[image: Balisage logo]Balisage: The Markup Conference

Cooking up something new
An XML and XSLT experiment with recipe data
Peter Flynn

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Article copyright © 2020 by Peter Flynn. Application code copyright © 2019-2020 by Silmaril Consultants.

How to cite this paper
Flynn, Peter. "Cooking up something new." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Flynn01.

Abstract
This is a report on an experiment to see if
	XML and the disaggregation of ingredient
	metadata could be used to reduce errors in recipes. Errors in
	web pages, PDFs, and print have been an
	irritant to authors, cooks, editors, and publishers for many
	decades, and occasionally the cause of an expensive recall.
	This research aims to see if markup could help.
Modern recipe structure is a well-established convention
	of a list of ingredients and a list of instructions
	(method). The writing about mistakes is sparse
	but highlights errors of omission and commission,
	inconsistency, sequence, and mismatch between the lists.
	Attributes for ID and classification were added to
	the ingredients list in a nonce recipe schema, along with an
	IDREFS attribute for use in the references to
	ingredients in the instructions; and code was written for
	cross-checking existence, usage, and consistent reproduction
	of names, and tested on a small collection of recipes.

We demonstrated that five of the seven classes of error
	identified could be straightforwardly remedied, but that the
	requirements for disaggregated data input needed to deal with
	the consistency issues may be too detailed for non-expert use
	unless assisted by a semantic filter.

Balisage: The Markup Conference

 Cooking up something new

 An XML and XSLT experiment with recipe data

 Table of Contents

 	Title Page

 	Background
 	Ingredients

 	Measurement

 	Errors

 	Scope

 	Implementation
 	Identity checks

 	Consistency

 	Order

 	Categorisation
 	Markup

 	Rules using categorization

 	Handling of conflicts

 	Results and conclusions
 	Testing

 	Benefits and drawbacks

 	Conclusions

 	Appendix A. Worked example

 	About the Author

 Cooking up something new
An XML and XSLT experiment with recipe data

Note: Acknowledgements
My thanks go to all those friends in cooking and markup who
 contributed with suggestions and food.

Background
There is a conventional formality to the way in which
 recipes are presented in western cultures which has been common
 since the middle of the nineteenth century. Before that,
 ‘receipts’ (as they were then known, from
 the Latin for ‘Take…’) were largely
 narratives, so you had to read them all the
 way through and note down what ingredients you would
 need.[1]; this was true from the earliest clay tablets
 [Anon 2016] through the Greek and Latin
 recipes of the Classical period [Vehling 1936] to the end of the manuscript era with the
 first large-scale cookbook, The Forme of
	Cury; and from the subsequent rise of the printed
 cookbook from the 1470s [Sitwell 2012],
 including the extensive body of household manuscript cookery
 books and ephemera (see, for example, Figure 2) that continued to flourish until the
 end of the 18th century [Masters 2013], to the conventional modern style
 which was pioneered by Eliza Acton (1845) and
 popularised by Isabella Beeton (1861) in the UK and Fannie Farmer (1896) in the USA. This style has a structure
 something like this:

	Title and/or Description, sometimes with a
	picture

	Number of portions (sometimes)

	List of Ingredients (quantities, materials,
	treatments)

	Method of preparation (steps)

	Comments or serving suggestions

Figure 1: Simple recipe

<recipe>
 <name>Fudge</name>
 <ingredients>
 <item>1lb Sugar</item>
 <item>½pt Cream</item>
 <item>Chocolate</item>
 <item>2oz Butter</item>
 </ingredients>
 <method>
 <step>Mix ingredients</step>
 <step>Boil to 112°C</step>
 <step>Stir and cool</step>
 <step>Pour into dish</step>
 </method>
</recipe>
	

It is nowadays also common to provide an extended narration
 after the Description, perhaps explaining where the recipe
 originated, or what changes have been made, but this is a matter
 of taste and style, and not an essential component. The key
 components remain the List of Ingredients and the steps of the
 Method.

Figure 2: Recipes for bread and cake (1840)
[image:]Contents of a letter from Bedford stamped with a
	 Penny Black franked 8 August 1840 (Author’s collection).

There has been some interesting work on encoding recipes,
 particularly in the historical field (and therefore by default
 using TEI) [Knauf 2017][Klug 2017], but these are
 typically done to enable the recipe[s] to be identified within a
 much larger corpus, not for the purposes of analysing the
 ingredients or method, so they do not tend to use markup down to
 the level proposed here.

Ingredients
Ingredients are usually given in the order in which they
	get used in the steps, but sometimes they may be in order of
	importance (for example, a recipe for a beef stew could start
	with the beef, even though the onions may be the first thing
	you begin the cooking with); and sometimes they may be
	grouped, especially in complex recipes (all spices together,
	or all ingredients for a sauce together).

