[image: Balisage logo]Balisage: The Markup Conference

Marking up microrevisions with major implications: Non-linear text in TAG
Elli Bleeker
Researcher, Research and Development
Research and Development Group, Netherlands Academy for Arts and
 Sciences

<elli.bleeker@di.huc.knaw.nl>

Bram Buitendijk
Software Developer, Research and Development
Research and Development Group, Netherlands Academy for Arts and
 Sciences

<bram.buitendijk@di.huc.knaw.nl>

Ronald Haentjens Dekker
Head of Research and Development and Software Architect
Research and Development Group, Netherlands Academy for Arts and
 Sciences

<ronald.dekker@di.huc.knaw.nl>

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Copyright ©2020 by the authors. Used with permission.

How to cite this paper
Bleeker, Elli, Bram Buitendijk and Ronald Haentjens Dekker. "Marking up microrevisions with major implications: Non-linear text in TAG." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Bleeker01.

Abstract
The article discusses how micro-level textual variation can be expressed in an
 idiomatic manner using markup, and how the markup information is subsequently used
 by a digital collation tool for a more refined analysis of the textual variation. We
 take examples from the manuscript materials of Virginia Woolf's To the
 Lighthouse (1927), which bear the traces of the author's struggles in
 the form of deletions, additions, and rewrites. These in-text revisions typically
 constitute non-linear, discontinuous, or multi-hierarchical information structures.
 While digital technology has been instrumental in supporting manuscript research,
 the current data models for text provide only limited support for co-existing
 hierarchies or non-linear text features. The hypergraph data model of TAG is
 specifically designed to support and facilitate the study of complex manuscript text
 by way of its syntax TAGML and the collation tool HyperCollate. The article
 demonstrates how the study of textual variation can be augmented by designated
 markup to express the in-text, micro-level revisions, and by computer-assisted
 collation that takes into account that information.

Balisage: The Markup Conference

 Marking up microrevisions with major implications: Non-linear text in TAG

 Table of Contents

 	Title Page

 	Introduction

 	Non-linear text
 	Challenges for text-encoding

 	Challenges for text analysis

 	Encoding non-linear text
 	Related work
 	Embedded markup approaches

 	Stand-off approaches

 	TAGML
 	TAGML Pipeline

 	Examples

 	Analysing non-linear text: collation
 	Related work
 	Creating additional witnesses for each in-text revision

 	Passing along markup

 	Comparing data-centric XML

 	HyperCollate
 	HyperCollate's approach

 	Examples

 	Discussion

 	Conclusion

 	About the Authors

 Marking up microrevisions with major implications: Non-linear text in TAG

Introduction[1]
When we say that text encoding is a means of making explicit an interpretation of that
 text, we mean that the encoder is compelled to explicitly formulate their underlying
 assumptions about the text. We often forget to point out that text encoding also implies
 a (subconscious) choice for a certain data model. Needless to say, not all data models
 are equally suitable to express and query all kinds of textual information. It is
 crucial, then, for encoders to be(come) aware of the consequences of their choices, not
 only on the level of the tagset but also on the level of the data model. As a result,
 practising digital textual scholarship – the modeling, encoding, and analysing – can be
 as informative and enlightening as the end product.
Since data models for text are usually developed according to a specific conceptual
 idea of text, it is interesting to see what textual features are natively supported by a
 data model. What are, for example, the consequences of expressing text as a consequetive
 sequence of characters, with annotations as ranges on the text (LMNL data model)? Or: how will representing textual information as RDF
 statements (cf. EARMARK, see Peroni and Vitali 2009) instead of an ordered rooted
 tree (cf. XML) change the way we think about text? In each case, the affordances of the
 chosen data model will inevitably affect our encoding practice and the outcomes of an
 analysis.
Ideally, then, the choice for a suitable data model is primarily informed by one's
 research questions and the particulars of the textual material, and not by a prevailing
 standard. As Michael Sperberg-McQueen noted in his concluding remarks of the Balisage
 2009 conference: It is not standards in themselves that are harmful, but mindless
 adherence to standards that is harmful (Sperberg-McQueen 2009). Making
 an informed choice for a specific data model is accordingly related to the research
 needs of a scholar, who needs to be clear about what textual feature(s) they want to
 examine, what result(s) they expect from the text modeling, and how they intend to get
 there.
In this contribution, we investigate how the TAG data model addresses a persistent
 challenge for modeling and analysing literary and historical documents. The contribution
 builds upon two previous Balisage papers which introduced respectively the TAG model
 (Haentjens Dekker and Birnbaum 2017) and the TAGML syntax (Haentjens Dekker et al. 2018). Presently, we will expand on the potential of TAG and
 TAGML to model and process complex textual phenomena. We take our examples from
 fragments of the authorial manuscripts of Virginia Woolf's To the
 Lighthouse (1927). The text on these documents presents quite some
 modeling challenges: words are deleted mid-way a sentence, phrases are inserted in
 between the lines or in the margin, paragraphs are transposed, changes to the text
 structure are indicated with arrows or metamarks, etc. In short: the documents contain
 the sort of textual phenomena that tests the limitations of a data model. For this
 contribution, we concentrate on one particular phenomena: in-text revisions and similar
 non-linear text structures.[2]
After briefly illustrating what we mean with in-text revisions and how they constitute
 non-linear information structures (section 2 Non-linear text), we go
 on to demonstrate how TAGML allows encoders to markup non-linear text in a
 straightforward and idiomatic manner. Using the concept of the computational pipeline,
 we show in section 3 (Encoding non-linear text) how a TAGML
 transcription of non-linear text is tokenized, parsed, and stored as a single TAG
 hypergraph for text. The fourth section, Analysing non-linear text: collation,
 discusses the topic of automated collation and outlines how the non-linear information
 that is stored in the individual TAG hypergraphs can be used to come to a more refined
 collation output via graph-to-graph comparison.
The paper intends to demonstrate how TAG allows scholars to be extremely precise in
 expressing their interpretation of textual variance which, in turn, positively affects
 the subsequent processing and analysis of the encoded texts. Because work on the TAG
 project is under ongoing development, this contribution will not be your average
 tool presentation. Rather, we intend to show in some detail how textual
 information is stored, interpreted, and processed by our data model. We consider this
 essential to understanding the potential of our model for supporting textual analysis.
 By providing detailed insights into the design choices and technical implementation of
 TAGML and HyperCollate, we emphasize how the choices made on the level of the storage
 and processing of textual information can affect the subsequent analysis.

Non-linear text
Challenges for text-encoding
Briefly put, non-linear text means that the text does not form a linear stream of
 characters. As we explained in Bleeker et al. 2018 and Haentjens Dekker et al. 2018, textual content is normally fully ordered information: the text characters form a stream of
 characters and their order is inherent to their meaning. Fully ordered text is
 parsed and processed as it is read: in Western scripts that means from left to
 right, from top to bottom.
In many cases, however, text is not always or consistently a linear structure.
 Textual variation, for example, may constitute partially
 ordered information. Take the in-text revision in Figure 1:

 Figure 1: A simple revision
[image:]
Example of a simple in-text revision on a typescript of the Swiss
 writer and poet Gustave Roud (facsimile CRLR_GR_MS1H16d_1r_1, Université
 de Lausanne, see
 https://www.unil.ch/clsr/fr/home/menuinst/projets-de-recherche/gustave-roud-oeuvres-completes.html).

The original text of this fragment reads aux pierres en saillie toute une
 écume. The words en saillie are crossed out and the word
 noyées is added above the line, changing the phrase into
 aux pierres noyées toute une écume. The words en
 saillie and noyées are on the same location in the text
 and thus mutually exclusive.
Text encoding implies the interpretation, transcription, and encoding of textual
 inscriptions on the document page. In case of documents with in-text revisions,
 markup can be used to identify the subsequent stages in the writing and revision
 process or to label the different types of revisions. To illustrate the trickiness
 of encoding non-linear text, let's take a look at how it can be done in TEI/XML. The
 TEI Guidelines, the de facto standard for text encoding (TEI P5), are currently based on the XML data model, which means
 that literary texts are usually modeled as an ordered, monohierarchical tree. So, as
 text encoders set out to encode the various stages of writing and revision as
 thoroughly as possible, they face the tricky task of encoding partially ordered
 information in a fully ordered data structure. The example above can be encoded in
 TEI/XML with del and add elements, and – if needed – a
 subst element to group the two elements together as a single
 intervention:aux pierres <subst>en saillie<add>noyées</add></subst> toute une écume .

