[image: Balisage logo]Balisage: The Markup Conference

Four Basic Building Principles (Patterns) for XML Schemas
Anne Brüggemann-Klein
Technical University of Munich (TUM)

<brueggemann-klein@tum.de>

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Copyright ©2020 by the author. Used with permission.

How to cite this paper
Brüggemann-Klein, Anne. "Four Basic Building Principles (Patterns) for XML Schemas." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Bruggemann-Klein01.

Abstract
Practitioners have long identified four distinct patterns for construction of XSD
				schemas, known by the picturesque names “Salami Slice”,
				“Venetian Blind”, “Russian Doll”, and “Garden of
				Eden”, and based on two binary choices: are all the element declarations
				global? or (apart from the intended document root) local? Are all the type
				definitions global? Or (apart from the built-in types) local? Informal discussions
				often focus on the effect of pattern choice for schema re-use, encapsulation,
				coupling, and cohesion. But a more formal approach is needed to determine whether
				choice of pattern affects the languages we can define with the schemas we can write.
				Do all four patterns have the same expressive power? Or are some capable of defining
				things not expressible in the others?

Balisage: The Markup Conference

 Four Basic Building Principles (Patterns) for XML Schemas

 Table of Contents

 	Title Page

 	Introduction

 	The four patterns for XSD schemas in XML Schema syntax

 	Modeling XML documents and XSD schemas
 	The model for XML documents and its properties

 	The model for XML schema and its properties

 	Validity

 	Operations on schemas

 	Defining the four patterns for XSD schemas

 	Comparing the expressive powers of the four patterns
 	Local into global for type definitions

 	Local into global for element declarations

 	Limitations of the Russian Doll schema

 	From global to local

 	Conclusion

 	About the Author

 Four Basic Building Principles (Patterns) for XML Schemas

Introduction
A schema for XML expresses constraints for those XML
			documents that conform to the schema, the schema's instances. XML Schema as a language expresses so-called XSD schemas.
			This paper is concerned with the part of XML Schema that expresses structural
				constraints [GST2012] as opposed to data
			value constraints.
Four basic patterns have been identified in the literature how a schema can be
				built [C2006b, M2002, P2015]. The
			criteria for the four patterns are whether the type definitions or the element
			declarations in the schema are all global or all local. The names of the four patterns
			are Salami Slice (all global element declarations, all local type definitions), Russian
			Doll (all local element declarations, all local type definitions), Venetian Blind (all
			local element declarations, all global type definitions) and Garden of Eden (all global
			element declarations, all global type definitions).
Current literature defines these patterns and discusses their properties, for example
			in terms of re-use, encapsulation, coupling and cohesion [C2006b, M2002,
				P2015]. In this paper, we discuss the expressive power of the four patterns: which pattern can or
			cannot be rewritten into which other pattern while maintaining the set of instances. It
			turns out that Venetian Blind is the most powerful pattern. Any XSD schema, even those
			that do not follow any of the four patterns strictly, can be rewritten into the Venetian
			Blind pattern. The two patterns Salami Slice and Garden of Eden are equivalent in
			descriptional power. These are the only transformations that can be done completely, for
			any schema that adheres to the source pattern, and they can be done algorithmically.
			Hence, Venetian Blind is strictly more powerful than any of the three other patterns and
			Russian Doll is incomparable to Salami Slice and to Garden of Eden. These results are
			summarized in Figure 11
A unique contribution of this work is that it is based on explicit models for schemas
			and documents and on their relationships and properties. This enables us to delimit the
			area of discourse and to state results as theorems that have rigorous proofs. In
			addition, we illustrate definitions, phenomena and operations with concrete examples in
			XML Schema syntax.
This paper is organized as follows:
	Informal definition of an XSD schema and the four patterns by example.

	Formal model of an XSD schema and its instances. Their properties and
					operations.

	Formal definition of the four patterns and the ways in which their expressive
					powers can be compared.

	Comparing the expressive power of the four patterns.
	Local into global for type definitions.

	Local into global for element declarations.

	Limitations of the Russian Doll schema.

	From global to local

We conclude the paper with a number of discussion points and some final
			remarks.

The four patterns for XSD schemas in XML Schema syntax
An XSD schema contains type definitions and element declarations.
We only consider a sub-class of so-called complex type definitions which, ignoring
			attributes, define how an XML element that conforms to the type must be structured: what
			sequences of sub-elements can it have and which type constraints apply to each of the
			elements in a sequence. Such a definition uses some kind of regular expression formalism
			and is called a content model. Hence, a content model
			describes sequences of elements and associates a type definition with each element
			within a sequence. Using the definition below, we can also say that a content model
			describes sequences of element declarations.
Type definitions and content models in XML Schema also constrain text content and data
			types of XML elements. In this work, the model of XML documents allows for text content.
			The model of XML schemas does not define any kind of constraints for text content,
			though. We will see the implication of that decision in the definition of validity
			below.
An element declaration associates an element name with a type definition.
The type definitions and element declarations that are directly contained in an XSD
			schema, at its outer-most level, are called global. In
			XML Schema, global type definitions are identified by a name; global element
			declarations are identified by the element name that is part of the element declaration.
			Names of global type definitions and names of globally declared elements form their own
			namespaces and must be unique within these namespaces.
A content model in a type definition declares elements that occur in sequences. These
			declarations can be local to the content model, or they
			can be references to global element declarations. Such references are by element
			name.
Analogously, an element declaration, be it global or local, has a type definition that
			can be local to the element declaration or a reference
			to a global element declaration. Such references are by name of the type
			definition.
A local element declaration has by definition a name. Local type definitions are
			anonymous.
Figure 1 has an example of a mixed XSD schema that has both
			local and global element declarations and type definitions; see [V2002] for the Peanuts tradition in schemas.