The convention for ingredients is to give the quantity,
	units, and item in that order (eg 3 Kg onions,
	but some authors or editors give the item first
	(Onions, 3 Kg). It is not important, except
	that from a publishing point of view it needs to be done the
	same way in each recipe to avoid confusing the reader.

<ingredient xml:id="onions" quantity="3" unit="Kg" size="small"
 colour="red" vegetable="onion" treatment="peeled and chopped fine"/>

Other material about quality, size, shape, and treatment
	may be interspersed: the example above would be needed for
	3 Kg small red onions, peeled and chopped fine.
	The borderline between the preparation or treatment being
	attached to the ingredient, or being mentioned in the steps of
	the method is sometimes hard to determine: both are common,
	and the discussion above about style and consistency applies
	here also.

Measurement
Measurements have their own cultural conventions. In
	modern western cultures there are three common
	‘standards’:

	In most European-influenced cultures, metric units are
	 standard (grams, kilos, liters).

	In the UK and some of its former
	 spheres of influence, metric units are the norm for
	 published recipes, but Imperial units are still often
	 used domestically (ounces, pounds, pints, with 20 fluid
	 ounces to the pint).

	In the USA, measurements are given by volume (cups,
	 pints, with 16 fluid ounces to the pint) but also (in
	 larger quantities) in pounds and quarts; the word
	 ‘ounce’ is used to mean
	 ‘fluid ounce’, as an ounce weight is rarely
	 used. Canada and Australia officially use the metric
	 system but many people still habitually use Imperial or US
	 measurements. New Zealand uses metric measures but has a
	 standard metric cup (250ml).

However, all these cultures tend to use similar measures
	for very small quantities, subject to some minor differences
	related to eating and drinking habits (see Figure 3):

Figure 3: Spoon sizes
[image:]From left to right: coffee-spoon, tea-spoon,
	 soup-spoon, dessert-spoon, table-spoon, serving-spoon,
	 very large serving-spoon [Author]. Above: Set of
	 standardised measuring spoons: tbsp (15 ml), dsp
	 (10 ml), tsp (5 ml), ½ tsp (2.5 ml), ¼ tsp (1.25 ml),
	 pinch (⅛ tsp or 0.625 ml) [Nigella Lawson]

	tea-spoon or coffee-spoon (tsp, cuillère
	 à café or càc, etc: about 5ml),
	 although in cultures where tea-drinking predominates, a
	 coffee-spoon is smaller than a tea-spoon, about 3ml

	dessert-spoon (dsp, cuillère à
	 dessert or càd, etc: about 10ml), common
	 in UK and French-speaking
	 cultures only, so far as I have been able to
	 determine

	table-spoon or soup-spoon (tbsp,
	 cuillère à soupe or càs,
	 etc: about 15ml, but a tbsp is 20ml in Australia); in the
	 UK, a soup-spoon is the same size as a
	 dessert-spoon (although a different shape) — [e]veryone knows how big a
	 table-spoon is: it will just go into your mouth, though
	 not if you have nice manners. [Freeling 1972]

	Other spoons exist, of course: mustard-spoons and
	 salt-spoons, for example, but I am not aware of any
	 standard capacities. Extensive internationalisation would
	 be needed for more widespread applicability: while the
	 sizes appear not to vary much, the names and abbreviations
	 are of course different.

Errors
It is not uncommon for recipes published in books and
	magazines and on the web to contain mistakes that can confuse
	even experienced cooks. This may be caused by many factors,
	including writing or typing up the recipe in a hurry; changing
	it while you experiment, and forgetting to update it; failing
	to get it edited professionally before publishing; working
	from illegible or out-of-date sources; misunderstanding a
	translation; or not testing the recipe — and doubtless many
	others including plain ordinary typographic errors.

Errors in recipes are an annoyance to readers when a dish
	fails; they are an embarrassment to their authors; they are
	damaging to the reputation of the publishers; and occasionally
	they can be the cause of serious financial loss, if a book has
	to be withdrawn because of them. It is therefore in everyone’s
	interests that recipes be as correct as possible. This
	research is an attempt to see if markup can contribute to a
	solution.

Complete omission of an ingredient (both from the list
	and from the method) is an editorial and
	testing problem, easily fixed online but not in print
	[Cloake 2011]. This class of error is not
	susceptible to treatment in software as the relevant data is
	by definition entirely absent in the first place, so there is
	nothing for a program to do anything with.

Cloake (2011) also quotes an example of the much more
	common problem of omitting the ingredient in one place but not
	the other:

 Nigella’s Feast […] contains a
	 recipe for a chocolate orange cake that includes a direction
	 to ‘cream together the butter and sugar’ —
	 which would come as a nasty surprise to the prospective
	 baker, given no butter is mentioned in the ingredients.
	 (When chocolatier Paul A Young tried both versions, he
	 concluded the butter was a red herring — the cake turns out
	 much better without it.)

Mismatched quantities can also confuse the cook.
	Jacob (2016) describes an
	error where the list of ingredients specified four cups (of
	shredded sharp cheddar cheese), but the method only used half
	a cup.

