[image: Balisage logo]Balisage: The Markup Conference

Toward a function library for statistical plotting with XSLT and SVG
David J. Birnbaum
Professor
Department of Slavic Languages and Literatures, University of Pittsburgh
 (US)

<djbpitt@gmail.com>

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Creative Commons Attribution 4.0 International License (CC BY 4.0)

How to cite this paper
Birnbaum, David J. "Toward a function library for statistical plotting with XSLT and SVG." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Birnbaum01.

Abstract
Computational textual humanities research often makes use of descriptive
 statistics and graphic visualization to communicate quantitative information about
 textual objects of study. SVG is capable of rendering any chart or graph a user
 might wish to deploy, but there is no standardized function library for XSLT or
 XQuery comparable to, for example, the support for statistical analysis and
 visualization available in Python Pandas, Julia, and R. Neither is there any
 standard XSLT or XPath visualization library comparable to the D3.js
 (Data-Driven Design) JavaScript library that has come to dominate
 high-quality informational graphics on the World Wide Web. This paper begins to
 explore the possibility of developing such library resources without leaving the XML
 ecosystem.

Balisage: The Markup Conference

 Toward a function library for statistical plotting with XSLT and SVG

 Table of Contents

 	Title Page

 	Introduction

 	Preliminaries
 	Descriptive and inferential statistics

 	What to plot

 	Architecture

 	First functions
 	Overview

 	Bézier splines

 	Least squares linear regression
 	Regression lines

 	Regression parabolas

 	Smoothing

 	Retrospective

 	Future prospects
 	Expanded functionality

 	XQuery

 	Interactive animation

 	Appendix A. Statistical glossary and formulae

 	About the Author

 Toward a function library for statistical plotting with XSLT and SVG

Introduction
Computational textual humanities research often makes use of descriptive statistics
 and graphic visualization to communicate quantitative information about textual objects
 of study. SVG is capable of rendering any chart or graph a user might wish to deploy,
 but there is no standardized function library for XSLT or XQuery comparable to, for
 example, the support for statistical analysis and visualization available in Python
 Pandas, Julia, and R. Neither
 is there any standard XSLT or XPath visualization library comparable to the D3.js (Data-Driven Design) JavaScript library that has come
 to dominate high-quality informational graphics on the World Wide Web.[1] The XML family of languages (and specifically XPath
 [including XPath functions], XSLT, XQuery) has not prioritized mathematical computing, but it is
 nonetheless tempting to ask whether it would be possible to save XML developers the
 inconvenience of stepping outside the XML stack to, for example, plot a regression line
 or draw a Bézier spline.[2]
Statistical programming languages such as Python Pandas and R may employ vectorization
 to achieve performance benefits in computationally intensive operations. XSLT supports
 syntax that is compatable with a functional perspective (e.g., functional mapping rather
 than sequential iteration), but insofar as XSLT is a declarative language, it does not
 naturally expose how it works internally.[3] Because the user has limited control over how XSLT engines perform the
 operations requested in an XSLT stylesheet, it is possible, and perhaps likely, that
 some statistical operations will prove too computationally intensive to be implemented
 practically in XSLT, especially with large amounts of data. With that said, not all
 textual humanities data is big, and not all statistical computation and graphing is
 prohibitively complex computationally. This report begins to explore the possibility of
 developing support libraries for statistical computation and graphing without leaving
 the XML ecosystem.[4]
All code described in this report, with documentation, is available at
 https://github.com/djbpitt/plot under a GPL 3.0 license.

Preliminaries
Descriptive and inferential statistics
Descriptive statistics deals with the computation
 of features (called parameters) of sets of data
 (called populations).[5] Descriptive statistics can be contrasted to inferential statistics, which makes predictions (called statistics) about a population on the basis of a subset
 of the population data (called a sample). It is not
 our place to generalize about the relative need for decriptive and inferential
 statistics in the community of computational textual humanists, but because our own
 needs have been entirely descriptive, in situations where descriptive and
 inferential methods differ (e.g., the computation of a standard deviation), we have
 implemented the descriptive versions of the formulae.

What to plot
One of the main purposes of plotting lines or curves that pass through or by
 points in two-dimensional space is to highlight trends in the values.[6] This type of plotting makes sense for some, but not all, types of
 two-dimensional data. The library functions introduced here make the following
 simplifying assumptions, with the understanding that these are not intended to
 accommodate all possible data relationships and visualizations:[7]
	Independent and dependent variables.
 There is an independent variable along the X axis and a dependent variable
 along the Y axis.[8]

	The independent values, along the X axis, are
 numerical: either discrete, like integers, or continuous, like
 doubles. These numerical values are ordered monotonically on
 the X axis.[9]

	The dependent values are also numerical,
 and their values are also arranged on the Y axis in their natural numerical
 order.

