function, to load the resource as an XML
 document. The current implementation of Aparecium provides a
 demonstration that such a library can exist; what is needed
 next is work to move it from a proof of concept to a useful
 tool.

References
[Beckerle / Hanson 2014]
 Beckerle, Michael J., and
 Stephen M. Hanson.
 Data Format Description Language
 (DFDL) v1.0 Specification.
 Open Grid Forum DFDL Working Group, Document GFD-P-R.207,
 September 2014.
 On the Web at https://www.ogf.org​/documents​/GFD.207.pdf

[Brüggemann-Klein 1993a]
 Brüggemann-Klein, Anne.
 1993.
 Regular expressions into finite automata.
 Theoretical Computer Science
 120.2 (1993): 197-213. doi:https://doi.org/10.1016/0304-3975(93)90287-4.

[Brüggemann-Klein/Wood 1998]
 Brüggemann-Klein, Anne,
 and
 Derick Wood.
 1998.
 One-unambiguous regular languages.
 Information and computation
 140 (1998): 229-253. doi:https://doi.org/10.1006/inco.1997.2688.

[ETJ 2018]
 Ed J (ETJ).
 XML::Invisible.
 Perl module.
 Version 0.04, 18 October 2018.
 On the Web at https://metacpan.org​/pod​/XML::Invisible

[Grune/Jacobs 2008]
 Grune, Dick, and Ceriel J. H. Jacobs.
 2008.
 Parsing techniques: a practical guide.
 Second edition [New York]: Springer, 2008.

[Kegler 2018]
 Kegler, Jeffrey.
 Marpa::R2.
 Perl module.
 Version 8.000000, 17 December 2018.
 On the Web at https://metacpan.org​/pod​/Marpa::R2

[Krupnikov 2003]
 Krupnikov, Ari.
 STnG — a Streaming Transformations and Glue framework.
 Paper given at Extreme Markup Languages 2003,
 Montréal, sponsored by IDEAlliance.
 On the Web at http://conferences.idealliance.org​/extreme​/html​/2003​/Krupnikov01
 ​/EML2003Krupnikov01.html	

[Lavinio 2007]
 Lavinio, Tony.
 Using XQuery and XSLT on NonXML
 Data.
 Paper presented at XML 2007.
 Slides on the web at https://www.powershow.com​/view​/3c581-YjlmM​/Using_XQuery_and_XSLT_on_NonXML_Data_powerpoint_ppt_presentation

[Novatchev 2003]
 Novatchev, Dimitre.
 Functional programming in XSLT
 using the FXSL library.
 Paper given at Extreme Markup Languages 2003,
 Montréal, sponsored by IDEAlliance.
 On the web at http://conferences.idealliance.org​/extreme​/html​/2003​/Novatchev01​/EML2003Novatchev01.html

[Novatchev 2006a]
 Novatchev, Dimitre.
 Higher-Order Functional Programming
 with XSLT 2.0 and FXSL.
 Paper given at Extreme Markup Languages 2006,
 Montréal, sponsored by IDEAlliance.
 On the web at http://conferences.idealliance.org​/extreme​/html​/2006​/Novatchev01​/EML2006Novatchev01.html

[Novatchev 2006b]
 Novatchev, Dimitre.
 FXSL -- the
 Functional Programming Library for XSLT.
 Sourceforge site at http://fxsl.sourceforge.net.

[Pemberton 2013]
 Pemberton, Steven.
 Invisible XML.
 Presented at Balisage: The Markup Conference 2013,
 Montréal, Canada, August 6 - 9, 2013.
 In
 Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies, vol. 10 (2013).
 doi:https://doi.org/10.4242/BalisageVol10.Pemberton01.

[Pemberton 2018]
 Pemberton, Steven.
 Invisible XML [web page].
 Last modified 16 September 2018.
 On the Web at https://homepages.cwi.nl​/~steven​/ixml/.

[Pemberton 2019a]
 Pemberton, Steven.
 Invisible XML Specification (Draft).
 Version: 2019-01-28.
 On the Web at https://homepages.cwi.nl​/~steven​/ixml​/ixml-specification.html.

[Pemberton 2019b]
 Pemberton, Steven.
 [Home page.]
 Last modified 9 April 2019.
 On the Web at https://homepages.cwi.nl/~steven/.

[Rose 2005]
 Rose, Kristoffer H.
 Introducing the Data Format Description Language.
 Paper given at Extreme Markup Languages 2005,
 Montréal, sponsored by IDEAlliance.

[Sperberg-McQueen 2013]
 Sperberg-McQueen, C. M.
 Recursive descent parsing
 in XQuery (and other functional languages).
 Blog post, 7 January 2013.
 On the web at http://cmsmcq.com​/mib​/?p=1260.

[Sperberg-McQueen 2017]
 Sperberg-McQueen, C. M.
 Translating imperative algorithms
 into declarative, functional terms:
 towards Earley parsing in XSLT and XQuery.
 Presented at Balisage: The Markup Conference 2017,
 Washington, DC, August 1 - 4, 2017.
 In Proceedings of Balisage: The Markup Conference 2017.
 Balisage Series on Markup Technologies, vol. 19 (2017).
 doi:https://doi.org/10.4242/BalisageVol19.Sperberg-McQueen01.

[St. Laurent 2001]
 St. Laurent, Simon.
 Regular fragmentations:
 Treating complex textual content as markup.
 Paper given at Extreme Markup Languages 2001,
 Montréal, sponsored by IDEAlliance.
 On the Web at http://conferences.idealliance.org​/extreme​/html​/2001​/StLaurent01​/EML2001StLaurent01.html	

[Thompson 1968]
 Thompson, Ken.
 Regular expression search algorithm.
 CACM
 11.6 (1968): 419-422. doi:https://doi.org/10.1145/363347.363387.	