In an earlier article, Jacob (2010) identified seven classes of error (14 if
	we include a later list of seven more). Most of these are
	editorial problems which are important but out of scope for
	this research. The key concerns here are (using [Jacob 2010]’s original
	numbering for the first and second lists):

	Ingredients out of order (1/1)

	Missing ingredient (1/2)

	Wrong amounts (1/3)

	Making every step a separate number (2/6)

In item 2, [Jacob 2010] groups
	together the errors of omission and of commission (a listed
	ingredient which does not get used; and a step referring to an
	ingredient that is not listed), but we would argue that these
	are technically two separate classes of error.

Testing is probably the most essential part of recipe
	development, but for this very reason, each cycle of testing
	means changes to the recipe. Hart, in an article on writing cookery
	books, emphasises that while there are things a good editor
	will catch, it’s up to the cook/author to get it right to
	start with [Hart 2012].

An additional class of error is the inconsistent use of
	names, that is, using a different name for an ingredient in
	the List of Ingredients to the one used in the Method. This
	can occur where different cultures name things differently,
	and either lack of editorial oversight or authorial
	absent-mindedness results in both names being used for the
	same things in different places (‘spring
	 onions’ and ‘scallions’
	is one example that might need explaining out of its cultural
	context).

These problems are not new. Burros (1997) was blunter about it:

The prevalence of errors in cookbooks is the publishing
	 world’s dirty little secret. The problem is likely to get
	 worse as an industry mired in economic doldrums resorts to
	 cost-cutting, practically guaranteeing less editing and
	 testing before publication.

The publishing industry has indeed continued to get worse,
	and it is now a rare publisher who can offer to copyedit and
	proofread a manuscript, and the online publishing business has
	regrettably mirrored the worst practices of its print
	forebears. Burros (1997) goes on to explain the division of
	blame between publisher and author, both of whom feel the
	other could do more, and concludes that

[i]t is a haphazard system — further complicated by
	 typesetting errors and editing that too often fails to
	 eliminate confusion.

Elsewhere she refers to human error or computer
	 gremlins, which is where the present research comes
	in.

Scope
With rare exceptions, published recipes nowadays are either
 on the web, which means HTML in one form or
 another; or in print, which means typesetting to
 PDF. The source format for new recipes is
 likely to be a Microsoft Word file,
 or a blog entry (perhaps Markdown), or an email message, or
 possibly still a typescript or manuscript. They may be original
 to an author (even though something similar may have existed for
 centuries elsewhere, unknown to the author), or they may have
 been copied or converted in many ways from recipes passed
 between friends and family, and they may of course also have
 been pirated: copyright notwithstanding, photocopies of recipes
 from magazines and books are legion, and it is not hard to do an
 OCR from a scan.

The scope for errors is enormous: the author’s own
 experience includes an edit of a typescript which listed half a
 pint of milk, originally typed (on a typewriter, from a
 handwritten recipe) as
 1/2 pt milk
 .
 This became 1 or 2 pints milk in the editing (by
 someone unfamiliar with the lack of a ½ sign on an old
 typewriter), but it was corrected at proofing stage to
 ½ pt milk — and then the defective software
 used by the typesetter could only manage □ pt
	milk.

Recipe management software is available industrially, but
 tends to focus on very large volume production in the food
 industry and the automation of mixing and cooking equipment.
 However, a Belgian software company,
 youmeal.io, produces kitchen-oriented
 food analysis products for the catering and restaurant industry,
 and emphasises that using correct food data is of primary
 importance. They quote a study of their own claiming that
 50% of technical sheets for compound products were
 incomplete or incorrect.

A software solution to at least some of the problems above
 was considered to be potentially of use to the cookery author,
 editor, or publisher, as well as to cooks who wants to write up
 their own recipes in a way that will pass the test of time — but
 many other problems will continue to rely on humans for a
 solution. (Historical recipes are interesting for the lack of
 detail as well as for the actual food: some of them read like
 recipes from a professional cook’s manual such as
 Le Répertoire de la Cuisine [Saulnier 1982] where for brevity the reader is assumed
 already to know everything from experience; others are virtually
 unusable because not all the relevant ingredients are
 mentioned, so expert guesswork is needed.)

From the errors discussed earlier, a candidate list of
 topics emerged, based on susceptibility to solution by
 software:

	Ingredient referred to in method was never listed

	Ingredient listed was never referred to in method

	Ingredients out of order

	Bogus quantities (eg too big or too small)

	Mismatched quantities (different between the list of
	ingredients and the step of the method)

	Inconsistent naming of ingredient between list and
	step

	Steps too small (ie too many of them)

Of these, the control on bogus quantities was seen as
 unimplementable without a data history and suitable limits,
 which places it outside the scope of this experiment. The step
 size problem is also not easily susceptible to machine
 judgement. Both these classes were therefore dropped at this
 stage

Schematron was suggested by two reviewers, and could be used
 to calculate ‘reasonable’ measurements
 and highlight deviations, as well as to identify ingredient item
 conflicts, but in the time available this was not
 possible.