	Trends are not intermediate values.
 Because lines, polylines, and splines are continuous, they may seem to
 create a visual impression of describing intermediate values. For example,
 if the values on the X axis are years (discrete numerical values) and the Y
 value changes between consecutive years, a sloping connecting line or curve
 between adjacent points does not describe any real data between one year and
 the next. And where the values on the X axis are continuous, so that there could in principle be
 intermediate values between two real ones, in descriptive statistics we do
 not infer values for data that is not part of the population. While it may
 be informally common-sensical that a trend suggests likely missing
 intermediate values, connecting lines or curves in a descriptive context
 should nonetheless be regarded as representing the shape of a trend observed
 in the population, and not a prediction about lacunae in the data.

Architecture
The code discussed here observes the following design strategies:
	Deploy as a package. The
 <xsl:package> feature of XSLT 3.0 improves on the support
 for modular development available through <xsl:import> or
 <xsl:include>. In particular,
 <xsl:package> allows the developer to distinguish public
 from private components, about which see below. The XSLT 3.0 specification
 leaves the method of resolving package locations to the discretion of the
 implementation, and we use a Saxon configuration file to manage the mapping of
 package name to filesystem object.

	Validate input first. Our implementation of
 the functions illustrated here specifies datatypes for all XSLT elements that
 support the @as attribute, but except in the case of schema-aware
 validation, XSLT 3.0 does not support validation of complex, user-defined types.
 The code discussed here does not use schema-aware validation because it is
 intended to run under Saxon HE. For that reason, we use conditional expressions
 (e.g., <xsl:if>) to check the shape of the input parameters
 more strictly than would be possible solely through (non-schema-aware) datatype
 validation, and we terminate execution with an informative error message when a
 function encounters bad data.[10]

	Functions are simple and self-contained.
 Functions do only one thing and use only data provided through parameters.[11] The library functions have no dependencies on global (stylesheet) variables.[12]

	Expose public functions and variables. The
 only functions exposed by the library are those that are intended to be called
 directly by end-users. The only variables exposed are those that the user might
 want to overwrite.

	Hide private helper functions. All functions
 and variables that are not public are left as private. Users are unlikely to
 call functions directly that are not intended to be called directly, so the main
 point of hiding them is not to prevent their use, but to reduce clutter by
 preventing their being shown in a content-completion prompt.

	Reuse code to support default values and multiple
 arities. XSLT function parameters cannot be optional, which means
 that XSLT does not provide a convenient way to declare a default value for
 parameters not supplied when a function is called. We work around this
 limitation by writing the function with the highest arity first, and then
 declaring lower-arity versions with the same name that supply the missing
 default values and pass the call along to the highest-arity version. For
 example, the djb:spline#3 function expects supplied values for
 $points (the points to plot), $scaling (the
 curviness of the spline), and $debug (whether to output diagnostic
 information or just render the curve). spline#2 accepts only the
 first two of those arguments, and defaults $debug to
 False. spline#1 accepts only $points,
 and defaults $scaling to 0.4 and $debug
 to False.

First functions
Overview
The initial motivation for beginning with the three types of tasks introduced here
 came from our need to output curved splines, instead of segmented polylines, to
 connect points in a line graph. We then developed additional functions to support
 analytic representations of information in those graphs. Specifically:
	A Bézier spline will connect all points
 supplied in the input with Bézier curves, rather than straight line
 segments.

	Although a spline uses soft curves through the data points instead of
 abrupt angles, if there are extreme fluctuations in the data, it may
 nonetheless be difficult to discern whether the data observes any trend.
 Smoothing provides a method of reducing
 extreme values, which can make it easier to discern a trend that spreads
 across the data. Data points can be piped first through smoothing (to
 flatten extreme fluctuations) and then into spline drawing, resulting in a
 smoother, flatter spline. We implement several types of smoothing (see
 below).

	Linear regression computes a function
 that approximates a trend in changes in value across a sequence of data
 points. We implement linear regression using the predominant least squares method, which plots a line or other
 shape that minimizes the total squared distances of the data points from the
 values output by the regression function. [Brown 2019] The
 simplest, and perhaps most common, type of linear regression yields a
 function that describes a straight line through the data points (drawn with
 an SVG <line> element), but linear regression can also
 describe parabolas and more complex shapes.[13] Our implementation provides functions that plot straight lines
 and parabolic arcs.

Of these three sets of functions, only the Bézier spline plots the actual data
 points supplied as input. Smoothing and linear regression, on the other hand,
 transform the original points. We think, then, of the spline function as a visualization tool, while the other functions discussed
 here are analytical tools that create new data
 points, which can then be plotted using lines, parabolas, or splines.