			Figure 1: An XSD schema of mixed type
This XSD schema has global element declarations for
							book, title and author, of which
							title and author are referenced from within
						the schema through the element xs:element with attribute
							ref. There are also local element declarations, for example
						one for character. The schema has one global type definition
						for bookType, which is referenced in the element declaration
						for book. There is also a local type definition for element
							character.
Formally, the type definitions for name,
							friend-of, since and
							qualification are references to a globally defined data
						type, namely xs:string. We discount these references when we
						define the four types, since they do not concern element structure. They are
						on a par with mixed-content indicators in content models, which we also
						ignore.

[image:]

		
Global element declarations and type definitions can be re-used within an XSD schema
			and also between different XSD schemas. Local element declarations and type definitions
			are encapsulated within the type definitions and element declarations to which they
			belong. They are only visible within these parent constructs and cannot be re-used.
			Hence, XML Schema gives schema designers the flexibility to satisfy specific
			requirements of re-use and encapsulation when designing an XSD schema.
Four pure patterns have been identified in the literature how a schema can be
				built [C2006b, M2002, P2015]. The
			criteria for the four patterns are whether the type definitions or the element
			declarations in the schema are all global or all local. The names of the four patterns
			are Salami Slice (all global element declarations, all local type definitions), Russian
			Doll (all local element declarations, all local type definitions), Venetian Blind (all
			local element declarations, all global type definitions) and Garden of Eden (all global
			element declarations, all global type definitions).
The only deviations in this uniformity are that schemas that follow the Russian Doll
			or the Venetian Blind patterns can have global element
			declaration, which define the root element of instances of the schema; those global
			element declarations cannot be referenced, though, in these patterns. In these two
			patterns, the entry points into an instance can be
			constrained. In the other two patterns, any element can be an entry point into an
			instance.
[TODO: explain the names of the four patterns.]
We condense the definition of the four patterns in the following table.
Figure 2: The matrix of the four patterns
[image:]

We have re-written the mixed schema in Figure 1 into each of
			the four patterns. Each of these four schemas validates the two documents
				book and character below. Please be aware that these
			transformations were possible because the locally declared elements in the original
			mixed schema have unique names.
[TODO check for uniform font sizes in the examples (the screens from which the screen
			shots are made should have identical widths). The same should hold true for the width of
			the selection window when making the screenshot. Alternatively, how can we include
			formatted code directly?]
Figure 3: The XML document book
[image:]

Figure 4: The XML document character
[image:]

Figure 5: A Russian Doll schema with instances book and
				character
[image:]

Figure 6: A Salami Slice schema with instances book and
				character
[image:]

Figure 7: A Venetian Blind schema with instances book and
					character
[image:]

Figure 8: A Garden of Eden schema with instances book and
					character
[image:]

Formally, we have defined the four patterns only for XSD schemas. There is, however, a
			natural transformation from an XML DTD into an XSD schema, which results in a Salami
			Slice pattern. [TODO: describe the transformation, reference literature or behaviour of
			tools such as oXygen]

Modeling XML documents and XSD schemas
The model for XML documents and its properties
The XQuery and XPath Data Model XDM [WSC2017] defines an
					XML document [BPS2008] as a number of interrelated components that are called nodes (or information items in other contexts). In the context of
				this discussion, we only consider two types of nodes, namely element nodes and text nodes. An
				element node has a name and consists of a sequence
				of child nodes, which can be element nodes or text
				nodes. A text node has a sequence of Unicode characters as its value.
The consists-of relationship between an element node and any of its children nodes
				needs to form a single finite ordered tree structure. The unique root of such a tree
				structure is called an XML document.
We assign a finite depth to each element node,
				starting with depth 0 for the root node. We define the height of an XML document as the maximal depth of any of the element
				nodes that it contains. The XML document book that we have defined
				above has height 2; the XML document character that we have
				defined above has height 1. Please be aware that height and depth only take
				element nodes into account, not text nodes.
We provide an UML diagram for the components of an XML document which incidentally
				follows the composite pattern.