The objective, therefore, was to see if adding markup to the
 ingredients and steps could be used at or before the rendering
 stage to limit the remaining classes of error without creating
 too much work for the author or editor.

It was seen as important for potential solutions that they
 could be implemented in any programming language, and the data
 could be stored in a number of different ways, so while this
 implementation is in XML and
 XSLT, the data structure (50 lines) and the
 code (600 lines) are both small and should be easy to
 reimplement. The choice of XML was based on a
 number of considerations: ; a) many publishers already use XML as
	 part of their workflow; b) it is commonplace in web systems; and c) a recipe is essentially narrative text (still), even
	 if it is presented in the form of two lists, and
	 XML was designed for dealing with mixed
	 content (plain text mixed with special meanings). XML editing software also has
 controls which can be used on elements and attributes and
 references to them, early in the workflow, as well as at the
 point where output is created.

Taking this as a starting-point, some common
 XML markup features could readily be seen as
 having potential use: for example the built-in
 ID/IDREF checks could be used to test for
 the presence or absence of ingredients in the steps and
 vice versa; and enumerated (token
 list) attributes could be used to represent the options for
 different categories of ingredients. This would improve
 the accuracy of reproducing the textual form of the ingredients;
 allow for finer-grained checking; and enable indexing for book
 publication and for online searching.

During initial development it became apparent that a
 sufficiently accurate categorisation of the ingredient metadata
 could provide a solution to error class 6 by [re]generating the
 textual form of each ingredient programmatically from the
 categorised data.

Implementation
The implementation proceeded in two phases: developing and
 testing the ID/IDREF mechanism, used for
 error classes 1, 2, 3, and 5 in the list in §5, and
 developing the categorisation for ingredients, used in
 class 6.

Identity checks
Some initial tests showed that detecting the use of an
	ingredient was trivial. Given a schema that makes
	xml:id a REQUIRED attribute on an
	ingredient element, a conditional using an XPath statement
	such as count(idref(@xml:id))=0 is sufficient to
	determine if the ingredient is not referenced anywhere else in
	the recipe. Note that at this level, it does not control for
	where such a reference ought to occur,
	nor whether it would be meaningful in context: those are still
	tasks for a human editor or proofreader.

The reverse is simpler and even less controlled: if the
	references from the steps to ingredients are done using an
	element with an IDREF attribute, then standard
	validation techniques will throw an error on any such
	references that have no matching ID, even before
	regular processing starts.

As a first stage, therefore, we can use two declarations,
	one for the ingredients and one for references to them:

 <!ELEMENT ingredient (#PCDATA)>
 <!ATTLIST ingredient xml:id ID #REQUIRED>
 ...
 <!ELEMENT ing EMPTY>
 <!ATTLIST ing i IDREFS #REQUIRED>

The first element would occur as part of the content model
	for the list of ingredients, and the second element would be
	valid in mixed content in the steps of the method, as the
	reference to the ingredient[s] being used. In fact, if this
	system is to be implemented in an existing
	schema/DTD (as opposed to the nonce schema
	used for testing), only the attributes are required: the names
	of the element types could be anything.

Consistency
The ID/IDREF link used in section “Identity checks” can also be used to reproduce the name of
	the ingredient at the point of reference, instead of requiring
	it to be entered manually during composition, unless some special
	wording is required. In effect, if we write

 <ingredients>
 <ingredient xml:id="flour">brown flour</ingredient>
 <ingredient xml:id="sugar">muscovado sugar</ingredient>
 </ingredients>
 ...
 <method>
 ...
 <step>Add the <ing i="flour sugar"/> and mix well.</step>
 </method>

it is straightforward to write code which will
 produce

3. Add the brown flour and muscovado sugar and mix well.

This makes use of the binding between ingredient and
	mention which addressed the missing ingredients problem.
	However, merely reproducing the name of the linked ingredient
	does not solve the problem of the wrong ingredient being
	accidentally referenced, an in many cases the full name is not
	required (eg just ‘flour’ and
	‘sugar’ are enough). Proofreading and
	recipe-testing are still important to prevent this.

Order
A test for the order or sequence of ingredients could be
	encoded into the handling of the mixed-content element type
	(ing in the example in section “Identity checks”),
	but in order to take account of potential previous references
	to the same ingredient, which encumbers the coding, it is
	preferable to do this at another stage, for example in the
	handling of the container of the steps of the Method.

For each grouped unique occurrence of descendant
	ID values (that is, in the steps of the Method),
	the position within the Method is compared with the position
	of the matching ingredient in the List of
	Ingredients.[2]

This means (using the example in section “Consistency”) that

 <step>Add the <ing i="sugar flour"/> and mix well</step>

would throw an error because the flour is listed as an
	earlier ingredient than the sugar.