Here, the opening tag <subst> indicates where the textual
 information becomes temporarily non-linear. We can say that the two readings
 en saillie and noyées constitute two paths through
 the text. The tags del and add identify the two separate
 paths. Within the individual paths, the text is fully ordered again: the words
 en saillie would have a different meaning (if any) if the text
 characters lost their order. At the closing tag </subst> the two
 branches rejoin and the text becomes fully linear again.
Similar examples of non-linear or partially ordered information that is expressed
 in markup are the choice or app elements. Both are used to
 group a number of alternative encodings for the same point in the
 text.[3]
Because XML cannot natively express non-linear text structures at the level of the
 model or the syntax (Haentjens Dekker and Birnbaum 2017), the TEI Guidelines provide
 several dedicated elements and schemata. As a result, the temporary non-linearity as
 expressed with the TEI/XML element subst can be licensed by and
 validated against a schema.[4] In theory, a query processor that has access to and understands this schema
 will be able to recognize the non-linear information expressed by the markup.
 Following our example above, the processor will understand that the words en
 saillie and noyées are located on the same place in the
 text stream and that they are mutually exclusive alternatives to each other.
Unfortunately, this scenario does not apply to the majority of the XML query
 processors. In most cases, processing queries remains limited to a linear level. Put
 differently: the TEI/XML file may conceptually represent the
 encoder's idea of non-linear text, but that concept is typically not shared with a
 processor. This has significant consequences for searching, querying, and analysis.
 Desmond Schmidt found for instance that only 10% of digital editions using inline
 markup could find literal expressions that span inline substitutions
 (Schmidt 2019, note 3). The section below illustrates other
 complications that arise when collating texts with in-text variations.

Challenges for text analysis
In this contribution, we focus on one form of text analysis that would
 particularly benefit from having access to non-linear information: collation.
 Collation can be defined as the comparison of two or more versions
 (witnesses) of a literary text in order to establish a record of
 the textual variance. To this end, a scholar can use designated collation tools like
 CollateX (CollateX) or Juxta (Juxta). However,
 since these automated collation tools operate on character strings, the non-linear
 information about revisions within individual witnesses is not used to come to an
 alignment of the texts.
Editors who are working with witnesses containing in-text variation are compelled
 to either choose only one revision stage per text, or to pass on relevant
 information about deletions and additions through the collation pipeline so that it
 is present in the collation output (Bleeker 2017, section 2.2.5;
 Beshero-Bondar 2017; Bleeker et al. 2018; Birnbaum et al. 2018; Beshero-Bondar and Viglianti 2018).
The first option implies that relevant information about an author's writing and
 revision process is ignored by the collation tool. This may have a negative impact
 on the analysis of the textual variance. With the second option – passing on markup
 tags (in flattened form) – editors can at least use the retained information to
 visualize the deleted words in the collation
output,[5] or to raise the flattened transcription again (see the
 Variorum Frankenstein project, Birnbaum et al. 2018,
 discussed in more detail in section 4.1.2 Passing along markup).
 However, this option requires a considerable set of technical skills that may not be
 available to most scholarly editors. Furthermore, the collation tool would still
 operate on the character stream and the non-linear information is
 not part of the alignment process.
This brings us to three important requirements for the way TAG should handle
 non-linear information. First, editors need to be able to markup this kind of
 partially ordered information in a straightforward manner. Secondly, a processor
 needs to recognize non-linear information as such so that the texts can be queried
 and searched more effectively. And finally, we need a collation program that
 recognizes non-linear text as two or more mutually exclusive paths through the text,
 from which it then chooses the best match.
Our Balisage 2018 paper already demonstrated how to represent non-linear
 information in TAGML (Haentjens Dekker et al. 2018); section 3.2 TAGML will therefore focus on how this information is
 interpreted by the TAGML parser and stored as a hypergraph. Section 4.2 HyperCollate then describes how the individual TAG
 hypergraphs can be collated by the hypergraph-based collation tool HyperCollate
 (https://huygensing.github.io/hyper-collate/) that recognizes
 non-linear information and thus produces a more refined collation output. Both
 sections are proceeded by an overview of the related work done in these
 areas.

Encoding non-linear text
Related work
In addressing the need to model overlapping, non-linear, or discontinuous text
 structures, TAG shares the objectives of several existing markup systems.
 Accordingly, there are aspects of TAG's approach that correspond closely to other
 syntaxes or data models, most notably TexMECS, LMNL, and TEI/XML. This section
 should therefore not be read as a critique on existing markup approaches, but rather
 as an illustration of how TAG complements or relates to these approaches.
Embedded markup approaches
As the table in Figure 2 illustrates, there
 are various embedded markup approaches to expressing complex textual structures.
 Some are more effective than others, but theoretically text encoders can use any
 data model to express any kind of text, no matter how complex, as long as they
 are willing to use some workarounds, do some extra coding, and hand over certain
 tasks to other data formats (Vitali 2016). But the more
 additional coding, customized solutions, or handovers are necessary, the more
 complicated it will be to process, query, interchange, or reuse the encoded
 files (Haentjens Dekker et al. 2018, Schmidt 2019).
From the outset, the main objective behind the development of TAG has been to
 both simplify and advance the work of text encoders worldwide. In our ideal
 scenario, editors can work with a data model that natively supports the modeling
 of complex text features, with as few handovers or customized technical
 solutions as possible. The table below therefore represents to what extent
 markup systems support complex textual features like non-linearity,
 discontinuity, and overlap in a native way.[6]

Figure 2: Overview feature-support in embedded markup languages
[image:]
Overview of complex textual features supported by embedded markup
 languages. The overview is partly inspired by the map drawn by
 Wendell Piez (Piez 2008), by the MLCD Overlap
 Corpus (Marcoux et al. 2012), by the tables of Fabio
 Vitali (Vitali 2016), and by the inventory of
 Pierre-Édouard Portier et al. (Portier et al. 2012).

As the table shows, TexMECS is able to natively represent non-linearity. By
 default, all contents of a TexMECS document are ordered, and it is possible to
 indicate the start and end of an unordered element. For example, the children of
 a subst element can be marked as unordered in the following TexMECS
 notation:
 This is a <|subst||<del|useful|del> <add|clear|add>||subst|> example
.
 Here, the deleted word and the added word are on the same position in the text
 stream and mutually exclusive (Huitfeldt and Sperberg-McQueen 2003).
XCONCUR (Schonefeld 2007), Concurrent XML (Dekhtyar and Iacob 2005), LMNL (Piez 2008), and linear
 extended Annotation Graphs (LeAG, Barrellon et al. 2017) are designed
 primarily to deal with overlapping structures and do not natively support
 non-linear structures.[7] The case of TEI/XML is slightly more complicated. We mentioned above
 that the TEI Guidelines identify a number of elements (notably the
 subst, choice and app) whose children
 are understood to be unordered. We also noted that this requires the use of a
 schema language like XML Schema that supports unorderedness, as well as a
 schema-aware processor. In reality, most generic XML processors will not be
 aware of these exceptions and process the XML document as a fully ordered tree.
 In that case, all alternative paths through the text will be considered as being
 part of one and the same text stream.

Stand-off approaches
Several stand-off approaches to markup also allow for the expression of
 non-linear structures. The Multi-Version Document (MVD) system developed by
 Desmond Schmidt et al. (Schmidt 2008, Schmidt and Colomb 2009,
 Schmidt and Fiormonte 2010) implements a variant graph which is a
 suitable data structure for representing non-linearity. In the case of a draft
 manuscript featuring multiple revision stages, the MVD-approach suggests the
 editor creates separate transcriptions (layers) for each in-text
 revision stage. The transcription files can be in plain text, HTML, XML or LMNL format.[8] Creating layers implies interpretative work from the editor who needs to
 differentiate between revision stages on the manuscript text based on cancelled,
 added, and transposed (units of) text. Layers are thus artificial constructs
 that represent a collection of in-text variations. The separate files are merged
 into one MVD, so that all versions of a text – both the in-text variation and
 the variation across documents – are stored in one variant graph.
EARMARK (Extremely Annotated RDF Markup; (Peroni and Vitali 2009)) is
 another standoff system and well-known to the Balisage-community. EARMARK
 implements a collection of RDF statements about text fragments that describe
 properties of that fragment. Technically, the underlying RDF data model is
 flexible enough to express partially-ordered information, but according to the
 EARMARK specification (Peroni and Vitali 2009), this feature is not
 supported.
EARMARK does support the option to represent multi-orderedness: via the
 e-GODDAG extension, RDF statements about the same text node can be repeated in
 different contexts. This way, users can express multiple text orders (Peroni and Vitali 2009, section 4.1; Di Iorio et al. 2009; Peroni et al. 2014). However, multi-orderedness is not identical to
 partially-orderedness. To our knowledge, expressing diverging and converging
 paths through the text stream (our definition of partially-ordered information)
 is currently not parsable in EARMARK.