				Figure 9: Modeling components of an XML document
[image:]

			

The model for XML schema and its properties
The W3C Recommendation for XML Schema (Structures) [GST2012] defines an XSD
					schema on a conceptual level as a set of schema
					components. In the context of this discussion, we only consider two
				types of schema components, namely complex type definitions, which we call just
					type definitions, and element declarations.
In its simplest version, a type definition has an optional name and a content model. A
				detailed definition of content model is not necessary for this discussion. It
				suffices to know that a content model is some kind of expression over element
				declarations, each of which either is global and
				referenced in the content model by its name or is
				local (see below)[1]. The content model matches finite and
				ordered sequences of element declarations.
An XSD schema consists at a global level of a set
				of uniquely named type definitions. Unnamed type definitions can occur locally within element declarations, as we will
				see.
In its simplest version, an element declaration has a mandatory name and a type
				definition. The type definition can be global, in which case it is referenced by its
				name, or it can be locally defined within the element declaration, in which case it
				is unnamed and cannot be accessed from outside the element declaration.
In addition to named type definitions, an XSD schema can contain uniquely named
				element declarations at a global level. As we have
				mentioned, element declarations can also be defined locally within a type
				definition. Please remember that names in element declarations are always mandatory,
				even for locally defined element declarations.
Let us be clear about the consists-of relationship in an XML schema. The schema
				consists of global element declarations and of global type definitions. An element
				declaration consists of a local type definition, if there is any (it does not consist of a reference to a global type definition).
				A type definition has a content model that is built over a number of element
				declarations; the type definition consists of all the local element declarations
				over which its content model is built (it does not
				consist of any of the references to global type declarations over which its content
				model is built.)
The consists-of relationship of an XML schema is striped. Element declarations consist of type definitions, which are
				always local, and type definitions consist of element declarations, which are always
				local. An XML schema consists of element declarations and type definitions, which
				are always global.
The consists-of relationship of an XML schema needs to form a single finite
				unordered tree, with the schema itself as its root. All global type definitions need
				to be referenced from within the schema. The global element declarations serve as
					entry points into a schema, as declarations
				against which XML documents can be verified. They do not need to be referenced from
				within the schema.
We provide an UML diagram for the components of an XSD schema.

				Figure 10: Modeling components of an XSD schema
[image:]

			
Let us go back to the XSD schema of mixed type that we have defined above. The
				schema consists of global element declarations for book,
					title and author and of a global type definition for
					bookType. The type definition for bookType consists of
				an element declaration for character, which consists of element
				declaration for name, friend-of, since und
					qualification. This describes the complete consists-of relationship
				of the schema. The single global type definition in the schema, the one for
					bookType, is referenced in the element declaration for
					book. Hence, the schema satisfies our constraints.
In analogy to XML documents, we assign a depth to
				each component of an XML schema in accordance to the consists-of relationship,
				assigning depth 0 to the schema itself, depth 1 to all its global element
				declarations and global type definitions and so on, following the consists-of relationship[2]. The height of an XML schema is then
				the maximum of all the depths of a schemas components. The height of the schema of
				mixed type that we have included above is 3.

Validity
We define now when an element declaration eD
				matches an element node eN, or
				when an element node eN is valid
				with respect to an element declaration eD.
For that definition, consider the children of eN that are element
				nodes. They form a potentially empty sequence
					eN1,…,eNk.
				Furthermore, let tD be the type definition of eD. Then,
					eD matches eN when the content model of
					eD matches a sequence of element declarations
						eD1,…,eDk
				such that (a) the names of eNi and
						eDi are identical and (b) each
						eDi matches
						eNi, for all i between 1
				and k
			
This is a recursive definition that is well-founded due to the structure of the
				consists-of relationship for document nodes. The definition disregards text nodes in
				documents and any provisions that a real content model in a real XML schema might
				make for them.
If only the clause (a) is met, then we say that the element declaration matches the element node locally.
Note that validity does not depend on the status of element declarations or type
				definitions as local or global.
An XSD schema matches an XML document (or an XML
				document is valid with respect to an XSD schema or
				an XML document is an instance of an XSD schema) if
				the XSD schema has a global element declaration that matches the XML document, which
					is an element node in our model.
As a corollary, an XSD schema that has no global element declaration has no
				instances.
The language L(s) of an XSD
					schema s is the set of all its instances. Two XSD schemas are
					equivalent if their languages (their sets of
				instances) are equal.

Operations on schemas
In this work, we ultimately want to rewrite XML schemas from one pattern into
				another whereever possible while preserving their languages. These transformations
				are done incrementally by rewriting single type definitions or element declarations
				from global to local and vice versa. We discuss how these single rewrites are done
				and under which conditions they are possible. With the exception of turning local
				element declarations into global element declarations, a single rewrite that
				preserves schema integrity and languages is always possible. As we will see,
				restrictions apply when we want to iterate the single transformations.
A single reference to a global element declaration or to a global type definition
				can easily replaced with a local element declaration or local type definition,
				respectively. In the case of a type definition, if the schema has no other reference
				to the global type definition, the global type definition has to be removed from the
				schema to preserve its integrity. This operation does preserve language.
If we have a local type definition, it is contained in some element declaration
				and it is unnamed. We can give it a new and unique name and make it global,
				replacing the local type definition with a reference to the now global type
				definition using its new and unique name. This preserves schema integrity and
				language.
If we have a local element declaration, it is contained in some type definition
				via its content model. In contrast to local type definitions, a local element
				declaration already has a name. Only if this name is not used in any global element
				declaration of the schema can we make the element declaration global and replace the
				local declation in the type definition with a reference. This preserves schema
				integrity and language. If this name is already used in some global element
				declaration of the schema, we might be tempted to resolve the name conflict by
				giving the element a new and unique name and to proceed as above. This would,
				however, change language.
In summary, we have presented transformations to make a single global type
				definition and a single global element declaration local while preserving schema
				integrity and language. The same is true for making a single local type definition
				global. We have also pointed out why a naive approach to make even a single local
				element declaration global fails due to name conflicts. We will investigate later
				under which conditions these single transformations can be iterated with the goal of
				transforming from one schema pattern into another.