While it is conventional to list the ingredients in order
	of their mention, it is by no means universal; but where
	ingredients are grouped (for example into component parts of
	the recipe), then there are usually also multiple matching
	Method steps, and within them the rule of order-of-mention
	appears to be observed.

Categorisation
It became apparent that the disaggregation of the
	ingredient data could lead to the generation of the
	human-readable ingredient items both in the List of
	Ingredients and in the mentions in the Method. There is a
	formality here too, in the way in which ingredients are
	expressed, and there are conventions which vary by culture. It
	is possible to say 100 g walnuts, chopped fine
	as well as 100 g finely-chopped walnuts: both
	mean the same thing, although in English there is an implicit
	presumption in the first form that you take whole walnuts and
	chop them fine yourself; and in the second, that you buy the
	walnuts ready-chopped. While these variants are largely
	stylistic, published collections of recipes try to standardise
	on one way of saying things in order not to confuse the
	readers, especially if they are likely to be beginners and
	unfamiliar with the conventions.

It therefore became an additional task to equip the system
	with the ability to store the ingredient data as separate
	identities for units, quantities, different classes of
	foodstuffs, qualities, treatments, etc, so that the
	ingredients list could be generated in an acceptable format,
	especially across many recipes following a pattern. A
	side-benefit is that it could also result in the consistent
	use of names between ingredients and method. The
	categorisation of the ingredients required considerably more
	work, and remains open to much discussion.

Many categorisations or classifications are based on
	nutrition or source, both of which would require specialist
	knowledge to enter as data. Wikipedia suggests Dairy, Fruits,
	Grains/Beans/Legumes, Meat, Confections, Vegetables, and Water
	[Northamerica1000 2020], based largely on work
	by Nestlé (2013), which
	is closer to how a cook would think of ingredients. Bearing in
	mind that a categorisation for this purpose needs to be useful
	for decision-making (Is this recipe vegetarian,
	Is there alcohol in this recipe, Does it
	 contains nuts?), a few changes were made to this
	scheme:

	the Meat category was split into Meat and Fish
	 (to cover seafood)

	Nuts were separated out from other Vegetable
	 materials, as was Pasta

	Confections was ignored as a separate category (sugar
	 is subsumed under Spices)

	store-cupboard ingredients were given their own
	 category of Basic (although there could be much dispute
	 over what one person has in this category compared with
	 another person)

Five additional categories were Herbs; Spices;
	Alcohol; Toppings, which covers edible decoration; and Prep,
	intended for ready-prepared ingredients usually bought
	pre-packaged.

This leaves unsolved some problems of categorisation which
	are not dealt with elsewhere because traditional food
	classifications omit items such as chocolate (technically a
	ready-prepared item, although humorists would have it a food
	group in is own right). In the current settings, chocolate is
	a store-cupboard item but chocolate-chips are a
	topping.

Markup
The current system provides for the following attributes
	 on the ingredient element:

	
 @xml:id, unique
	 ID for the ingredient

	
 @quantity, a number,
	 possibly including a decimal fraction (but restricted to
	 the half, quarters, eighths, thirds, and fifths, as
	 these can be represented in text with existing Unicode
	 fractions)

	
 @unit, a list of
	 standardised abbreviations (dl, dsp,
	 fl.oz, g, Kg, lb, l, ml, oz, pt, tbsp, tsp) plus
	 common measures such as cup, can,
	 dash, drop, handful, etc

	
 @unit-weight, text for
	 describing a standard size of one of the common
	 measures, like a 400 g can

	
 @container, text for the
	 name of the container of the @unit-weight

	
 @size, a list of
	 adjectives, eg large, medium, small, etc

	
 @colour, a colour
	 name used for description, like red apple

	
 @quality, any adjective
	 describing a pre-existing
	 condition, eg dry, smooth, unsalted, etc (not a @treatment, see below)

	Items (the material ingredients) — these are
	 mutually exclusive (with the exception of
	 @part):
	
 @meat, a list of
		 meats, eg beef, chicken, lamb, pork, etc

	
 @fish, a list of
		 seafood, eg salmon, hake, prawn, lobster, etc

	
 @part, a list of
		 body parts or products, eg breast, kidney, wing,
		 egg, seed, etc

	
 @dairy, a list of
		 dairy products, eg milk, cheese, cream, yoghurt,
		 etc

	
 @fruit, a list of
		 fruits

	
 @alcohol, a list of
		 drinks

	
 @herb, a list of
		 herbs

	
 @vegetable, a list
		 of vegetables

	
 @nuts, a list of
		 nuts

	
 @pasta, a list of
		 types of pasta, noodles, etc

	
 @spice, a list of
		 spices

	
 @basic, a list of
		 common store-cupboard ingredients, eg flour, oil,
		 yeast, etc