TAGML
We have defined non-linear text as partially ordered information, and we have
 emphasized that it is desirable for a markup system to natively represent
 partially-ordered information. Now let's move on to the approach of TAG. This
 section first describes the pipeline of the TAGML parser. It subsequently
 illustrates the operations of the parser with three examples of textual variation
 within a manuscript fragment: a single deletion, an immediate deletion, and a
 grouped revision. For each example, we show the TAGML transcription and the Abstract
 Syntax Tree (AST) that is created by the TAGML parser.
Note that a draft manuscript can present a huge number of complex textual
 variations (substitutions within substitutions within substitutions, transpositions
 of multiple segments, revisions within a word, etc). For this paper, we selected
 three short examples, lest the visualisations of the ASTs becomes too large and
 uninformative.
TAGML Pipeline
Figure 3 presents a schematic
 representation of the TAGML processing pipeline.
Figure 3: TAGML pipeline
[image:]
The TAGML processing pipeline. The input is a TAGML document, the
 output is an Abstract Semantic Graph.

The input of the pipeline is a TAGML document that contains a combination of
 text and markup. Markup tags indicate whether the text is fully ordered,
 partially ordered, or unordered.[9] The TAGML document is first tokenized by the TAGML lexer which produces
 a stream of TAGML tokens; each token contains information about its position in
 the TAGML document, its type, and its length. We will discuss the lexer in more
 detail below. The stream of TAGML tokens is subsequently parsed with an
 ANTLR-generated parser that uses TAGML grammar, resulting in an AST of the input
 TAGML document. The most up-to-date version of the TAGML grammar can be found on
 Github. From the AST, an Abstract Semantic Graph (ASG) can be
 generated. In the TAG data model, the ASG is implemented either as a
 Multi-Colored Tree (MCT) or a hypergraph.[10] In a tree model the markup elements start at the top level and are
 (almost) all above the text elements, which are at the bottom in leaf nodes. In
 contrast, the TAG hypergraph model has the text elements at the centre of the
 model. The relationship between Text nodes and Markup nodes is expressed by
 hyperedges.

Examples
The examples in this section come from the authorial notebooks of Virginia
 Woolf's To the Lighthouse, written between 1926
 and 1927 (Woolf 1927). Digital facsimiles of the notebook
 pages are available via the digital archive Woolf Online.[11] Of each example we show four representations: the manuscript fragment,
 the TAGML transcription, its AST as produced by the parser, and its hypergraph
 representation. Again, we'd like to point out that these examples are selected
 for their simplicity; more complex examples would result in an exceptionally
 large AST visualisation that won't fit into this paper.
Single deletion
Figure 4: Manuscript fragment with a single deletion
[image:]
A deleted word on a fragment of Virginia Woolf's manuscript of
 To the Lighthouse, Fol. 9;
 SD. p. 4.

If we follow the tag suggestions of the TEI Guidelines for
 transcription of primary sources and map them to TAGML,[12] a textual fragment with the deletion can be represented as follows:
 [TEI>[s>it seemed [?del>indeed<?del] as if it were now settled<s]<TEI]
The
 question mark prefix in the [?del> tag indicates that the
 element and its textual content are optional, thus two ways of reading the
 text. When processed by the TAGML parser, the following AST is produced:

 Figure 5: AST of a single deletion
[image:]
Visualisation of the AST of a single deletion.

The TAGML grammar is context-sensitive,[13] and a TAGML document consists of one or more chunks. Each chunk can
 contain either a start tag, an end tag, text, or text variation. In this
 diagram, the TAGML tokens are visualized in the blue leaf nodes. The fact
 that the lexer has different modes enables us to reuse a (sequence of)
 character(s). Based on their position in the TAGML document, the same
 characters may get a different function. For example, if the lexer is in the
 'Default'-mode, a left square bracket [is identified as the
 start of a markup opener, so the lexer switches to the 'Inside Markup
 Opener'-modus. The lexer remains in this modus until it encounters a token
 that prompts it to switch to another modus, in this case that could be the
 > token, which triggers the lexer to switch back to the
 'Default'-modus ('pop mode // back to default'). The diagram shows how a
 TAGML token can trigger the shift to a different modus: the modes of the
 lexer are visualized in red and connected to the tokens that trigger
 them.
From the resulting AST a Multi-Colored Tree or a hypergraph can be
 generated. Because hypergraphs are more suitable to represent non-linear
 information, we will show the hypergraph for each TAGML document. Note that
 the AST only expresses the syntactic structure of the TAGML document, which
 means the start tags and end tags are not linked. Going from an AST to a
 hypergraph, then, means that the start and end tags will need to be
 reconnected in order to form Markup nodes in the hypergraph.
Figure 6: Hypergraph visualisation of a single deletion
[image:]
A visualisation of the hypergraph of the single deletion, with
 the markup information in labeled hyperedges. Here, the Text
 nodes form a directed graph and the text can be read from left
 to right, following the arrows. The visualisation shows the two
 paths through the text that imply that the text can be read in
 two different ways: one version of the text includes the deleted
 word indeed, and one version excludes it. The
 Markup nodes connected to the Text nodes are visualized as
 coloured spheres. For example, the Markup node labeled
 del is connected to the Text node
 indeed.

Immediate deletion
Figure 7: Manuscript fragment of an immediate deletion
[image:]
An immediate deletion (currente
 calamo) on a fragment of Virginia Woolf's
 manuscript of To the
 Lighthouse, Fol. 9; SD. p. 4.

In TAGML, the immediate deletion is expressed as follows:
 [TEI>[s>The [del>im<del] picture of stark & compromising severity.<s]<TEI]

 Note that the [del> does not have an optional prefix
 ? because we interpret an immediate revision as part of the
 same writing stage as the rest of the text. This means there is just one
 reading of the text and that reading includes two deleted text characters
 im.
Figure 8: AST of an immediate deletion
[image:]
An AST of the immediate deletion encoded in TAGML. The
 different modes of the lexer are visualized in red. Note, for
 instance, how the lexer interprets text characters either as
 Text or as a markupName depending on its current modus
 (respectively 'Default'-modus or
 'InsideMarkupOpener'-modus).

Figure 9: Hypergraph of an immediate deletion
[image:]
Visualisation of the hypergraph as generated from the AST
 above. Because the immediate deletion is taken as part of the
 running text, the text in the hypergraph has no branches: there
 is only one way of reading the text. The fact that the text
 characters im are deleted is represented by
 associating the Text node with a Markup node labeled
 del.

Grouped revision
Figure 10: Manuscript fragment of a grouped revision
[image:]
A grouped revision on a fragment of Virginia Woolf's
 manuscript of To the
 Lighthouse, Fol. 15; SD p. 7.

A grouped revision is a clear example of non-linear, partially
 ordered information: alternative readings for the same point in the text. In
 the TAGML syntax, the branching of the text stream is indicated with
 <|, the individual branches are separated with a
 vertical bar | and the converging of the branches is indicated
 with a |>. Individual branches contain markup and text. The
 present example can thus be encoded like this:
 [TEI>[s> something <|[del>trustful<del]|[add>trusting<add]|>, something childlike<s]<TEI]
As
 we will see in the visualization of the AST below, the TAGML parser will
 recognize and interpret the divergence and convergence signs, so that the
 content of the branches is considered variant text ('ITV_text').
Figure 11: AST of a grouped revision
[image:]
This visualization of the AST of the grouped revision example
 shows how the lexer switches constantly between modes. This
 ensures that the parser has the right information and can
 interpret non-linear, partially ordered information as it was
 intended by the human encoder: as an indication of two readings
 of the same point in the text.