Bézier splines
The Bézier spline is a drawing instruction, accepting as input the points that
 would be used to plot a polyline (sequence of connected line segments, that is, a
 traditional saw-toothed line graph) and returning a smoothed curve that passes
 through those points. We provide the following functions:
	djb:spline($points as xs:string+, $scaling as xs:double, $debug as
 xs:boolean)
	The value of $points is a sequence of at least three
 pairs of X,Y coordinates. The X and Y values must be castable as doubles
 and separated by a comma, and there must be no whitespace.[14] The value of $scaling is a double that ranges
 from 0 (which outputs a polyline with angled transitions at
 the knots, that is, the place where segments meet) to 1.
 Higher values produce curvier splines, and values between
 .2 and .5 yield the most aesthetically
 satisfying results. When $debug is set, the output includes
 visual representations of points and lines used to compute the
 coordinates for the Bézier curve segments; this is illustrated below in
 Figure 1.

	djb:spline($points as xs:string+, $scaling as
 xs:double)
	The arity-2 version of the function calls the arity-3 version with a
 default $debug value of False.

	djb:spline($points as xs:string+)
	The arity-1 version of the function calls the arity-3 version with a
 default $debug value of False and a default
 $scaling value of 0.4.

The @d attribute of the SVG <path> element (see
 SVG Path) can describe quadratic and cubic Bézier curves, but
 in order to do so the user must supply X and Y coordinates for the endpoints of the curve segments and the control points (also called anchors or handles) that determine
 the shape of the segment. The endpoints are given in the input, which means that the
 challenge in drawing a spline instead of a polyline lies in computing the
 coordinates of the control points. We implement an adaptation of the methods
 described by Berkers 2015 for PHP and Embry 2015 for
 JavaScript; below is sample output:
Figure 1: Spline example
[image:]
The value of $points is a sequence of data points
 represented, in this example, by the strings '50,182' '100,166'
 '150,87' '200,191' '250,106' '300,73' '350,60' '400,186'
 '450,118'. We set $scaling to 0.4
 and $debug to True, which causes the function
 to output not only the spline, but also the original points and line
 segments connecting them (gray), joining lines that determine the slope
 of the control lines (dotted pale blue), control lines (fuchsia), and
 incoming and outgoing control points (green and red,
 respectively).

We use our djb:spline() function below in pipelines, where our
 smoothing functions compute adjusted Y values, which can then be plotted in various
 ways, e.g., as a spline, as points, or as a polyline. We can think, then, of a
 distribution of responsibility where the smoothing functions determine modified
 point coordinates in a way that is agnostic about presentation, and those adjusted
 coordinates can then be passed into the spline function or an SVG
 <polyline> in a way that is agnostic about the source and
 meaning of the data.

Least squares linear regression
A least-squares regression equation defines a line or curve that minimizes the
 squared Y distances of that line or curve from all points, that is, that comes as
 close as possible to describing the relationship between the independent and
 dependent variables. The simplest regression equation plots a straight line; more
 complex equations can include any number of curves or bends. We implement functions
 to plot straight lines and parabolic curves.
Regression lines
Least squares regression functions to plot straight regression lines can be
 derived using standard XPath mathematical functions and operators: addition,
 subtraction, multiplication, division, exponentiation, and the
 sum() function. We provide the following functions:
	djb:regression-line($points as xs:string+, $debug as
 xs:boolean?)
	This plots a straight regression line, where $points
 has the same lexical shape as the $points argument to
 the djb:spline() function (see above). If
 $debug is True, the function also
 returns, in an XPath map, the values of the slope and intercept used
 to plot the line.

	djb:regression-line($points as xs:string)
	The arity-1 version of the function calls the arity-2 version with
 a $debug value of False.

The following illustration shows a regression line:
Figure 2: Sample regression line
[image:]
The regression line is plotted to minimize the squared vertical
 distances of all data points from the line, that is, to pass as
 closely to all points as is possible. The line is drawn from the
 smallest X value to the largest; we use an SVG clip path to avoid
 overflowing the designated coordinate space (in this example the
 lower left corner of the regression line would reach below the X axis).[15]

Regression parabolas
Much as least squares can be used to fit a straight regression line, it can
 also fit more complex shapes. A straight line is described by y = ax + b , where a
 is the slope of the line and b is the Y
 intercept, that is, the Y value when X = 0. A parabola is described by y = ax2 + bx + c . We
 provide the following function:
	djb:plot-parabolic-segment($points as xs:string+, $x1 as
 xs:double, $x2 as xs:double)
	Uses the full set of points to compute the parabolic function and
 then plots a parabolic segment between the two X values.

The following illustration shows a regression line and regression parabola for
 the same points:
Figure 3: Sample regression line and regression parabola
[image:]
The regression line and regression parabola are both plotted to
 minimize the squared vertical distances of all data points from the
 line, that is, to pass as closely to all points as is possible. Both
 are drawn from the smallest X value to the largest; we use an SVG
 clip path to avoid overflowing the designated coordinate space (in
 this example the lower left corner of the regression line [although
 not the parabola] would reach below the X axis).