	
 @toppings, a list
		 of edible decorative items, eg Streusel

	
 @prep, text for
		 any class of ready-prepared ingredient

	
 @treatment, an adjective
	 such as chopped, ground, melted, etc (something done to
	 the foodstuff)

	
 @note, a digit, for use
	 in referring to footnotes (deprecated)

	
 @comment, any
	 text

	
 @symbol, a symbol or
	 emoji, provision for bullet labelling

	
 @alt, text describing an
	 alternative for substitution if the exact foodstuff is
	 not available

	
 @status, an enumerated
	 list optional or required,
	 so that optional
	 ingredients can be identified

These are used to describe the foodstuff in a way that
	 avoids the need for extensive typing in most
	 cases, as the enumerated list values can be
	 selected from a menu. It was regarded as important that the
	 actual names of items should not be subject to typing errors
	 on each occasion of entry.

<ingredients>
 <ingredient xml:id="avo" quantity="4" size="large" quality="very ripe"
 treatment="chopped fine" vegetable="avocado"/>
 <ingredient xml:id="toms" quantity="2" size="medium"
 treatment="chopped just as fine" vegetable="tomato"/>
 <ingredient xml:id="oil" quantity="1" size="hefty" unit="dash" note="1"
 quality="pimento" basic="oil"/>
 <ingredient xml:id="lj" quantity="2" unit="tsp" fruit="lemon" part="juice"/>
 <ingredient xml:id="garlic" quantity="1" unit="clove" size="fat"
 vegetable="garlic"/>
 <ingredient xml:id="ff" quantity="2–4" unit="fl.oz" dairy="fromage-frais"
 comment="or double [heavy] cream if not on a diet"
 alt="Sour cream is also good here"/>
 <ingredient xml:id="salt" spice="salt"/>
 <ingredient xml:id="pep" spice="pepper"/>
</ingredients>
	
A set of rules was developed in XSLT
	 which implements the grammatical precedence of the attribute
	 descriptive values (described below). This results in a list
	 such as:

	4 large very ripe avocados, chopped fine

	2 medium tomatoes, chopped just as fine

	1 hefty  dash pimento
	 oil¹

	2 tsp lemon juice

	1 fat clove garlic

	2–4 fl.oz fromage frais (or double [heavy] cream
	 if not on a diet). Sour cream is also good
	 here.

Footnotes in ingredient lists are extremely rare and
	 largely inadvisable, so they are not provided for; the one
	 in this example was implemented manually.

In tests, all the classes of ingredient could be
	 represented without the need for character data content.
	 However, much more extensive testing would be needed to
	 ensure the coverage of the enumerated lists, and to tighten
	 up the rules on how the wording is generated.

The lists mentioned in the attributes are plain text
	 files, one value per line, ending in a vertical bar (the
	 standard delimiter for enumerated attributes), so for
	 example the test file meat.list
	 currently says:

 beef|
 chicken|
 duck|
 ham|
 lamb|
 pork|
 turkey|
	
As they are plain text files, they can be customised to
	 the author’s desire, and can be as long or as short as
	 needed provided they follow the rules for enumerated list
	 items (compounds need a hyphen, not a space, like
	 fromage-frais; this is removed in the
	 XSLT on output), so there is no limit on the
	 number of items or their order (alphabetic order was used
	 purely for convenience) and they don’t need to be one per
	 line: any additional spacing is entirely optional.

Rules using categorization
From inspection of existing recipes, it was possible to
	 come up with a first conjecture on the order and precedence
	 for expressing the ingredients in natural language, using
	 the data in the attributes. Such a mechanism would require
	 a much larger amount of data than was available for the
	 rigorous regression testing needed before it could be widely
	 used, but the current rules appear to work acceptably in
	 many circumstances.

	Quantity
	This always comes first, except where it is
		implicit (knob butter) or where it is
		left to the cook (salt). Non-numeric
		quantities such as ranges (10–12
		 apples) or judgments (a few
		 apples) are reproduced as-is, otherwise the
		integer portion of the quantity is used, and any
		(decimal) fractional part converted to the nearest
		vulgar fraction.

	Size
	Size is used as a prefix to the unit when the unit
		is common (eg large handful)

	Unit weight
	This is used when the quantity refers to an
		ingredient that comes supplied in a measured
		container, like a 400 g can of tomatoes. If it follows
		a numeric quantity, it gets a multiplication delimiter
		(×)

	Container
	This is only meaningful when @unit-weight is used, and gets
	 output immediately after it

	Unit
	Unit follows quantity (but may have been prefixed
		by size and unit weight). Common units are pluralised
		if the quantity is more than one or is non-numeric
		(intervention: ‘dash’ requires
		an ‘e’)

	Size
	When the unit is standardised or absent, it is
		applied to the ingredient, not the unit (eg medium
		eggs)

	Quality
	This is a predetermined feature of the ingredient
		like best or home-grown,
		being one that the cook selects before use (see
		Treatment below)