Defining the four patterns for XSD schemas
An XSD schema is a Russian Doll schema (or exhibits
			the Russian Doll pattern) if all its element declarations and all its type definitions
			are local, with the exception of global element declarations that are not referenced in
			the schema. We denote the set of all Russian Doll schemas
			with RD.
An XSD schema is a Garden of Eden schema (or exhibits
			the Garden of Eden pattern) if all its element declarations and all its type definitions
			are global. We denote the set of all Garden of Eden schemas
			with GE.
An XSD schema is a Salami Slice schema (or exhibits
			the Salami Slice pattern) if all its element declarations are global and all its type
			definitions are local. We denote the set of all Salami Slice schemas
				with SL.
An XSD schema is a Venetian Blind schema (or exhibits
			the Venetian Blind pattern) if all its element declarations are local, with the
			exception of global element declarations that are not referenced in the schema, and all
			its type definitions are global. We denote the set of all Venetian Blind schemas
				with VB.
We denote the universal set of XSD schemas with U.
We refer back to Figure 1 for the pattern matrix.
In this paper, we discuss the descriptional power of these patterns. We base the
			discussion on a number of constructive definitions.
			That means that we not only claim the existence of certain things but that we can
			compute them algorithmically. [TODO: replace ASCII graphics for arrows with Unicode
			characters. The use of o for one end of the relationship is unfortunate and
			is solely motivated by the line endings that are available in PowerPoint.]
	A set of XSD schemas S'is more
						powerful than a set of XSD schemas S (S
						---> S') if there is an algorithm or a process that constructs for
					each schema in S an equivalent schema
					in S'.

	A set of XSD schemas S'is incongruent with a set of XSD schemas S
						(S o--- S') if we can identify a specific schema
						in S' that is not equivalent to any schema
						in S.

	A set of XSD schemas S'is strictly
						more powerful than a set of XSD schemas S
						(S o---> S') if S' is more powerful than and
					incongruent with S.

	A set of XSD schemas S'is equally
						powerful to a set of XSD schemas S (S
						<---> S') if S' is more powerful
						than S and S is more powerful
						than S'.

	A set of XSD schemas S'is incomparable to a set of XSD schemas S
						(S o---o S') if S' is incongruent
						with S and S is incongruent
						with S'.

Comparing the expressive powers of the four patterns
Let us consider if or under which conditions local element and type definitions can be
			made global and vice versa. As we will see, if we make local constructs global, we might
			run into naming conflicts on the global level, and if we make global constructs local,
			we might run into infinite recursion.
We can summarize our results in a diagram. [TODO add a triangular diagram that better
			illustrates the hierarchy.]

			Figure 11: Complete transformation Matrix
[image:]

		
Local into global for type definitions
Let us first look at the question of making local constructs global, and let us
				start with type definitions. The tree constraint of the consists-of relationship
				implies that an XSD schema s has only a finite number of local
				type definitions. As we have seen, we can transform the schema into another XSD
					schema s' by making a single local type definition
					of s global. This transformation has the following
				properties:
	It preserves schema constraints.

	It preserves language; that is L(s) = L(s').

	It reduces the number of local type definitions by 1; that is, it
						introduces no new local type definitions (though it may move some existing
						ones into a different context).

Therefore, step by step, we can transform schema s into another
				schema that has no local type definitions. Since the single-step transformation is
				constructive, then so is the complete transformation.
We now state our first theorem on expressive power.
Theorem
				VB is more powerful than RD. GE is more
				powerful than SS.

				Figure 12: Transformation Matrix (A)
[image:]

			
After our previous discussion, the proof is obvious: each Russian Doll schema can
				be transformed into a Venetian Blind schema by making its local type definitions
				global. The same argument holds for Salami Slice and Garden of Eden schemas.

Local into global for element declarations
We have seen that the naïve attempt to make local element declarations global
				fails, due to name conflicts. We can even prove that there cannot be any
				construction at all who achieves this.
Let us consider the language langA1 that contains just a single XML
				document docA1, namely the one that is represented by
					<a><a/>. The document docA1 has two element
				nodes named a, with one being the child of the other, and is of depth 1.
Using local element declarations, we can define an XSD schema schemaA
				that has a single global element declaration for an element a and
				a type definition that denotes a single sequence of length 1 that consists of a
				local element declaration for an element a that is declared to be
				empty. The figure below defines such a schema that exhibits the Russian Doll
				pattern, and we know from the previous section that we could just as well define it
				as a Venetian Blind schema.

				Figure 13: The XSD schema schemaA
[image:]

			
We claim now that an XSD schema that declares element a only
				globally cannot have docA1 as its sole instance. The point is that, if such a
				schema matches docA1, then the global element declaration for a
				must allow a sub-element a that has the same type definition
				associated with it, as well as the empty sequence. Therefore, the documents that are
				represented by <a/> (docA0) or by
					<a><a><a/> (docA2) are additional
				instances of the schema, and so are all bounded chains docAi of
					elements a.
We have demonstrated that the language langA1 is the language of
				some Venetian Blind schema and of some Russian Doll schema, but that it cannot be
				the language of any Salami Slice or Garden of Eden schemas.
Theorem VB and RD are both incongruent with each
				of SS and GE

				Figure 14: Transformation Matrix (B)
[image:]

			
As an aside, the option to have local element declarations makes XSD Schema more
				descriptive than XML DTD.
[TODO: Discuss the substitution principle.]