[Zhu 2005]
 Zhu, Yi.
 Implementing a subset of DFDL:
 A basic parser for a subset of the DFDL specification
 and related libraries.
 MSc thesis, Univ. of Edinburgh, 2005.
 On the Web at https://static.epcc.ed.ac.uk​/dissertations​/hpc-msc​/2004-2005​/0764527-9j-dissertation1.2.pdf

[1] The proposition that deep nesting can make processing
 simpler is one of a number of important insights into markup
 which Lynn Price worked for a long time to get into my head.
 She often gave it as a motivation for the presence in SGML of
 markup minimization features like OMITTAG, SHORTREF, and
 DATATAG: in the ideal case, they provide a notation simple
 enough to be suitable for human authoring and rich enough to
 make processing easier.
[2]
	In many cases, a grammar can be reworked to become LL(1), or
	LR(1), or whatever is required. Unfortunately, there is no
	simple set of rules (and in fact no reliable set of rules at
	all) to say what changes we can make in a grammar without
	changing the language recognized by the grammar. If there
	were such rules, the tool could do the transformation for us.
	Intuitively, experience with existing parser-generation tools
	leads many users to believe that any reasonable
	language can be defined by a grammar satisfying the
	constraints of the tool, and that languages which persist in
	being unreasonable can usefully be improved by
	modifying them until they become reasonable again. This
	belief may have some truth to it, although at first glance it
	looks as if the parsing tool were merely training its users
	not to want what it cannot provide.
	
[3]
	Among those best known are the Cocke / Younger / Kasami (CYK)
	algorithm, the Earley algorithm, and a number of
	generalized algorithms (generalized LR,
	generalized LL, generalized LC) and backtracking algorithms.
	By far the best source for descriptions of these and other
	parsing algorithms is Grune/Jacobs 2008.

[4]
 Just as parse-resource() takes two URIs for the
 input and the grammar as arguments, so
 parse-string() takes two strings. It is thus
 necessary to dereference the URI for the grammar, as shown in
 the example.
[5]
 The gl in the filename
 arith.gl.xml reflects the fact that (as is
 about to be explained below) this version of the grammar has
 annotations that allow it to be interpreted as a set of
 Gluschkov automata.

[6] As a case in point: the
 arithmetic grammar shown is not the first draft; several
 errors have needed to be fixed, and the version shown here
 still has a potentially painful problem in the handling of
 whitespace characters. Grammar development is not very hard,
 but it can raise some tricky issues. Whitespace handling is
 consistently one of them. SGML users may remember
 nostalgically the observation known as Goldfarb's Law: if a
 text processing application has bugs, at least one of them
 will have to do with whitespace handling. Grammar development
 appears to be subject to this law.
[7] The syntax shown is that currently used by Aparecium; it
 is based on the grammar exhibited in Pemberton 2013 and on a 2016 revision of the grammar.
 In the current version of the ixml specification (Pemberton 2019a) the structure for this rule is the same,
 but the def element has been renamed
 alts. Other changes in the syntax are not
 visible in this example.
[8] Formally, a finite state automaton has a set
 of states, but it is immaterial what the states actually
 are: the only intrinsic property they need to possess is
 that they must be distinguishable from each other, which is
 implicit in the phrase set of states: if we cannot
 distinguish the elements of a set from each other, then we
 cannot handled it as a set after all.
 It follows from this that there is
 no necessity to imagine a set of states that correspond 1:1
 to the symbols of the regular expression; we can take the
 set of symbols (symbol tokens, to be exact) in the
 expression, and make that be the set of states in our
 automaton.
[9] Grune and Jacobs say (p. 547 of Grune/Jacobs 2008)
 It should be noted that if any of the general parsers
 performs in linear time, it may still be a factor of ten or so
 slower than a deterministic method, due to the much heavier
 administration they need.

Balisage: The Markup Conference

Aparecium
An XQuery / XSLT library for invisible XML
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

C. M. Sperberg-McQueen is the founder and
	principal of Black Mesa Technologies, a consultancy
	specializing in helping memory institutions improve
	the long term preservation of and access to the
	information for which they are responsible.
He served as editor in chief of the TEI
	Guidelines from 1988 to 2000, and has also served
	as co-editor of the World Wide Web Consortium's
	XML 1.0 and XML Schema 1.1
	specifications.
	

Balisage: The Markup Conference

content/images/Sperberg-McQueen01-006.png

content/images/Sperberg-McQueen01-005.png
a:parse-string($expr, ‘arith.ixml')

arithmetic

' i
arith ixml 1 ixml.glxml 1
, | expression

e

| arith xml |

i
E——

content/images/Sperberg-McQueen01-004.png
arithmetic
expression

arith.ixml

se-string($expr'arith.ixml')

number

content/images/Sperberg-McQueen01-003.png
Type an expression into the text window. Then click the button labeled update
parse tree; a representation of the concrete syntax tree will appear. (Or in some
cases an error message.)

Click the button Update abstract syntax tree to show the XML representation
specified in the ixml grammar. (Or in the case of parse errors, some diagnostics
about the point of failure.)

The button Update value tree calculates the numeric value of each subexpression
and of the expression as a whole.

Enter expression

23+1834/(60-3) - 9|

Update
Update parse abstract syntax Update value
tree tree tree

content/images/Sperberg-McQueen01-002.png
factor
1834

factor

number number

content/images/Sperberg-McQueen01-001.png
factor

factor

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