Figure 12: Hypergraph of a grouped revision
[image:]
This hypergraph visualization demonstrates the concept of
 branches by showing how the text diverges into two branches
 after the word something. Each branch contains
 both text and markup. The information in the branches is
 mutually exclusive: when read from left to right, the text in
 the hypergraph either reads something trustful, something
 childlike or something trusting, something
 childlike. The branches converge again after the
 text variation ends.

Taken together, the different visualizations of in-text revisions
 illustrate how TAG and TAGML allow for a natural and idiomatic digital
 representation of in-text variation, one that we think comes as close as
 possible to how a human encoder understands it. The next section will look
 at ways to transfer this understanding to a collation tool.

Analysing non-linear text: collation
Related work
We defined collation at its most basic level as the comparison of two or more
 versions (witnesses) of a text to find (dis)similarities between or
 among them. As mentioned above, collation software typically does not excel at
 handling markup within individiual witnesses: they collate the witnesses looking at
 the plain text – either ignoring all tags and attributes or requiring users to
 remove them in a pre-processing phase – or transform the markup to plain text
 characters so that the tags are collated but their meaning ignored. In either case,
 any partially ordered information is overlooked. Still, because the requirement of
 including (certain) markup elements in the collation process continues to exist,
 scholars have invented some nifty ways to work around the limitations of prevalent
 collation software. We distinguish three main approaches, which are briefly
 discussed in the following paragraphs: 	Creating additional witnesses for each in-text revision;

	Passing along markup for postprocessing;

	Comparing structured (data-centric) XML files.

Creating additional witnesses for each in-text revision
Section 3.1.2 (Stand-off approaches) described how users of the MVD
 technology can create separate layers for each occurrence of in-text variation.
 These layers can subsequently be used as temporary witnesses for the plain text
 collation. Using the MVD collation functionality 'Compare', the temporary
 witnesses and the base texts are compared to one another. Both the official text
 versions and their temporary layers are merged into one MVD, which stores the
 text shared by each version and layer only once, similar to a variant graph.
 'Compare' does not recognize markup elements and consequently does not
 differentiate between text and markup. In fact, it is not quite correct to say
 that the collation program ignores the markup information about non-linearity:
 the markup was never there in the first place.[14] The result of the collation is an MVD variant graph containing in-text
 revisions as well as between-document variation. In the variant graph, in-text
 non-linear structures (i.e., within one witness) are distinguished from external
 variation (i.e., between witnesses) by sigla.

Passing along markup
Some collation tools allow for markup elements to be passed on through their
 pipeline. The markup elements are ignored during the alignment process, but they
 are present in the output and can then be used for further analysis or
 visualisation purposes.
Juxta Commons accepts TEI/XML encoded files for collation. The tool offers an
 interface that lists all TEI/XML elements contained by the input witness; the
 user can select which elements should be part of the collation and which can be
 filtered out. The TEI/XML elements are not part of the alignment process proper:
 they are saved as stand-off annotations to the text tokens and passed-on through
 the collation pipeline. The elements can be visualized in the heat map
 representation of the collation result, which shows deletions in red and
 additions in green. In other output formats of Juxta, the <add>
 and tags are no longer there.
Another method to pass along markup through the collation pipeline requires
 coding on the side of the editor who interacts with the underlying code of the
 collation tool. We illustrate this approach by looking at the software CollateX.[15] The JSON input format for CollateX allows for extra properties to be
 added to words. In a preprocessing step, the text is tokenized and transformed
 into JSON word tokens. Editors can make a selection of markup elements that they
 wish to attach to the JSON token as a t property (the
 t standing for token). The collation is
 executed using the value of the token's n property
 (n for normalized), but the selected
 markup is included in the JSON alignment table output via the
 t property, and can be processed in the visualisation
 of the alignment table. This approach does approximate the goal of having
 in-text revisions marked as non-linear text in both in- and output, but at the
 point of alignment, the collation algorithm is unaware of any non-linearity in
 the witness' text and treats the partially ordered information as a linear
 structure.

Comparing data-centric XML
Finally, there are several approaches to comparing XML trees (Barabucci et al. 2016, Ciancarini et al. 2016). Some XML editors, like
 oXygen, have a built-in XML comparison function. In theory, this approach would
 allow for the comparison of TEI/XML transcriptions containing non-linear
 information encoded with subst or app elements. The
 comparison functionality is primarily developed for structured, record-based XML
 documents – e.g., XML documents containing address information such as person
 name, address, age – and the documents are compared on the level of the XML
 elements.
Comparing two record-based XML documents results in an overview of the
 difference in markup. For example, an add element in witness A
 would be aligned with an add element that is on the same relative
 location in witness B. Note that these matches are made on the element level and
 not on level of the textual content.
 Textual scholars studying the revisions in literary texts, however, would
 typically give preference to the textual content.
The DeltaXML software does detect and display changes between two XML
 documents, either on the level of the XML elements or on the level of the text
 content. (Delta XML) Their Document comparator tool compares two XML documents and merges them
 into a new XML document that contains additional attributes representing the
 variation. What is more, DeltaXML provides the option to identify
 orderless containers: XML elements whose children can
 be arranged in an order that is not considered significant.
 Orderless containers are marked by placing the
 deltaxml:ordered="false" attribute on the element so that all
 its children will be considered to occur in any order. It's a description that
 seems to apply to our interpretation of the subst, the
 app and the choice elements. Comparing XML
 documents that contain a combination of ordered and orderless data (i.e., the
 children of some XML elements are ordered, but others are orderless) remains,
 according to the DeltaXML developers, a challenge. They propose
 to solve it by preprocessing the input XML documents.[16]
That data-centric XML comparison methods usually do not work for text-centric
 encoded documents has already been pointed out by Di Iorio et al., who wrote
 that although XML is used to encode both literary documents and database
 dumps, there is something different from diff-ing an
 XML-encoded literary document and an XML-encoded database (Di Iorio et al. 2009, emphasis in original). In the case of comparing an
 encoded literary document, the authors state, the output of a diff should be
 evaluated on its naturalness, that is: for an algorithm to identify the changes
 that would be identified by a manual, human approach. To this end, Di Iorio et
 al. developed the implementation JNDiff.[17] Di Iorio et al. were right to point out that the comparison of encoded
 literary documents is quite unique. In the majority of cases, the collation of
 such documents needs to take place on the level of the text. Rather than being
 compared, the markup indicating in-text revision needs to be
 interpreted as it was indented by the encoder:
 identifying the start and end of textual variation.

HyperCollate
In developing HyperCollate, we assumed the need for a collation tool that, first,
 recognizes the multiple writing stages within each witness text and, secondly,
 chooses the best match from these different stages. This implies that the non-linear
 structures in an encoded text need to be recognized by the collation program, and
 that the program needs to take this information into account during the alignment
 process. The technical implications are, first, that the input witnesses are not
 treated as a linear string of characters, but as hypergraphs consisting of partially
 ordered information. Secondly, that the collation program recognizes this partially
 ordered information and processes it accordingly.
As a result, a multidimensional text containing multiple revision stages would no
 longer have to be flattened before collation. More importantly, we
 estimate that the collation result would approximate the way a human editor would
 collate the texts. Accordingly, the collation tool would effectively support and
 advance scholarship.
HyperCollate's approach
HyperCollate takes as input two TAG hypergraphs of the individual witnesses.
 Note that each hypergraph may contain a combination of ordered, partially
 ordered and unordered information. The partially ordered information is
 represented as two or more branches in the hypergraph, with the text nodes in
 these branches having the same position in the text vis-à-vis the document root
 node (see the hypergraph visualisations in section 3.2.2 Examples).
The computational pipeline of HyperCollate can be visualized as follows:

 Figure 13: The HyperCollate pipeline
[image:]
A visualisation of HyperCollate's approach, to be read from the
 upper left to the upper right corner; then from the lower left to
 the lower right corner.