Limitations of the Russian Doll schema
The previous theorem demonstrates the strength of the Russian Doll pattern that
				stems from its local element declarations and that makes it incongruent with the
				Salami Slice and Garden of Eden patterns, which have mandatory global element
				declarations.
In contrast, the combination of local element declarations with local type
				definitions determines a weakness of the Russian Doll pattern compared to any of the
				other three patterns.
Proposition The instances of a Russian Doll
				schema are limited in height by the height of the schema.
We prove the proposition at the end of this subsection.
None of the other three schemas have that property.
Let us look at the documents docAi that we have introduced by example above, for
				any natural number i. The document docAi has only element nodes that are
					named a and no text nodes. The depth of docAi is i
				and an element node in docAi has either 0 or 1 child node(s). Hence, docAi
				is a chain of element nodes a of depth i.
We collect all the documents docAi into the language langA. It is
				easy to see that langA is the language of a Garden of Eden schema, of a
				Salami Slice schema and of a Venetian Blind schema. Examples of such schemas are
				defined below.

				Figure 15: Salami Slice schema for langA
[image:]

			

				Figure 16: Venetian Blind schema for langA
[image:]

			

				Figure 17: Garden of Eden schema for langA
[image:]

			
It follows from the proposition above, that langA is not the language
				of any Russian Doll schema. Hence, we can make the weakness of the Russian Doll
				pattern explicit.
Theorem VB, SS, GE are each incongruent with
				RD.

				Figure 18: Transformation Matrix (C)
[image:]

			
We still have to prove the proposition above. For that, we simply verify from the
				definition of validity, that for each instance of a Russian Doll schema, each
				element node of the instance is valid with respect to an element declaration of the
				same schema that has the same depth.
This concludes the proof of the theorem.

From global to local
After highlighting the power of local element declarations and their expressive
				power, we might think that converting from global element declarations or type
				definitions to local ones should be easy. There must be a snag, though, when
				considering this direction. We know already that VB is incongruent with RD, so it
				doesn't seem to be possible to make global type definitions local. And since SS is
				inconsistent with VB, it doesn't seem to be possible to make global declarations
				local. In both cases, we have achieved impossibility results by considering the
				height of instances of RD schemas. Let us find out, if there are conditions under
				which we might be able to turn global components into local ones.
Let us first look at global type definitions. As we have discussed, we can take a
				single reference to a global type definition and replace it with a copy of the
				global type definitions, without the name, and the instances of the schemes before
				and after the transformations have not changed. The issue is that we might have
				introduced a new reference to the same type definition that then would also have to
				be replaced, and so on, ad infinitum.
We demonstrate that phenomenon with the Venetian Blind scheme for
					language langA that we have presented above. If we replace a
				reference to the global type definition with a local copy, we introduce a new
				reference to the same global type definition, and we will never be able to eliminate
				the global type definition if we continue this way.

				Figure 19: Rewritten Venetian Blind schema for langA
[image:]

			
The same phenomenon occurs if we attempt to replace references to global element
				declarations with local declarations, as illustrated by the Salama Slice schema for
					language langA.

				Figure 20: Rewritten Salami Slice schema for langA
[image:]

			
The problem in both cases is recursion that cannot be eliminated by unrolling it.
				Our examples have simple recursions where a global type definition or a global
				element declarations contains a reference to itself. Of course, there could also be
				indirect references that are not as easy to detect at first glance. They would have
				the same problem.
[TODO clarify, this is cryptic] Solution through the striped pattern of element
				declarations refering to type definitions refering to element declarations.
Let us assume that we have a Garden of Eden schema, in which all element
				declarations and all type definitions are global. Each element declaration is
				global, and it references a global type definition; also, each type definition is
				global, and in its content model it only talks about global element declarations
				through references.
If we make a complex type definition local by copying it into an element
				declaration that references it, we do not copy any references to type declarations.
				Hence, since there are only finitely many references to type definitions in the
				original schema, after finitely many steps we have eliminated all references to
				global type definitions in the schema, so we can remove the global type definitions.
				We end up with a Salami Slice schema, as witnessed by the following figure.

				Figure 21: Garden of Eden schema for langA, rewritten as a Salami Slice
						schema
[image:]

			
If we make an element declaration local by copying it into a type definition that
				references it, we do not copy any references to element declarations. Hence, since
				there are only finitely many references to element declarations in the original
				schema, after finitely many steps we have eliminated all references to global
				element declarations in the schema. We leave the original global element declaration
				in the schema as entry points for instances, but they are no longer referenced. We
				end up with a Venetian Blind schema, as witnessed by the following figure.

				Figure 22: Garden of Eden schema for langA, rewritten as a Venetian
						Blind schema
[image:]

			
We have just proved that SS and VB are both more powerful than GE. Taking into
				account a previous result that GE is more powerful than SS, by transitivity, we can
				also conclude that VB is more powerful than SS. This implies the following
				theorem:
Theorem SS and VB are both more powerful than GE.
				VB is more powerful than SS.