Smoothing
Jittery data points, that is, data where the Y values of adjacent points may vary
 by large amounts, can obscure trends in the data. Replacing the original Y value of
 a point with an average of its value combined with those of a specified number of
 its nearest neighbors (this range is called the window or bandwidth) can reduce the
 effect of extreme fluctuations and make a trend more perceptible. The simplest
 version of this sort of rolling average is
 unweighted, that is, it computes the arithmetic mean of the points contained in the
 window, where each point within the window contributes equally to the averaged
 value.
In situations where it is desirable for points closer to the focus (the presumptive center of the window) to be weighted more
 heavily than those toward the periphery, though, a non-constant smoothing function
 (called a kernel) can be applied to the points
 before their weights are averaged.[16] A weighted kernel function normally weights the points in the window in
 inverse proportion to their distance from the focus, so that the focal point
 receives full weight, its nearest neighbors in either direction less weight,
 neighbors just beyond those still less weight, etc. The choice of a kernel function
 determines how much each point in the window influences the new computed value, and
 the image below illustrates how some of the available functions adjust the assigned
 weights as they move from the focus (weight of 1, at the far left) further away
 (further to the right).
Figure 4: Smoothing functions
[image:]
These functions all assign full weight to the focal point and
 progressively less weight to points that are further from the focus in
 either direction.

We work with a symmetrical window that assigns equivalent value to point before
 and points after the focus. This decision means, though, that we run out of
 neighboring points on one side or the other as the focus nears the extreme X values
 on either end. Any solution needs to cope, in one way or another, with the asymmetry
 inherent in the fact that the first point has no preceding neighbors and the last
 point has no following ones.
Some implementations negotiate this edge phenomenon by using a trailing window,
 instead of a symmetrical one. With a trailing window size of 5, for example, the
 points that contribute to computing a smoothed value for point 5 are points 1–5,
 those for point 6 are 2–6, etc. A trailing window begins to report values only once
 there are enough points before the focus to make up the window.[17] Other implementations cope with asymmetrical input at the edges by not
 computing a smoothed value there at all.[18] Our approach instead plots edge values by recruiting additional points
 from the other side, as needed. For example, with a window size of 5, the
 computations for points 1 through 3 all use a window that ranges from point 1
 through point 5, but with different focal points, and therefore with different
 weights for the five window points.[19]
Some kernel functions (harmonic, exponential, Gaussian) approach 0 asymptotically
 and can therefore be applied to a window of any size, although extending the window
 size beyond the point where the function approaches 0 has negligible influence on
 the result. Other functions (triangular, parabolic) may cross into negative values
 or increase again after reaching 0, and therefore need to include the window size in
 their computation.
The following example shows how the output of the smoothing operation is shaped by
 the choice of kernel function.
Comparison of smoothing function: Comparison of smoothing functions
[image:]
This image was created by generating a sine wave (light gray). The
 values created by that function are then distorted by adding random
 jitter and recentering between 0 and 100 (the actual data, in black). We
 set a window equal to one third of the data; larger windows produce
 smoother curves, while smaller windows leave more jitter. The curves
 differ according to the kernel applied because the way in which the new
 value is influenced by its neighbors depends on how quickly the
 weighting curve decreases. For reasons described above, the rectangular
 kernel plots a straight horizontal line for the first and last eight
 data points.

The most useful kernel and window size depends on the shape of the data, and is
 therefore left under the control of the user, and the process is to create a
 sequence of weights according to the desired kernel and then rewrite the Y values by
 smoothing them according to those weights. We provide the following
 functions:
	djb:get-weighted-points($points as xs:string+, $kernel as xs:string,
 $window-size as xs:integer, $stddev as xs:integer) as
 xs:string+
	The points are original points as strings in X,Y format.
 Supported kernel values are gaussian,
 rectangular, exponential,
 parabolic-up, and parabolic-down. The
 window size must be a positive odd integer greater than or equal to 3.
 The standard deviation is relevant only for the Gaussian kernel, and is
 otherwise ignored. The function returns a sequence of points, in the
 same format as the original, with new Y values computed according to the
 kernel and window size.

	djb:get-weighted-points($points as xs:string+, $kernel as xs:string,
 $window-size as xs:integer) as xs:double+
	As above, but without specifying the standard deviation, for which a
 default value of 5 is supplied. As noted above, the standard deviation
 is relevant only for the Gaussian distribution.

Smoothing should be used carefully, and acknowledged explicitly, because it
 involves rewriting, and not merely organizing, the data. Smoothing relies on the
 assumptions that extreme local fluctuation is noise, rather than signal, and that
 noise is random, so that removing it wherever it occurs does not distort (and, on
 the contrary, reveals) any overall trend. Where this assumption is incorrect,
 smoothing risks removing variation that we might care about—that is, removing
 signal, and not only noise.