 For each hypergraph witness, the textual content is first tokenized into text tokens. By default, the text
 nodes are segmented on whitespace and punctuation. Note that the output of the
 tokenizer is not a linear stream of tokens: the tokens contain information about
 their distance vis-à-vis the root note (their depth), and in the
 case of non-linearity there may be more than one text token at the same
 position. The two witnesses are subsequently aligned. Alignment here means that HyperCollate calculates the
 smallest possible number of changes needed to change one set into the other.
The output of that alignment is a set of matching tokens. Again, the tokens in
 this set contain information about their depth, and there may be more than one
 text token on the same position. Based on the information from this set of
 matches, the two witness hypergraphs are merged
 into a new collation hypergraph that contains all information about the Text
 nodes and the Markup nodes of the input witnesses. All the nodes that are not
 aligned are unique to one of the two witnesses; all the nodes that are aligned
 can be reduced from two to one node, with labels on the edges indicating which
 node is part of which witness.
For every witness, then, there is always a fully connected path of Text nodes
 through the collation hypergraph: from the start node to the end node, following
 the sigla on the edges. Labeled hyperedges are used to associate the Markup
 node(s) with the Text nodes. The collation hypergraph can be visualized as an
 ASCII table or a collation graph (in .dot, SVG or PNG format). In the case of >2
 witnesses, the collation output could also be used as the basis for a new
 collation following the progressive alignment-method (Spencer and Howe 2004).

Examples
In the paragraphs below, we return to the examples from section 3.2.2 Examples. Each example text fragment is collated with
 HyperCollate against another version of the same text that can be found in the
 print proofs of To the Lighthouse Woolf 1927.[18] The HyperCollate output, a collation hypergraph, can be visualized in
 multiple ways, from an ASCII alignment table to an SVG graph. Each format has
 its own level of information density. Here, we provide an alignment table
 visualisation and an SVG collation graph visualisation to illustrate what
 differences this density makes: a simpler visualization may be clearer, but it
 may lack relevant information about the textual variance and/or the markup.
Single deletion
Input witness 1:
 [TEI>[s>it seemed [?del>indeed<?del] as if it were now settled<s]<TEI]

Input witness 2:
 [TEI>[s>as if it were settled<s]<TEI]

Figure 14: Alignment table visualisation of the collation output
[image:]
The [-] in front of the text token 'indeed' is
 how HyperCollate visualizes that this token is marked as a
 deletion in the input. However, this simple alignment table
 visualisation does not show that there are two different paths
 through the text of witness 1.

Figure 15: Collation graph visualisation of the collation output
[image:]
A collation hypergraph visualisation of the output of
 HyperCollate. As with a standard variant graph, the matching
 Text tokens are merged; only the variant Text tokens are made
 explicit. The witness sigla, represented on the edges as well as
 in the vertices of the collation hypergraph, indicate which
 tokens belong to which witness. Furthermore, vertices include a
 path to the markup associated with each Text node. In this
 visualisation, the two paths through the text of witness 1 are
 visible.

Immediate deletion
Input witness 1:
 [TEI>[s>he appeared the [del>im<del] picture of stark & compromising severity.<s]<TEI]

Input witness 2:
 [TEI>[s>he appeared the image of stark & compromising severity.<s]<TEI]

Figure 16: Alignment table visualisation of the collation output
[image:]
This alignment table visualisation shows that the text
 characters 'im' (an immediate deletion in witness 1) align with
 the word 'image' in witness 2. Note that aligned
 is not the same as match: two tokens may be
 placed above each other because they are at the same relative
 position between two matches, even though they do not constitute
 a match. Still, by including the deletion in the collation we
 see that Woolf deleted the word 'image' and opted for 'picture'
 in her draft manuscript, but that based on the print proofs she
 went with 'image' after all.

Figure 17: Collation graph visualisation of the collation output
[image:]
Visualisation of the collation hypergraph. The variant graph
 visualisation can include more information than an alignment
 table, which makes it a useful visualisation to analyse the
 collation outcome in more detail. Note, for instance, that this
 visualisation shows that the Text tokens 'im' (witness 1) and
 'image' (witness 2) are indeed not considered matches by
 HyperCollate.

Grouped revision
Input witness 1:
 [TEI>[s>something <|[del>trustful<del]|[add>trusting<add]|>, something childlike <s]<TEI]

Input witness 2:
 [TEI>[s>something trustful, something childlike <s]<TEI]

Figure 18: Alignment table visualisation of the collation output
[image:]
The alignment table visualisation of HyperCollate presents
 grouped revisions in a single cell, to indicate that there are
 two optional readings for the same position in the text.

Figure 19: Collation graph visualisation of the collation output
[image:]
Looking at the markup information in the vertices of this
 collation hypergraph, we see that the Text token 'trustful' has
 different markup in witness 1 compared to witness 2. Still,
 because HyperCollate takes the text as leading, the Text tokens
 are merged into one vertex.

Discussion
The contribution concentrated on representing in-text variation in TAGML and
 subsequently collating that information with HyperCollate. We described how the TAG
 model understands textual variation within one text version as non-linear, partially
 ordered information. The TAGML syntax allows encoders to express partially ordered
 information in a straightforward manner.
Partially ordered information is recognized and processed as such by the TAGML parser,
 and stored as multiple branches in a hypergraph for text. The Text tokens within each
 branch are mutually exclusive and have the same depth, meaning that they are both at the
 same distance from the root document node of the hypergraph.
HyperCollate is a hypergraph-based collation program that implements the TAG model.
 HyperCollate aligns Text tokens based on their relative position in the text as well as
 their depth in the hypergraph. The program recognizes the branches in the input
 hypergraphs: if two Text tokens have the same position number, the program finds the
 best match between them. The output of HyperCollate is a collation hypergraph that can
 be visualized in different ways; in this paper we showed an alignment table and a
 variant graph visualization.
Presently, the TAG approach to transcription and collation takes the text as leading,
 using the markup as basis to recognize in-text variation as partially ordered
 information. Nevertheless, future work could look into aligning hypergraphs while
 looking at other types of markup, e.g., paragraph or sentence breaks. This would be a
 drastic adjustment to the collation algorithm, though, because it would require
 HyperCollate to prioritize not only the text, but also the markup. Another topic of
 further work is the TAG query language (TAGQL) in order to query the information of both
 individual TAGML documents and the collation hypergraph.[19]
Finally, we continue working on the different output formats of the collation.
 Currently, the collation output can be visualized as an ASCII table or a collation graph
 (in .dot, SVG, or PNG format). The examples used in this contribution were small text
 fragments and simplified TAGML transcriptions for a reason: representing and collating
 two larger TAGML transcriptions, each containing several stages of revisions, would
 result in an AST and a collation hypergraph that, in their entirety, cannot be
 visualized in any meaningful way for the reader. In fact, the TAGML input and
 HyperCollate output contain a much larger variety of textual information than the
 visualization of a collation hypergraph. Since this information can be of instrumental
 value to a deeper study of the text, a future aim of HyperCollate is to provide an
 output in a TAGML-format. This could be similar to the TEI critical apparatus, and would
 allow scholars to continue their textual analysis on the collation output.

Conclusion
So far, all of our contributions to Balisage are characterized by an aspect of
 'ongoing research' and the same applies to this contribution. Among other things,
 HyperCollate is not yet operating optimally and TAGML does not have a fully functioning
 query language yet. Nevertheless, we hope to have shown the value of looking beyond the
 prevalent standard and continuing to question how we think about, represent, and analyse
 texts digitally.
As more processes are automated and new methods spring from using digital
 technologies, we have more and better digital instruments to map the writing process.
 But we need to pay equal attention to the thoughts that go into making these
 instruments: how are scholarly activities automated? And how does that affect our
 understanding of and interaction with text? In short: it is important that textual
 scholars continue to explore different options and to critically evaluate to what extent
 a data model addresses their research needs.
The underlying goal of our contribution was therefore to provide transparency about
 the way a TAGML document is parsed and subsequently collated. We illustrated how we
 transferred our human understanding of in-text variation to the computer and how this
 intelligence is used to improve the alignment of textual witnesses. In testing, we have
 found that HyperCollate's more refined collation technology allows scholars to closely
 examine different forms of textual variation and to discover patterns in the writing
 processes of literary authors. We can see this even with the small examples of Woolf's
 text used in this contribution: in two of the three cases a word that was deleted in the
 draft version reoccurred in the print proofs.
We consider HyperCollate as an inclusive approach to collation: scholars are no longer
 required to 'flatten' the manuscript text, to dive deep into the code of the collation
 software, or to create additional transcriptions solely for collation purposes. Instead,
 they can preserve and use the information about an author's creative revision process
 and arrive at a collation result that may reveal information previously hidden.