				Figure 23: Transformation Matrix (D)
[image:]

			
From an earlier investigation, we know that we can transform an arbitrary XSD
				schema into one that has only global type definitions. In a next step, we can
				replace all references to global element declarations with local element
				declarations. This results in a Venetian Blind schema. Hence, VB is more powerful
				than U. Since each schema in VB is also in U, we conclude:
Theomem
				VB and U are equally powerful.
All results from this section are summarized in Figure 11, which is an overlay of all diagrams in this
				section.

Conclusion
We have clarified the relationship between the four schema classes RD,
				GE, SS and VB in terms of descriptive
			power. It turns out that VB is strictly more powerful than any of the other
			three classes, and that it is equally powerful to the universal set of XSD
				schema U. The classes RD and SS are
			incomparable, and so are RD and GE. Finally,
				GE and SS are equally powerful. This characterizes
			the power relationship between all six (unordered) pairs of the four schema classes and
			the patterns that define them, as illustrated in Figure 11.
Global element declarations and type definitions can be re-used within an XSD schema
			and also between different XSD schemas. Local element declarations and type definitions
			are encapsulated within the type definitions respectively element declarations to which
			they belong. They are only visible within these parent constructs and cannot be re-used.
			Hence, XML Schema gives schema designers the flexibility to satisfy specific
			requirements of re-use and encapsulation when designing an XSD schema.
The pattern that has the most descriptional power, namely Venetian Blind, allows for
			re-use of type definitions but not of element declarations. If the use of inheritance
			and of substitution groups is desirable [BST2007],
			then at least some type definitions and element declarations need to be global. This is
			an argument for the Garden of Eden pattern or for a hybrid pattern that is partially
			Garden of Eden and partially Venetian Blind. A pure Garden of Eden pattern loses the
			option of local element names.
Further patterns in XML schemas that take into account namespaces and inheritance, for
			example the Chameleon pattern and double extension. Relate this work to more general
			discussion on patterns and good practices for XML Schema and other schema languages.
				[W2013, T2002, V2002, C2006a,
				B2010]. To incorporate this work probably requires
			extension of the model for schemas.
Patterns in Relax NG. Named element declarations (decoupling names of declarations
			from names of elements). This requires extension of the model for schemas.
Patterns and tools: It seems that the XML tools of the IDE Netbeans offer to translate
			between any of the four patterns, as described on the Oracle web site [KS2006]. That text is in itself shaky. It explains patterns in
			terms of element declarations, with tenuous connections to type definitions; and it
			looks at examples that supposedly follow the RD patterns but are actually VB. Oxygen and
			possibly other tools correctly convert XML DTDs to Salami Slice XML schemas. It is worth
			to investigate systematically how tools handle schema patterns.
 What is the distribution of patterns in practice? Investigate prominent schemas and
			provide statistics.

Bibliography
[B2010] James Bean. XML Schema Design
				Patterns. In James Bean (editor), SOA and Web Services Interface
Design, pp 211-234. Morgan Kaufmann, 2010.
[BD09] Bernd Brügge; Allen Dutoit.
				Object-Oriented Software Engineering Using UML, Patterns, and Java.
			Prentice Hall, 2009.
[BPS2008] Tim Bray; Jean Paoli; C.M.
			Sperberg-McQueen; Eve Maler; François Yergeau. Extensible Markup Language (XML)
				1.0 (Fifth Edition). [online]. [cited 19 March 2020].
				http://www.w3.org/TR/2008/REC-xml-20081126/.
[BST2007] Anne Brüggemann-Klein;
			Thomas Schöpf; Karlheinz Toni. Principles, Patterns and Procedures of XML Schema
				Design — Reporting from the XBlog Project. Extreme Markup Languages 2007
			(Montréal, Québec). [online]. [cited 22 March 2020].
				http://conferences.idealliance.org/extreme/html/2007/BruggemannKlein01/EML2007BruggemannKlein01.html.
[C2006a] Roger L. Costello (for
			xml-dev list). XML Schemas: Best Practices. [online]. [cited
			11 April 2020]. http://www.xfront.com/BestPracticesHomepage.html.
[C2006b] Roger L. Costello (for
			xml-dev list). Global versus Local — A Collectively Developed Set of Schema
				Design Guidelines. [online]. [cited 22 March 2020].
				https://www.xfront.com/GlobalVersusLocal.html.
[GST2012] Shudy (Sandy) Gao; C.M.
			Sperberg-McQueen, Henry S. Thompson. W3C XML Schema Definition Language (XSD) 1.1
				Part 1: Structures. [online]. [cited 19 March 2020].
				http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/.
[KS2006] Ayub Khan; Marina Sum.
				Introducing Design Patterns in XML Schemas. [online]. [cited
			22 Month 2020].
				https://www.oracle.com/technetwork/java/design-patterns-142138.html.
[M2002] Eve Maler. Schema
				Rules for UBL... and Maybe for You. [online]. XML 2002 Conference. [cited
			22 March 2020].
				http://www.ebxml.org/presentations/ubl-schema-rules-xml2002.pdf.
[P2015] Saumil Patel. XML
				Schema Design Patterns. [online]. [cited 22 March 2020].
				https://saumilp.github.io/posts/xml-schema-design-patterns/.
[T2002] Jeni Tennison. Jeni's
				Schema Pages. A Tutorial presented at Extreme Markup Languages 2002.
			[online]. [cited 11 April 2020] http://www.jenitennison.com/schema/>.
[V2002] Eric van der Vlist. XML
				Schema. Kindle edition. O'Reilly Media, 2002.
[W2013] Priscilla Walmsley.
				Definitive XML Schema. 2nd edition (Kindle). Prentice Hall,
			2013.
[WSC2017] Norman Walsh; John Snelson; Andrew
			Coleman. XQuery and XPath Data Model 3.1. W3C Recommendation 21 March
			2017. [online]. [cited 12 April 2020].
				https://www.w3.org/TR/2017/REC-xpath-datamodel-31-20170321/.