Retrospective
Development of the functions described here has served two purposes. On the one hand,
 we had encountered situations in actual projects where we would have used some of them
 (especially spline plotting) had it been readily available, and we anticipate using some
 of these functions in actual projects in the future. Beyond that, though, the
 experimental aspect of this exploration encourages us, now looking forward, to resist
 the temptation to use XSLT only to extract and export data that we then visualize in
 traditional statistical programming contexts (e.g., Python Pandas, Julia, R, Microsoft
 Excel, D3.js). Instead, once we are already using XSLT to process XML input because XSLT
 is a superior language for that purpose, and once we are already using SVG (an XML
 vocabulary) for data visualization because of the advantages it offers over raster
 graphics for that purpose, we are newly encouraged to think about harmonizing our
 workflow by looking more closely and deeply into XSLT also for solutions to statistical
 computation and plotting tasks.[20]
Implementing statistical computation and plotting in XSLT has been challenging because
 it requires not only specific XSLT programming skills (that is, different skills from
 those that typically predominate in digital text processing), but also an understanding
 of statistics and advanced mathematics that has not traditionally been part of the
 training of humanities scholars. To be sure, using pre-existing statistical plotting
 functions responsibly also requires an understanding of statistical assumptions and
 methods that has not traditionally been part of that training, but learning to use
 functions that someone else has developed is nonetheless less challenging than
 implementing them from scratch. Whether the first steps, illustrated here, toward an
 open-source XSLT function library will encourage community participation and uptake
 remains to be seen, but these modest early successes encourage us to be optimistic about
 the potential.

Future prospects
Expanded functionality
The functions described above are a small portion of the types of computation and
 presentation that are available in other analytic environments, such as Pandas, Julia, R, and D3.js. Charts and graphs supported by D3 includes bar, boxplot, chord,
 dendrogram, density, doughnut, heatmap, histogram, line, lollipop, network,
 parallel, pie, radar, ridgeline, sankey, scatter, stream, treemap, violin, and
 others, and many of those depend on fundamental statistical computation (e.g., the
 Tukey five-number summary for boxplots, kernel density curves for violin plots, and
 others). Beyond the computation and plotting, in R, for example,
 functions that provide these visualizations accept parameters to specify axis and
 chart labels, legends, data labels, and other types of documentation that are needed
 for effective data visualization. Providing this functionality within an XSLT
 context could be valuable to developers who currently offload responsibility for
 statistical computation and visualization onto non-XML tools and frameworks that
 rely on languages in which they have less expertise than XSLT.

XQuery
We performed our initial implementation in XSLT, but if there is a need for or
 interest in similar functionality in XQuery, translating the XSLT implementations to
 XQuery is straightforward.

Interactive animation
Graphic visualization can benefit from interactivity that may range from
 relatively straightforward highlighting on demand to more complex on-the-fly
 computation of values and re-plotting of graph and chart objects in response to
 dynamic user input.[21] More ambitiously, the extremely capable JavaScript D3.js library, which
 also generates SVG, is richly interactive, and nothing precludes augmenting the
 functions introduced here to support comparable interactivity.
Especially in the context of the desire to remain within the XML ecosystem that
 motivated this experiment with statistical plotting initially, the recent release of
 Saxon-JS 2.0 invites us to explore how XSLT, and not only JavaScript, can be used to
 control interactive behaviors. As Saxon JS writes:
Because people want to write rich interactive client-side applications,
 Saxon-JS does far more than simply converting XML to HTML, in the way that the
 original client-side XSLT 1.0 engines did. Instead, the stylesheet can contain
 rules that respond to user input, such as clicking on buttons, filling in form
 fields, or hovering the mouse. These events trigger template rules in the
 stylesheet which can be used to read additional data and modify the content of
 the HTML page.

We look forward to exploring this type of XSLT-based interactive functionality in
 situations where we might previously have relied exclusively on JavaScript.

Appendix A. Statistical glossary and formulae
	Anchor points
	See control points.

	Bézier curve
	A curve described by two endpoints and
 one (quadratic) or two (cubic) control
 points that do not lie on the curve. Supported as part of the
 @d attribute of the SVG <path>
 element.

	Control points
	Also called anchor points or handles. The shape of a Bézier curve is described by its endpoints and its control points.

	Cubic
	A cubic Bézier curve has two control points and is capable of bending in up to
 two places (S shape). We use cubic Bézier curves to draw all of the curve
 segments of our spline except the first and last, which we draw as quadratic Bézier curves.

	Descriptive statistics
	Quantitative analysis of a population,
 which yields parameters. Cf. inferential statistics.

	Endpoints
	The points that mark the beginning and end of a line segment or Bézier curve. The shape of a Bézier curve is
 defined by a combination of its endpoints and its control points.

	Focus
	We use the term focus in the context of
 kernel smoothing to refer to the point
 at the presumptive center of the window. We
 qualify the center as presumptive because we keep the window
 size constant, and if there are not enough points on both sides of the focal
 point to fully populate the window symmetrically, additional points are
 recruited from the longer side to compensate for running out of points on
 the shorter side.

	Handles
	See control points.

	Inferential statistics
	Quantitative analysis of a sample, which
 yields statistics. Cf. descriptive statistics.

	Kernel
	A function used to control weighted smoothing. Different kernels assign different weights to
 points according to their distance from the focus.