Works cited
[Alexandria] Alexandria.
 https://huygensing.github.io/alexandria/ ; Information about installing and
 using the Alexandria command line app is available at
 links on the TAG portal at https://huygensing.github.io/TAG/.
[Barabucci et al. 2016] Barabucci, Gioele, Paolo
 Ciancarini, Angelo Di Iorio, and Fabio Vitali. Measuring the quality of diff
 algorithms: a formalization. In Computer Standards
 & Interfaces, vol. 46 (2016), pp. 52-65. doi:https://doi.org/10.1016/j.csi.2015.12.005.
[Barrellon et al. 2017] Barrellon, Vincent,
 Pierre-Edouard Portier, Sylvie Calabretto, and Olivier Ferret. Linear extended
 annotation graphs. In Proceedings of ACM Document
 Engineering, Malta, September 2017 (2017). doi:https://doi.org/10.1145/3103010.3103011. Online available.
[Beshero-Bondar 2017] Beshero-Bondar, Elisa
 Eileen. Rebuilding a Digital Frankenstein by 2018: Reflections toward a Theory of
 Losses and Gains in Up-Translation. Presented at Symposium on Up-Translation
 and Up-Transformation: Tasks, Challenges, and Solutions, Washington, DC, July 31, 2017.
 In Proceedings of the Symposium on Up-Translation and
 Up-Transformation: Tasks, Challenges, and Solutions. Balisage Series on Markup
 Technologies, vol. 20 (2017). doi:https://doi.org/10.4242/BalisageVol20.Beshero-Bondar01.
[Beshero-Bondar and Viglianti 2018] Beshero-Bondar, Elisa E., and Raffaele Viglianti. Stand-off Bridges in the
 Frankenstein Variorum Project: Interchange and Interoperability within TEI Markup
 Ecosystems. Presented at Balisage: The Markup Conference 2018, Washington,
 DC, July 31 - August 3, 2018. In Proceedings of Balisage: The
 Markup Conference 2018. Balisage Series on Markup Technologies, vol. 21
 (2018). doi:https://doi.org/10.4242/BalisageVol21.Beshero-Bondar01.
[Birnbaum 2015] Birnbaum, David J. Using
 CollateX with XML: Recognizing and Tracking Markup Information During
 Collation. Blogpost, published on June 28, 2015 under Computer-supported collation with CollateX. Available on
 http://collatex.obdurodon.org/xml-json-conversion.xhtml.
[Birnbaum et al. 2018] Birnbaum, David J., Elisa
 E. Beshero-Bondar and C. M. Sperberg-McQueen. Flattening and unflattening XML
 markup: a Zen garden of XSLT and other tools. Presented at Balisage: The
 Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup Conference 2018. Balisage Series on
 Markup Technologies, vol. 21 (2018). doi:https://doi.org/10.4242/BalisageVol21.Birnbaum01.
[Bleeker 2017] Bleeker, Elli. Mapping
 invention in writing: digital infrastructure and the role of the genetic
 editor. Ph.D. thesis, University of Antwerp (2017). Available via
 https://repository.uantwerpen.be/docman/irua/e959d6/155676.pdf.
[Bleeker et al. 2018] Bleeker, Elli, Bram
 Buitendijk, Ronald Haentjens Dekker, and Astrid Kulsdom. Including XML markup in
 the automated collation of literary texts. Presented at XML Prague 2018,
 Prague, Czech Republic, February 8–10, 2018. In XML Prague 2018 -
 Conference Proceedings (2018), pp. 77–95. Available via
 http://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf.
[Bleeker et al. 2019] Bleeker, Elli, Bram
 Buitendijk and Ronald Haentjens Dekker. Between Freedom and Formalisation: a
 Hypergraph Model for Representing the Nature of Text. Long paper presented
 at the TEI Conference and Members meeting 2019, September 16-20 2019, Graz, Austria.
 Slides available from: https://zenodo.org/record/3929350. doi:https://doi.org/10.5281/zenodo.3929350.
[Ciancarini et al. 2016] Ciancarini, Paolo, Angelo
 Di Iorio, Carlo Marchetti, Michelle Schririnzi, and Fabio Vitali. Bridging the gap
 between tracking and detecting changes in XML. In Software: Practice and Experience, vol. 46, no. 2 (2016), pp.
 227-250. doi:https://doi.org/10.1002/spe.2305.
[CollateX] CollateX.
 https://pypi.python.org/pypi/collatex.
[Dekhtyar and Iacob 2005] Dekhtyar, Alex, and
 Ionut Emil Iacob. A Framework for Management of Concurrent XML Markup. In
 Data and Knowledge Engineering, vol. 52, no.2, pp.
 185-215 (2005). doi:https://doi.org/10.1016/j.datak.2004.05.005.
[Delta XML] DeltaXML, v. 2019-09-12.
 https://www.deltaxml.com/.
[Di Iorio et al. 2009] Di Iorio, Angelo,
 Michele Schirinzi, Fabio Vitali, and Carlo Marchetti. A natural and multi-layered
 approach to detect changes in tree-based textual documents. In International Conference on Enterprise Information Systems,
 pp. 90-101. Springer: Berlin, Heidelberg (2009). doi:https://doi.org/10.1007/978-3-642-01347-8_8.
[Haentjens Dekker and Birnbaum 2017] Haentjens Dekker, Ronald and David J. Birnbaum. It’s more than just overlap:
 Text As Graph. Presented at Balisage: The Markup Conference 2017,
 Washington, DC, August 1–4, 2017. In Proceedings of Balisage: The
 Markup Conference 2017. Balisage Series on Markup Technologies, vol. 19
 (2017). doi:https://doi.org/10.4242/BalisageVol19.Dekker01.
[Haentjens Dekker et al. 2018] Haentjens
 Dekker, Ronald, Elli Bleeker, Bram Buitendijk, Astrid Kulsdom and David J. Birnbaum.
 TAGML: A markup language of many dimensions. Presented at Balisage:
 The Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup Conference 2018. Balisage Series on
 Markup Technologies, vol. 21 (2018). doi:https://doi.org/10.4242/BalisageVol21.HaentjensDekker01.
[Huitfeldt and Sperberg-McQueen 2003] Huitfeldt,
 Claus, and C. M. Sperberg-McQueen. TexMECS: An experimental markup meta-language
 for complex documents. Last revised on October 5, 2003. Available online.
[Van Hulle et al. (editors) 2019] Van Hulle,
 Dirk, Mark Nixon, And Vincent Neyt, editors. Samuel Beckett's Digital
 Manuscript Project. Antwerp: University Press Antwerp.
 http://www.beckettarchive.org, last updated in 2019.
[Juxta] Juxta Commons.
 http://juxtacommons.org/ and
 http://www.juxtasoftware.org/.
[LMNL data model] LMNLWiki. LMNL data
 model. From the Lost Archives of LMNL.
 http://lmnl-markup.org/specs/archive/LMNL_data_model.xhtml.
[Marcoux et al. 2012] Marcoux, Yves, Claus
 Huitfeldt and C. M. Sperberg-McQueen. The MLCD Overlap Corpus (MOC): Project
 report. Presented at Balisage: The Markup Conference 2012, Montréal, Canada,
 August 7 - 10, 2012. In Proceedings of Balisage: The Markup
 Conference 2012. Balisage Series on Markup Technologies, vol. 8 (2012).
 doi:https://doi.org/10.4242/BalisageVol8.Huitfeldt02.
[Ostrowski et al.] Ostrowski, Donald, David J.
 Birnbaum, and Horace G. Lunt. The e-PVL: An electronic edition of the Rus'
 primary chronicle. Via http://pvl.obdurodon.org/.
[Peroni and Vitali 2009] Peroni, Silvio and
 Fabio Vitali. Annotation with EARMARK for Arbitrary, Overlapping and Out-of-Order
 Markup. Presented at the DocEng’09 conference, September 16-18, 2009. In
 Proceedings of the 2009 ACM Symposium on Document Engineering
 (2009), pp. 171-180. ACM: New York. doi:https://doi.org/10.1145/1600193.1600232.
[Peroni et al. 2014] Peroni, Silvio, Francesco
 Poggi and Fabio Vitali. Overlapproaches in documents: a definitive classification
 (in OWL, 2!). Presented at Balisage: The Markup Conference 2014, Washington,
 DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup
 Conference 2014. Balisage Series on Markup Technologies, vol. 13 (2014).
 doi:https://doi.org/10.4242/BalisageVol13.Peroni01.
 https://www.balisage.net/Proceedings/vol13/html/Peroni01/BalisageVol13-Peroni01.html.
[Piez 2008] Piez, Wendell. LMNL in
 miniature. An introduction. Amsterdam Goddag Workshop, 1–5 December 2008.
 http://piez.org/wendell/LMNL/Amsterdam2008/presentation-slides.html.
[Portier et al. 2012] Portier, Pierre-Édouard,
 Noureddine Chatti, Sylvie Calabretto, Elöd Egyed-Zsigmond and Jean-Marie Pinon.
 Modeling, Encoding And Querying Multi-structured Documents. In
 Information Processing & Management, vol. 48,
 no. 5 (2012), pp. 931-955. doi:https://doi.org/10.1016/j.ipm.2011.11.004.
[Schmidt 2008] Schmidt, Desmond. What is
 a Multi-Version Document? Blogpost, published on March 5, 2008.
 https://multiversiondocs.blogspot.com/2008/03/whats-multi-version-document.html.
[Schmidt and Colomb 2009] Schmidt, Desmond,
 and Robert Colomb. A data structure for representing multi-version texts
 online. In International Journal of Human-Computer
 Studies, vol. 67, no.6 (2009), pp. 497-514. doi:https://doi.org/10.1016/j.ijhcs.2009.02.001.
[Schmidt and Fiormonte 2010] Schmidt, Desmond,
 and Domenico Fiormonte. Multi-Version Documents: A digitisation solution for
 textual cultural heritage artefacts. In Intelligenza
 Artificiale, vol. 4, no. 1 (2010), pp. 56-61.
[Schmidt 2019] Schmidt, Desmond. A Model
 of Versions and Layers. In Digital Humanities
 Quarterly, vol. 13, no. 3 (2019), available from
 http://digitalhumanities.org/dhq/vol/13/3/000430/000430.html.
[Schonefeld 2007] Schonefeld, Oliver.
 XCONCUR and XCONCUR-CL: A constraint-based approach for the validation of
 concurrent markup. In Data Structures for Linguistic
 Resources and Applications. Proceedings of the Biennial GLDV Conference
 (2007).
[Spencer and Howe 2004] Spencer, Matthew and
 Christopher Howe. Collating Texts Using Progressive Multiple Alignment.
 In Computers and the Humanities, vol. 38 (2004), pp. 253-270.
 doi:https://doi.org/10.1007/s10579-004-8682-1.
[Sperberg-McQueen 2009] Sperberg-McQueen, C. M.
 Sometimes a question of scale. Presented at Balisage: The Markup
 Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009. Balisage Series on Markup
 Technologies, vol. 3 (2009). doi:https://doi.org/10.4242/BalisageVol3.Sperberg-McQueen02.
[TEI P5] Text Encoding Initiative Consortium.
 TEI P5: Guidelines for Electronic Text Encoding and
 Interchange. Version 4.0.0, last updated 13 February 2020. Available
 from:
 http://www.tei-c.org/release/doc​/tei-p5-doc/en​/html​/index.html.
[Vitali 2016] Vitali, Fabio. The
 expressive power of digital formats: Criticizing the manicure of the wise man
 pointing at the moon. Workshop lecture presented at the DiXiT Convention.
 Vol. 2. 2016. Slides available at
 http://dixit.uni-koeln.de/wp-content/uploads/Vitali_Digital-formats.pdf.
[Witt et al 2007] Witt, Andreas, Oliver
 Schonefeld, Georg Rehm, Jonathan Khoo, and Kilian Evang. On the Lossless
 Transformation of Single-File, Multi-Layer Annotations in Multi-Rooted
 Trees. In Proceedings of Extreme Markup Languages
 2007, Montréal, Canada, 2007. Available from:
 http://conferences.idealliance.org/extreme/html/2007/Witt01/EML2007Witt01.xml.
[Woolf 1927] Woolf, Virginia. 1927. To the Lighthouse. Holograph ms. Berg Collection, New York
 Public Library; Proofs, Smith College Libraries. Pamela L. Caughie, Nick Hayward, Mark
 Hussey, Peter Shillingsburg, and George K. Thiruvathukal, editors. Woolf Online.