[1] A content model references a global element declaration by its name. A
						local element declaration is contained within the content model; it cannot
						be accessed from outside the content model.
[2] Of course, the depth of an XML document and of an XML schema is just the
						usual depth of the tree that is defined through the consists-of
						relationship, so the two domain-specific definitions could be unified into a
						more general definition.

Balisage: The Markup Conference

Four Basic Building Principles (Patterns) for XML Schemas
Anne Brüggemann-Klein
Technical University of Munich (TUM)

<brueggemann-klein@tum.de>

Balisage: The Markup Conference

content/images/Bruggemann-Klein01-018.png
RD

VB

SS

GE

content/images/Bruggemann-Klein01-017.png
3 v <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

4 <xs:element name="a" type="aType"/>

5v <xs:complexType name="aType">

6 v <xs:sequence minOccurs="0" maxOccurs="1">
7 <xs:element ref="a"/>

8 </Xs:sequence>

9 </xs:complexType>

10 </xs:schema>

content/images/Bruggemann-Klein01-019.png
3 v <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

4 <xs:element name="a">

5v <xs:complexType>

6 v <xs:sequence minOccurs="0" maxOccurs="1">
7 <xs:element name="a" type="aType"/>
8 </Xs:sequence>

9 </xs:complexType>

10 </xs:element>

11+ <xs:complexType name="aType">

12 v <xs:sequence minOccurs="0" maxOccurs="1">
13 <xs:element name="a" type="aType"/>

14 </Xs:sequence>

15 </xs:complexType>

16 </xs:schema>

content/images/Bruggemann-Klein01-014.png
RD

VB

SS

GE

content/images/Bruggemann-Klein01-013.png
3 v <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

4 <xs:element name="a">

5v <xs:complexType>

6 v <Xs:sequence>

7 <xs:element name="a"/>
8 </Xs:sequence>

9 </xs:complexType>

10 </xs:element>

11 </xs:schema>

content/images/Bruggemann-Klein01-016.png
3 v <xs:schema xmlns:xs="http://waww.w3.0rg/2001/XMLSchema">

4 <xs:element name="a" type="aType"/>

5v <xs:complexType name="aType">

6 v <xs:sequence minOccurs="0" maxOccurs="1">
7 <xs:element name="a" type="aType"/>

8 </Xs:sequence>

9 </xs:complexType>

10 </xs:schema>

content/images/Bruggemann-Klein01-015.png
3 vrgxs:schemg xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

4 <xs:element name="a">

5v <xs:complexType>

6 <xs:sequence minOccurs="0" maxOccurs="1">
7 <xs:element ref="a"/>

8 </Xs:sequence>

9 </xs:complexType>

10 </xs:element>

11

12 | </xs:schema>

A2 =

content/images/Bruggemann-Klein01-021.png
3 v <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

4 <xs:element name="a">

5v <xs:complexType>

6 v <xs:sequence minOccurs="0" maxOccurs="1">
7 <xs:element ref="a"/>

8 </Xs:sequence>

9 </xs:complexType>

10 </xs:element>

11 </xs:schema>

content/images/Bruggemann-Klein01-020.png
3 v <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

4 <xs:element name="a">

5v <xs:complexType>

6 v <xs:sequence minOccurs="Q" maxOccurs="1">
7v <xs:element name="a">

8v <xs:complexType>

9v <xs:sequence minOccurs="Q" maxOccurs="1">
10 <xs:element ref="a"/>

11 </Xs:sequence>

12 </xs:complexType>

13 </xs:element>

14 </Xs:sequence>

15 </xs:complexType>

16 </xs:element>

17 </xs:schema>

content/images/Bruggemann-Klein01-001.png
4 v <xs:schema xmlns:xs="http://ww.w3.0rg/2001/XMLSchema">

5 <xs:element name="book" type="bookType"/>

6 <xs:element name="title" type="xs:string"/>

7 <xs:element name="author" type="xs:string"/>

8v <xs:complexType name="bookType">

9v <XS:sequence>

10 <xs:element ref="title"/>

11 <xs:element ref="author"/>

12 v <xs:element name="character" minOccurs="0" maxOccurs="unbounded">
13 v <xs:complexType>

14 v <XS:sequence>

15 <xs:element name="name" type="xs:string"/>

16 v <xs:element name="friend-of" minOccurs="@" maxOccurs="unbounded"
17 type="xs:string"/>

18 <xs:element name="since" type="xs:string"/>

19 <xs:element name="qualification" type="xs:string"/>
20 </Xs:sequence>

21 </xs:complexType>

22 </xs:element>

23 </Xs:sequence>

24 </xs:complexType>

25 </xs:schema>

content/images/Bruggemann-Klein01-023.png
RD SS

VB «<——GE

content/images/Bruggemann-Klein01-022.png
3 v <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