	Least squares
	A way of computating a regression
 function that minimizes the sum of the squared Y distances of
 all points from the regression line or curve. This is the predominant method
 used in linear regression.

	Linear regression
	A model that uses an equation to approximate the relationship between
 independent and dependent variables. The equations may describe lines or
 more complex shapes. Linear regression often uses least squares to compute a function that describes a
 straight line or curve that comes as close as possible to the actual data
 values.

	Mean
	Sum of values divided by count of values. Supported natively by the XPath
 avg() function.

	Parameter
	Descriptive analytic measurement of a population. Cf. statistic.

	Polyline
	Connected line segments, supported by the SVG
 <polyline> element.

	Population
	All items of interest, appropriate for descriptive
 statistics. Cf. sample and
 inferential statistics.

	Quadratic
	A quadratic Bézier curve has one
 control point and is capable of bending
 in one place. We use quadratic Bézier curves to draw the first and last
 curve segments of our spline; we draw the intermediary segments as cubic Bézier curves.

	Regression function
	A function that describes a line or curve that approximates the
 relationship of independent and dependent variables.

	Sample
	Part of the population, from which
 inferences are drawn, using inferential
 statistics, about the population. Cf. population
 and descriptive statistics.

	Smoothing
	A method of simplifying a relationship between independent and dependent
 variables by reducing random noise to make it easier to perceive trends in a
 signal.

	Spline
	Continuous smooth curve connecting a sequence of points. Can be described
 with the @d attribute of the SVG <path>
 element.

	Standard deviation
	σ = √{ ∑(xi-µ)2/n} where µ is the population mean and n is the population size. This is the square root
 of the average squared deviation from the mean, that is, the square root of
 the variance.

	Statistic
	Inferential analytic measure of a sample.
 Cf. parameter.

	Variance
	Average squared deviation from the mean.
 σ2 = { ∑(xi-µ)2/n} where µ is the population
 mean and n is the population
 size. The variance is the value of the
 standard deviation squared.

Works cited
[Berkers 2015] Berkers, Giel. 2015. Drawing a
 smooth bezier line through several points.
 https://gielberkers.com/drawing-a-smooth-bezier-line-through-several-points/
[Bostok et al. 2011] Bostock, Michael, Vadim
 Ogievetsky, and Jeffrey Heer. 2011. D3: Data-driven documents. IEEE
 Trans. Visualization & Comp. Graphics (Proc. InfoVis),
 https://idl.cs.washington.edu/papers/d3
[D3 gallery] Bostock, Mike.
 Gallery.
 https://observablehq.com/@d3/gallery
[Brown 2019] Brown, Stan. 2019. Least squares —
 the gory details. How do we find the line of best fit?
 https://brownmath.com/stat/leastsq.htm
[D3.js] D3: data driven documents.
 https://d3js.org
[EXSLT-math] EXSLT-math.
 http://exslt.org/math/
[Embry 2015] Embry, Coty. 2015. Spline
 interpolation with cubic Bézier curves using SVG and path (make lines
 curvy).
 https://www.youtube.com/watch?v=o9tY9eQ0DgU
[FunctX] FunctX XQuery Function Library.
 xqueryfunctions.com
[Julia] The Julia programming language.
 https://julialang.org/
[Kernel functions] Kernel functions in common use. https://en.wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use
[Orloff and Bloom 2014] Linear
 regression. https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading25.pdf
[Pandas] Pandas.
 https://pandas.pydata.org/
[Quadratic regression] Quadratic Regression
 – Definition, Formula, Example. https://www.easycalculation.com/statistics/learn-quadratic-regression.php
[R] R project for statistical computing, the.
 https://www.r-project.org/
[Saxon threads] saxon:threads. https://www.saxonica.com/documentation/index.html#!extensions/attributes/threads
[Saxon extension functions] Functions in
 namespace http://saxon.sf.net/. http://www.saxonica.com/documentation/index.html#!functions/saxon
[Saxon JS] About Saxon-JS.
 https://www.saxonica.com/saxon-js/documentation/
[Stackoverflow, Parabola] Fastest way
 to fit a parabola to set of points? https://stackoverflow.com/questions/4039039/fastest-way-to-fit-a-parabola-to-set-of-points
[SVG Path] The cubic Bézier curve commands. SVG
 1.1 (Second edition) – 16 August 2011, §8.3.6.
 https://www.w3.org/TR/2011/REC-SVG11-20110816/paths.html#PathDataCubicBezierCommands

[Vigen, Spurious] Vigen, Tyler. Suprious
 correlations. https://tylervigen.com/spurious-correlations
[XPath] XML Path Language (XPath) 3.0. W3C
 Recommendation 08 April 2014. http://www.w3.org/TR/xpath-30/
[XPath functions] XPath and XQuery Functions
 and Operators 3.1. W3C Recommendation 21 March 2017.
 https://www.w3.org/TR/xpath-functions/
[XQuery] XQuery 3.1: An XML Query Language. W3C
 Recommendation 21 March 2017.
 https://www.w3.org/TR/xquery-31/
[XSLT] XSL Transformations (XSLT) Version 3.0. W3C
 Recommendation 8 June 2017. https://www.w3.org/TR/xslt-30/