[1] The authors express their gratitude to the reviewers for their extensive and insightful comments.
[2] Overlap is evidently a recurring favorite of the markup
 community and the past decades have witnessed a significant number of
 alternative markup languages and/or data models to represent overlapping
 structures. However, we argued elsewhere that there is much more to modeling
 complex texts than overlapping hierarchies alone (Haentjens Dekker and Birnbaum 2017). In the context of in-text revisions, Desmond Schmidt noted that
 solving the overlap problem does not necessarily solve the
 challenges of modeling textual variation: not all cases of textual
 variation are cases of overlapping hierarchies, and hence solutions to
 overlapping hierarchies cannot adequately represent textual
 variation (Schmidt and Colomb 2009, p. 499). Indeed, as the
 table in Figure 2 shows, data models developed to represent overlapping
 structures do not necessarily provide for expressing non-linear
 information.
[3] See the TEI Guidelines on the choice element.
[4] Note that the schema needs to be written in a language that supports
 unorderedness, such as XML schema.
[5] This is done for example in the Beckett Digital Manuscript Project (Van Hulle et al. (editors) 2019); see their editorial policy:
 https://www.beckettarchive.org/editorial.jsp.
[6] For some examples of discontinuity and overlap in literary text, see
 Bleeker et al. 2019.
[7] Note that while the extended Annotation Graphs-model is a stand-off
 annotation model, its syntax LeAG is an inline markup syntax.
[8] The practice of splitting individual files into multiple layers is
 also promoted by Witt et al 2007. This transforms different
 sets of linguistic corpora into a set of separate XML documents that
 have identical text, but different annotations.
[9] An example of unordered information is metadata.
[10] Technically, an ASG is a Directed Acyclic Graph (DAG) and the
 hypergraph is a rooted mixed property hypergraph. But conceptually they
 can be considered as similar, so in this context we will take the TAG
 hypergraph also as an implementation of the ASG.
[11] We are grateful to and acknowledge the Society of Authors as the
 literary representative of the Estate of Virginia Woolf. The Woolf
 material may not be used for commercial purposes. Please credit the
 copyright holder when reusing Woolf's work.
[12] It is currently not an official part of our research to map the
 TEI semantics to TAGML, but we intend to work towards TAGML being an
 alternative expression of TEI.
[13] Because TAGML allows markup ranges to overlap, the markup does not
 have to be closed in the exact reverse order in which it was opened,
 like with XML. This makes the TAGML grammar context sensitive. The
 ANTLR4 grammar used in the TAGML library, however, is context-free, because ANTLR4 does not
 provide a way to encode context-sensitive grammars. The current
 parser that is generated from the grammar cannot check whether every
 open tag (eg. [tag>) is eventually followed by a
 corresponding close tag (<tag]). This and other
 validity checks are done in post-processing. We are currently
 examining how to build a context-sensitive parser that does not
 require post-processing.
[14] Bleeker 2017, pp. 106-114, elaborates on the MVD
 "Compare" technology and why it will not always produce the desired
 results for the study of textual variation.
[15] A number of projects make use of CollateX' option to pass along
 information about relevant markup elements through the collation
 pipeline, e.g., the Beckett Digital Manuscript Project (Van Hulle et al. (editors) 2019), the critical edition of the Primary Chronicles of David J. Birnbaum
 (Ostrowski et al.; Birnbaum 2015) and the
 Frankenstein Variorium Project (Beshero-Bondar and Viglianti 2018).
[16] See the project page of the DeltaXML Document comparator, last
 accessed August 20, 2020.
[17] Unfortunately we have not been able to test JNDiff as it has not been
 updated since 2014 and it is not clear whether it is still
 maintained.
[18] Digital facsimiles of the page proofs are also available via the
 digital archive Woolf Online. The same copyright notice applies.
[19] In recognition of the crucial role TEI/XML plays in the text encoding
 community, we already provide a TAGML-to-XML export function. A TAGML file
 uploaded in the Alexandria database can be
 exported to XML with the alexandria export-xml [filename] -o
 [filename].xml command. This will export the specified TAGML document
 as XML. Of course, the conversion from hypergraph to tree implies information
 loss. Overlapping hierarchies are represented in the XML output as Trojan Horse
 markup. See for more information the Alexandria
 documentation. (Alexandria)

Balisage: The Markup Conference

Marking up microrevisions with major implications: Non-linear text in TAG
Elli Bleeker
Researcher, Research and Development
Research and Development Group, Netherlands Academy for Arts and
 Sciences

<elli.bleeker@di.huc.knaw.nl>
Elli Bleeker is a postdoctoral researcher in the Research and Development Team
 at the Humanities Cluster, part of the Royal Netherlands Academy of Arts and
 Sciences. She specializes in digital scholarly editing and computational
 philology, with a focus on modern manuscripts and genetic criticism. Elli
 completed her PhD at the Centre for Manuscript Genetics (2017) on the role of
 the scholarly editor in the digital environment. As a Research Fellow in the
 Marie Sklodowska-Curie funded network DiXiT (2013–2017), she received advanced
 training in manuscript studies, text modeling, and XML technologies for text
 modeling.