	Colour
	Any colour; accepted as-is

	Treatment
	The actions ground,
		grated, and shredded are
		applied before the ingredient (see more below)

	Ingredient
	There are currently ten groups as described
		earlier. These are based on observation, and are
		largely pragmatic or conjectural:
		; a) alcohol; b) basic (ie store-cupboard items); c) dairy; d) fruit; e) herb; f) meat; g) pasta; h) spice; i) toppings (decorative sprinkles); and j) vegetable. Order is not significant, as they must
		be mutually exclusive for any given ingredient. The
		lists can be tailored ad
		 infinitum. If a value contains a
		hyphen, replace it with a space. This enables the use
		of hyphenated compounds like baking-powder, and
		two-word names like soy-sauce (the case where
		retention of the hyphen is needed is unresolved).
		Pluralisation of ingredients is a little more tricky
		than for quantities: if the quantity is more than one,
		or it is non-numeric, or the unit is a standardised
		unit (excluding tsp, tbsp, and dsp),
		and the ingredient is not among
		the values for meat, dairy, spice, pasta, basic, or
		herb (excluding spinach, seed, rice, and garlic), then
		pluralise it, adding an e to potato and
		tomato.

	Part
	If the ingredient is a part of a greater whole,
		like a flower, seedpod, kidney, skin, or egg, use it as-is,
		and pluralise it if the quantity is more than one or
		the unit is lb or Kg.

	Treatment
	The remaining actions (ie not
		ground, grated, and
		shredded handled above, and also
		excluding powder,
		butter, and to taste)
		are prefixed with a comma.

Alternative ingredients, if any, are added verbatim in
	 parentheses; footnote marks are added if given; the
	 [optional] indicator is added if required, and any comments
	 are added in another set of parentheses.

At the time of writing, smaller, experimental, changes
	 are being made, principally to accommodate syntactic needs
	 revealed as more recipes are encoded. Two of the more common
	 are the selective elision of adjectival @part and @colour values in references, where
	 only the substantive is required; and the need for grouping,
	 as in ‘add the spices’, which at the moment
	 will cause omission of the order and reference tests.

Handling of conflicts
In examining the syntax of ingredient description compared
	with those of references in the method, it was clear that
	there were places where additional information was needed in
	the references, for example to distinguish between two or more
	sugars, or group them together or to highlight the fact that
	an ingredient needed to be referred to by more than just name
	at this stage.

As a palliative measure, a @mod attribute was added to the
	ing element type. This is an enumerated attribute
	whose values are the names of all the control attributes on
	the ingredient element type; that is, all the
	descriptive ones but not the actual food-item attributes: @quantity, @unit, @unit-weight, @container
 @size, @colour, @quality, @treatment.

Using this on the example in Appendix A, we
	could write

	<ing i="sugar" mod="quality"/>
	
which would result in dark
	 brown sugar. This does not solve the problem of
	(hopefully edge) cases where identifying an ingredient
	accurately would need more than one such qualifier.

A related requirement is to disambiguate multiple related
	ingredients, such as all-purpose flour and whole-wheat flour.
	Currently, the XSLT code checks for the
	existence of one or more other ingredients with the same item
	name, and checks if they all have at least one of the control
	attributes in common (set to different values, like @quality). If so, the attribute value
	is used as a prefix on the items to make the reference.

Results and conclusions
Testing
The testing of ingredient and reference co-presence was
	shown to be trivial using the ID/IDREF
	mechanism in XML, which covers error
	classes 1 and 2.

The testing of ingredient order for error class 3 was not
	as trivial, but relatively straightforward to implement in
	XSLT. No attempt was made to implement any
	other order, such as quantity or semantic relevance.

The potential mismatch in quantities between ingredient
	list and step (error class 5) was not tested: in the sample
	recipes used, there were no occurrences of partial quantities
	being used in one step, with the remainder used in another.
	There were indeed recipes using a single ingredient type in
	two or more places, but in those cases the quantities were
	given as separate ingredient items. An aggregate quantity test
	is needed where an ingredient is divided (a practice decried
	by Jacob (2010)).

The naming (and regeneration of names) was by far the most
	complex matter. The reconstruction of ingredient listings from
	the disaggregated data is non-trivial, and a comprehensive
	solution would involve extension of the current system well
	into the future in order to handle the infinite number of ways
	that recipe authors will have of expressing themselves.
	However, for practical purposes, it appears that
	(unquantified) most recipes can be represented
	accurately, in the sense that the need to add new ingredient
	items to the lists diminished rapidly as testing proceeded.
	The current system appears to handle correctly the generation
	of items for the list of ingredients and their matching
	references in the method (error class 6), but it is in no way
	comprehensive and needs much more testing with a greater range
	of ingredients.[3]

There was considerable conflict over the assignment of a
	few items to lists: should garlic be under vegetables or
	spices? Are beans a sufficiently large class to warrant their
	own list? Are nuts? It is simple enough to edit the files and
	change the classes, but some agreed standard would make it
	more useful.