[1] See Bostok et al. 2011 for information about the history of D3 and
 D3 gallery for sample visualizations.
[2] XPath 3.1 provides support for basic arithmetic in the default function
 namespace (http://www.w3.org/2005/xpath-functions, conventionally bound to
 the prefix fn:), as well as some more mathematically advanced or
 complex functionality (trigonometric functions, exponentiation and logarithms)
 in a separate mathematical namespace (http://www.w3.org/2005/xpath-functions/math, conventionally
 bound to the prefix math:). Most mathematical functions that were
 supported earlier only as EXSLT-math extensions (in the http://exslt.org/math namespace, originally bound conventionally
 to the prefix math:, and now to exslt-math: because
 math: is in common use for http://www.w3.org/2005/xpath-functions/math) have been added to
 one or the other of these namespaces, or, within Saxon, as extensions in the
 http://saxon.sf.net/ namespace
 (conventionally bound to the prefix saxon:). There is no function
 support for calculus or linear algebra in the standard libraries, in EXSLT-math,
 or in the popular FunctX extension library. See XPath functions, EXSLT-math, Saxon extension functions, and FunctX.
[3] One exception is the @saxon:threads extension attribute available
 on <xsl:for-each> in Saxon EE, about which see Saxon threads.
[4] The author is grateful to Emmanuel Château-Dutier for productive
 conversations, comments, and suggestions.
[5] Statistical terms used in this report are listed and defined in Appendix A.
[6] In inferential statistics these trends would support predictions about
 values not represented directly in the sample. In a descriptive context, a
 trend is a summary perspective on some properties of the distribution of
 actual observations.
[7] We concentrate in this report on two-dimensional scatter plots, which
 occupy a small part of the graphic visualization universe. A more complete
 XSLT and SVG graphics library would include other types of plots (e.g., bar
 charts, pie charts, to cite only the most familiar examples), for which
 these assumptions would not apply for reasons that include dimensionality,
 data categories, and presentational geometry.
[8] Other terms may be used for these concepts (e.g., explanatory and response variable, respectively), but regardless of
 the terminology, the assumption is that one variable changes under
 the influence of the other (for example, death may be caused, at a
 certain rate, by specific diseases, but disease is not caused by
 death). Not all relationships involve a single independent and a
 single dependent variable, and not all apparent correlations are
 meaningful (for an amusing perspective on which see Vigen, Spurious). Our examples arrange the independent
 variable along the X axis and the dependent variable along the Y
 axis, as is common, but nothing prevents us from inverting that
 presentation, so that the X value changes in response to the Y
 one.
[9] Categorical data, which does not
 have a natural order comparable to that of numerical data, does not
 describe a trend. Ordinal data has
 a natural order without being explicitly numeric. For example,
 ordinal ratings like excellent, good, fair, and poor can be arranged
 from best to worst or vice versa, but there is no natural way to
 quantify the distance between adjacent values. That is, the distance
 between ordinal values like “good” and “excellent” cannot be
 expressed with the same sort of accuracy as the arithemetic distance
 between the numerical values “3” and “4”.
[10] At the moment we raise errors with the XPath error()
 function, rather than with <xsl:message
 terminate="yes">, because Saxon through version 10.1
 handles error reporting from error() and
 <xsl:message> differently, and our XSpec unit
 tests can trap error() more easily. This makes it possible
 to test constraints beyond standard datatyping (e.g., a requirement that
 a parameter value be not just an integer, but a positive odd integer
 greater than 3) by supplying illegal values in an XSpec test that
 expects a dynamic error to be raised.
[11] In the current version of the Bézier spline code, two public variables
 are declared at the package level. Functions that accept a
 $debug parameter may write diagnostic information to
 stderr (using <xsl:message>), and
 may return a complex result. For example, the function that plots a
 regression line returns an SVG <line> element; when
 the value of $debug is true, it also returns the slope and
 intercept values in an XPath map.
[12] We use the http://www.obdurodon.org namespace, bound to
 the prefix djb:, for library functions and the
 http://www.obdurodon.org/function-variables namespace,
 bound to the prefix f:, for function parameters and
 variables. This ensures that no fully qualified function parameter or
 variable name will clash with the fully qualified name of any stylesheet
 parameter or variable.
[13] We can also use linear regression to fit polynomials to
 data. The use of the word linear in both cases may seem
 confusing. This is because the word ‘linear’ in linear
 regression does not refer to fitting a line. Rather it refers to
 the linear algebraic equations for the unknown parameters
 βi,
 i.e. each βi has exponent 1. … A
 parabola has the formula y =
 β0 + β1xx
 +
 β2x2.
 [Orloff and Bloom 2014 4–5]For information about fitting a parabola to a set of points using
 least squares regression see Quadratic regression and Stackoverflow, Parabola.