Bram Buitendijk
Software Developer, Research and Development
Research and Development Group, Netherlands Academy for Arts and
 Sciences

<bram.buitendijk@di.huc.knaw.nl>
Bram Buitendijk is a software developer in the Research and Development team
 at the Humanities Cluster, part of the Royal Netherlands Academy of Arts and
 Sciences. He has worked on transcription and annotation software, collation
 software, and repository software.

Ronald Haentjens Dekker
Head of Research and Development and Software Architect
Research and Development Group, Netherlands Academy for Arts and
 Sciences

<ronald.dekker@di.huc.knaw.nl>
Ronald Haentjens Dekker is a software architect and lead engineer of the
 Research and Development Team at the Humanities Cluster, part of the Royal
 Netherlands Academy of Arts and Sciences. As a software architect, he is
 responsible for translating research questions into technology or algorithms and
 explaining to researchers and management how specific technologies will
 influence their research. He has worked on transcription and annotation
 software, collation software, and repository software, and he is the lead
 developer of the CollateX collation tool. He also conducts workshops to teach
 researchers how to use scripting languages in combination with digital editions
 to enhance their research.

Balisage: The Markup Conference

content/images/Bleeker01-001.png
AL N ARk, s i Dot € LT i L 00t SRS W Ty Ty L o

aux plerres cwm toute une écume

content/images/Bleeker01-003.png
TAGML o

document s g

meT

content/images/Bleeker01-002.png
explicit hierarchy overlapping discontinuity | non-linearity self-overlap
structures
TEUXML ves no no depends: only fthe | no
schema supports.
unordered data
TexMECS depends (it supports multiple | yes. yes yes yes
hierarchies, butit's not always
clear to which hierarchy an
element belongs)
LMNL no yes no no yes
1eAG ves yes no no yes
XCONCUR | yes yes no no no
syntax
Concurrent yes yes no no yes
XML
TAGML ves yes yes yes yes

content/images/Bleeker01-005.png
[TEI> [s> it seemed [?del> indeed <?del] as if it were now settled <s] <TEI]

document

startTag g startTag

MariupName endOpenMeriup beginOpenMarkup endOpenarkup e
beginCloseMarkup —
EndCloseariup

MC_ IMC_
EndCloseMarkup EndCloseMarkup

beginOpenMarkup ‘endOpenMarkup beginOpenMarkup

DEFAULT_ DEFAULT_
e BeginCloseMarkup BeginCloseMarkup

MO_
EndOpenMarkup

DEFAULT_Text DEFAULT_ IMO_ DEFAULT_Text DEFAULT.

DEFAULT_ MO_
BeginOpenMriup EndOpentarkup BeginCloseMarkup

BoginOpenMarkup EndOpenMarkup

IMO_Prefix
RIGHT SQUARE RIGHT SQUARE

IMC_Prefix
LEFT SQUARE TagOpenEndChar RIGHT SQUARE

BRACKET TagCloseStartChar s [Recess ey BRACKET [Recess ey BRACKET

‘TagOpenEndChar

(-)

POP MODE:
backto DEFAULT

LEFT SQUARE
BRACKET ‘TagOpenEndChar

it seemed as if it were now settled

PUSH MODE: R PUSH MODE: -

Inside Mariup Inside Mariup
Closer (IMC) CecTbEEaly Closer (IMC) back to DEFAULT

POP MODE:
POP MODE:
packlo DEFAULT backto DEFAULT

POP MODE:
backto DEFAULT

content/images/Bleeker01-004.png

content/images/Bleeker01-007.png

content/images/Bleeker01-006.png

content/images/Bleeker01-009.png
picture of stark &
uncompromising severity

content/images/Bleeker01-008.png
[TEI> [s> he appeared the [del>im<del] picture of stark & uncompromising severity <s] <TEI]

document

chunk chunk chunk chunk chunk chunk chunk chunk

startTag text toxt

startTag startTag

MC_ IMC_
EndCloseMarkup EndCloseMarkup

IMC.
beginCloseMarkup. EndCloseMarkup

beginOpenMarkup ‘endOpenMarkup beginOpenMarkup

MariupName endOpenMeriup beginOpenMarkup endOpenarkup

DEFAULT_ DEFAULT_

DEFAULT_Text BeginCloseMarkup BeginCloseMarkup

DEFAULT_ IMO_

DEFAULT_Text
BoginOpenMarkup EndOpenMarkup

DEFAULT_
BeginCloseMarkup

o DEFAULT. Text

DEFAULT_ IMO_

BoginOpenNaiup Endopentariup Endopentariup

@ Qe appeared me>
-~

POP MODE:
backto DEFAULT

RIGHT SQUARE RIGHT SQUARE

RIGHT SQUARE TagCloseStartChar e ‘TagCloseStartChar e

LEFT SQUARE
‘TagOpenEndChar
‘TagCloseStartChar BRACKET

LEFT SQUARE
‘TagOpenEndChar e

BRACKET

picure of stark&

(

uncompromising severity

POP MODE: POP MODE:
backto DEFAULT backto DEFAULT

POP MODE:
backto DEFAULT

POP MODE:
backto DEFAULT

POP MODE:
backto DEFAULT

content/images/Bleeker01-010.png

content/images/Bleeker01-012.png

content/images/Bleeker01-011.png
[TEI> [s> something <|[del>trustful<del] | [add>trusting<add]|>, something childlike <s] <TEI]

document

chunk

textVariation

chunk chunk chunk chunk chunk chunk

variantText

BeginTextvariation variantText ITV_EndTextVariation

textVariationSeparator

endTag

text

MC_ MarkupName IMC_

StartTag TR ‘TagCloseStartChar BRACKET ‘TagOpenEndChar

beginOpenMarkup endOpenarkup beginOpenMarkup MarkupName endOpenarkup
MC. IMC_ EndCloseMarkup EndCloseMarkup
beginOpenMarkup endOpenMarkup beginCloseMarkup e beginOpenMariup endOpenarkup beginCoseMarkup EndCloseiariup
DEFAULT
DEFAULT_ IMO_ DEFAULT_ IMO_ BeginTextVariation DEFAULT_ DEFAULT_
BeginOpenMarkup EndOpentarkup BeginOpenMarkup EndOpenbiarkup R = DEFAULT. ™o, m_ DEFAULT_ MO_ . R BeginCloseMarkup BeginCloseMarkup
BeginOpenMariup Endopentarkup BeginCioseMarkup BeginOpenMriup Endopentarkup BeginCloseMarkup
RIGHT SQUARE
LEFT SQUARE LEFT SQUARE TextVaration RIGHT SQUARE
ELeaUAT TagOpenEndChar A IMO_Name TagOpenEndChar . RIGHT SQUARE Lerr SaUARE TErCmET FicHT SauARE T TagCloseStariChar d BRAGKET TagCloseStariChar IMC_Name EIeaus

'BRACKET BRACKET

, something childlike TEI

0

content/images/Bleeker01-014.png
[1]

it seemed

[-] indeed

as if it were

now

settled

[2]

as if it were

settled

content/images/Bleeker01-013.png
XML witness 1

XML witness 2

i

5

5

>/ XMLimporter |—» Hypergraph witness 1 > tokenizer
»|Hypergraph winess 2 tokenizer
ypergraph winess 1
ypergraph winess 2

content/images/Bleeker01-016.png
[1]

he appeared the

[-] im

picture

of stark & uncompromising severity

[2]

he appeared the

image

of stark & uncompromising severity

content/images/Bleeker01-015.png
1: it seemed
1: /TEUs

content/images/Bleeker01-018.png
[1]

something

[+] trusting
[-]1 trustful

, something childlike

[2]

something

trustful

, something childlike

content/images/Bleeker01-017.png

content/images/Bleeker01-019.png
1,2: trustful
1: /TEI/s/del
2: /TEls

1,2: , something childlike
1,2: /TEl/s

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