4 <xs:element name="a" type="aType"/>

5v <xs:complexType name="aType">

6 v <xs:sequence minOccurs="0" maxOccurs="1">
7 <xs:element name="a" type="aType"/>

8 </Xs:sequence>

9 </xs:complexType>

10 </xs:schema>

content/images/Bruggemann-Klein01-007.png
4 v <xs:schema xmlns:xs="http://ww.w3.org/2001/XMLSchema">
5v <xs:complexType name="characterType">

6v <Xs:sequence>

7 <xs:element name="name" type="xs:string"/>

8 <xs:element name="friend-of" type="xs:string" minOccurs="@" maxOccurs="unbounded"/>
9 <xs:element name="since" type="xs:string"/>

10 <xs:element name="qualification" type="xs:string"/>

11 </Xs:sequence>

12 </xs:complexType>

13 v <xs:complexType name="bookType">

14 v <Xs:sequence>

15 <xs:element name="title" type="xs:string"/>

16 <xs:element name="author" type="xs:string"/>

17 <xs:element name="character" type="characterType" minOccurs="0" maxOccurs="unbounded"/>
18 </Xs:sequence>

19 </xs:complexType>

20 <xs:element name="book" type="bookType"/>

21 <xs:element name="character" type="characterType"/>
22 </xs:schema>

content/images/Bruggemann-Klein01-006.png
4 v <xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema">

O N O wv

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

v

v

v

v

v

v

<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:

element
element
element
element
element
element
element

name="title" type="xs:string"/>
name="author" type="xs:string"/>
name="name" type="xs:string"/>
name="friend-of" type="xs:string"/>
name="since" type="xs:string"/>
name="qualification" type="xs:string"/>
name="character">

<xs:complexType>
<XS:sequence>
<xs:element ref="name"/>
<xs:element ref="friend-of" minOccurs="0Q" maxOccurs="unbounded"/>
<xs:element ref="since"/>
<xs:element ref="qualification"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="book">
<xs:complexType>
<XS:sequence>
<xs:element ref="title"/>
<xs:element ref="author"/>
<xs:element ref="character" minOccurs="0Q" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

content/images/Bruggemann-Klein01-009.png
is top level element

* {ordered}

content/images/Bruggemann-Klein01-008.png
4 v <xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema">

O N O wv

10
11
12
13+
14 v
15
16 v
17
18
19
20
21
22 v
23 v
24
25
26 v
27
28
29
30

<Xs

<XS:
relement

<Xs

<XS:
relement

<Xs

<XS:
<XS:
<XS:
<XS:

relement

element
element
element

element
element

name="character" type="charType"/>
name="book" type="bookType"/>
name="title" type="xs:string"/>
name="author" type="xs:string"/>
name="name" type="xs:string"/>
name="friend-of" type="xs:string"/>
name="since" type="xs:string"/>
name="qualification" type="xs:string"/>

complexType name="charType">

<XS:sequence>

<xs:element ref="name"/>

<xs:element ref="friend-of"
minOccurs="@" maxOccurs="unbounded"/>

<xs:element ref="since"/>

<xs:element ref="qualification"/>
</Xs:sequence>

</xs:complexType>

<xs:complexType name="bookType">
<XS:sequence>

<xs:element ref="title"/>

<xs:element ref="author"/>

<xs:element ref="character"
minOccurs="@" maxOccurs="unbounded"/>

</Xs:sequence>

</xs:complexType>

</xs:schema>

content/images/Bruggemann-Klein01-003.png
3 v <book>

16
17

<title>Being a Dog Is a Full-Time Job</title>
<author>Charles M. Schulz</author>
<character>
<name>Snoopy</name>
<friend-of>Peppermint Patty</friend-of>
<since>1950-10-04</since>
<qualification>extroverted beagle</qualification>
</character>
<character>
<name>Peppermint Patty</name>
<since>1966-08-22</since>
<qualification>bold brash tomboyish</qualification>
</character>

</book>

content/images/Bruggemann-Klein01-002.png
Type definition

local

Element declaration

global

local

Russian Doll

Salami Slice

global

Venetian Blind

Garden of Eden

content/images/Bruggemann-Klein01-005.png
4
5w
6 v
7v
8
9
10 v
11+
12 v
13
14
15
16
17
18
19
20
21
22
23

<xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema">
<xs:element name="book">
<xs:complexType>
<Xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
<xs:element name="character" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<Xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="friend-of" type="xs:string" minOccurs="@" maxOccurs="unbounded"/>
<xs:element name="since" type="xs:string"/>
<xs:element name="qualification" type="xs:string"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

content/images/Bruggemann-Klein01-004.png
3 v <character>
<name>Snoopy</name>
<friend-of>Peppermint Patty</friend-of>
<since>1950-10-04</since>
<qualification>extroverted beagle</qualification>
</character>

0 N O v oA

content/images/Bruggemann-Klein01-010.png
{unique names} *

matches / denotes

* {ordered, finite}

{unique names} *

is top-level component in

content/images/Bruggemann-Klein01-012.png
RD

|

VB

SS

|

GE

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Bruggemann-Klein01-011.png
RD SS

| X

VB «<—GE