[14] We impose stricter lexical constraints, specifically with
 respect to whitespace, on the input than SVG requires for the
 @d attribute on <path>
 elements because the looser constraints in SVG add no meaningful
 functionality and are more difficult to debug.
[15] Clip paths are declared with <clipPath>
 and invoked (confusingly, because the spelling differs) with
 @clip-path.
[16] A constant smoothing function, where all points in the window are weighted
 identically, is called a rectangular
 kernel. For examples of kernels in common use see Kernel functions.
[17] The use of a trailing, rather than symmetrical, window embeds a tacit
 assumption that preceding points are meaningful in a way that following
 points are not. This assumption may be correct in some time-series
 situations, where a trend incorporates a knowledge of and possible response
 to previous values, while future values are unknown. It is not, on the other
 hand, especially likely to be correct with other types of ordered series,
 such as the number of characters on stage in a scene of a play or the number
 of lines in a poetic stanza.
[18] Not reporting values at the edges has the advantage of computing all
 points on the basis of exactly the same type of neighboring data. It has the
 disadvantage of reporting nothing at the edges, although there is some
 meaningful neighboring information there, even though it is not the same as
 in other locations in the sequence of values.
[19] This introduces distortion at the edges of the smoothed values, which is
 most noticeable as a straight horizontal line at either end of the curve
 described by a rectangular kernel, since the absence of differential
 weighting in a rectangular kernel means that all focal points within the
 same window are averaged to the same value, regardless of whether they are
 centered in the window or skewed toward one or the other side.
[20] The suitability of XSLT for these purposes is improved by 3.0 features, of
 which we currently use packages, higher-order functions, iteration, maps, and
 arrays.The advantages of SVG in camparison to raster images for data visualization
 includes scalability without pixelation, compactness (especially in the case of
 charts and graphs that consist primarily of regular geometric shapes), and ease
 of integration with JavaScript for dynamic interactivity in a Web
 context.

[21] As an example of the use of animation, the Comparison of smoothing function illustration in this report may be
 difficult to read because of the number of lines it includes, and it was not
 actually designed for static viewing. The version rendered here is a static
 PNG because the Balisage proceedings do not support dynamic SVG images, but
 the PNG is a screenshot of an SVG file with JavaScript animation, available
 in the project GitHub repo, that highlights the corresponding curve when the
 user mouses over a colored rectangle in the legend, making it easy to see
 each curve clearly on demand.

Balisage: The Markup Conference

Toward a function library for statistical plotting with XSLT and SVG
David Birnbaum
Professor
Department of Slavic Languages and Literatures, University of Pittsburgh
 (US)

<djbpitt@gmail.com>
David J. Birnbaum is Professor of Slavic Languages and Literatures at the
 University of Pittsburgh. He has been involved in the study of electronic text
 technology since the mid-1980s, has delivered presentations at a variety of
 electronic text technology conferences, and has served on the board of the
 Association for Computers and the Humanities, the editorial board of Markup languages: theory and practice, and the Text
 Encoding Initiative Technical Council. Much of his electronic text work
 intersects with his research in medieval Slavic manuscript studies, but he also
 often writes about issues in the philosophy of markup.

Balisage: The Markup Conference

content/images/Birnbaum01-003.png
d[qeLIeA Juopuadop ayeq

200

190

180

170

160

150

140

130

120

110

100

80

70

60

50

40

30

20

10

10

15

Sample regression parabola and line

20

25
Fake independent variable

30

35

40

45

50

content/images/Birnbaum01-002.png
o[qerrea juopuadap oye

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

50

100

150

200

Sample regression line

250
Fake independent variable

300

350

400

450

content/images/Birnbaum01-001.png
\

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Birnbaum01-005.png
J[qerreA juopuadap oyeq

Smoothing examples (window = 17)

Fake independent variable

B Actual data (51 points)

B Regression line (58.9-39.7)

Bl Sine without jitter

Il Rectangular

B Gaussian (0 = 5)

B Exponential: y =1 - 2°¢

Bl Parabolic (upward): y = (N - d)/N)?
Il Parabolic (downward): y = 1 - (d/N)?)

content/images/Birnbaum01-004.png
ySeM

0.7

0.6

05

04

03

0.2

0.1

0.0

Sample scaling functions

Distance from window focus point

B Harmonic: 1/(d + 1); 1/1, 1/2, 1/3, 1/4, ...

B 2/d+2);2/2,2/3,2/4,2/5, ...

B 3/d+3);3/3,3/4,3/5,3/6, ...

B 10/ + 10); 10/10, 10/11, 10/12, 10/13, ...

B Exponential: 2¢; 1/1, 1/2, 1/4,1/8, ...

B Gaussian (0 =5, 10, 15)

| Triangular: (N - d)/N; 50/50, 49/50, 48/50,47/50, ...
B Parabolic: (N - d)/N)?

B Parabolic: 1 - (d/N)?2