Benefits and drawbacks
The benefits of a system checking these errors would
	include greater reliability, accuracy, and consistency; three
	things that publishers insist on from their contributors,
	whatever about the utility to personal web recipe sites.

Identifying the ingredient data in a form a computer can
	manage also has a benefit separate from these quality control
	aspects: it might make that hoary old chestnut ‘recipe
	 search’ actually work for once,
	both in the sense of locating a recipe using specific
	ingredients, distinct from whatever the title says, as well as
	in the sense of letting cooks find out exactly what they can
	make with the ingredients in the quantities on hand.

I leave to others the dubious usefulness of having your
	recipe selection trigger your fridge into ordering the missing
	ingredients. While it is perfectly possible, the effort in
	maintaining the metadata after every midnight snack is
	probably not worth the candle.

The most obvious drawback in the system as it currently
	stands is that implementing it requires some form of
	programming in a target system. Cooks, and cookery authors and
	contributors, are not part of the target market for
	XML systems: although implementation in an
	XML editor should be straightforward, they
	are not going to buy an editor for recipes, and they won’t be
	using Emacs.

Commonplace editors like Microsoft
	Word can certainly be coerced into
	providing prompted or drop-down categorisation, although
	embedding the error-checking logic currently implemented in
	XSLT would require more effort. Web-based
	systems running Javascript are perhaps more likely targets, as
	would be Wordpress plugins. Unless
	someone makes me an offer I can’t refuse, the current code
	will be released under a suitable public licence later in the
	year.

Conclusions
In general, this work satisfied the requirements and
	demonstrated that a limited amount of data checking can
	eliminate (or at least, signal) five of the seven classes of
	errors described.

However, the need to have an authorial or editorial
	interface written to handle data input (encoding) accurately
	means that wider implementation would need to rely on demand,
	unless there is sufficient interest in a collaborative,
	possibly open-source, implementation.

Encoding would still remain a time-consuming operation,
	even with sophisticated software, because of the need to apply
	domain expertise, which in turn would require relatively
	experienced users (cooks, collectors, publishers). Given the
	fairly strict formatting of published recipes, however, it
	might be possible to write a semantic and syntactic filter to
	identify at least quantity, units, and name from published
	recipes. This has not been investigated in the current
	iteration.

The work on the category lists confirms the well-known
	principle that data should be stored at the lowest practicable
	level of disaggregation because it can always be aggregated
	for implementation, whereas data stored aggregated can never
	be broken back down into its components. It also confirms the
	long-held, if anecdotal, belief in systems design that time
	spent planning the data model shortens the overall development
	time: if the data model is right (that is, it matches
	reality), most requirements tend to click into place; if the
	data model is wrong, the entire project may be irretrievably
	damaged from the start.

However, the corollary is that if you
	do get the data model right, you will
	still need to front-load enough data for it to be workable as
	a model before you start to develop it
	into a full system. In the current circumstances, nowhere near
	enough recipes have been tested, so the front-loading is a
	potential point of failure, and for this reason the current
	system remains experimental and open to more widespread
	testing and updating.

Appendix A. Worked example
This is an example of a partly-edited recipe from the
 author’s collection, with unresolved issues (at the time):

<!DOCTYPE recipe SYSTEM "recipe.dtd">
<recipe id="cashewscones">
 <nav/>
 <info>
 <title>Butterscotch and Cashew Drop-scones</title>
 <author>Anon</author>
 <copyright year="2019" web="https://www.teatimemagazine.com/"
 contrib="Ann Marie O’Connell">Tea Time Magazine</copyright>
 </info>
 <intro>
 <para>Anna mentioned this online and I asked her for the recipe.
 The original was from Tea Time Magazine (Jan/Feb 2019, but is
 not in their archive¹). She notes that it works fine with all
 white whole-wheat flour, and she also added large-crystal raw
 sugar as a topping, instead of an egg glaze, because of the
 additional caramel notes.</para>
 </intro>
 <ingredients>
 <ingredient xml:id="plainflour" quantity="1.5" unit="cup"
 quality="all-purpose" basic="flour"/>
 <ingredient xml:id="wwflour" quantity=".5" unit="cup"
 quality="whole-wheat" basic="flour"/>
 <ingredient xml:id="sugar" quantity="0.333" unit="cup"
 quality="dark brown" treatment="packed" spice="sugar"/>
 <ingredient xml:id="bp" quantity="1" unit="tbsp"
 basic="baking-powder"/>
 <ingredient xml:id="salt" quantity=".5" unit="tsp" spice="salt"
 comment="use ¼ tsp if the cashews are already salted"/>
 <ingredient xml:id="butter" quantity=".5" unit="cup"
 quality="unsalted" dairy="butter" treatment="chilled and
 diced"/>
 <ingredient xml:id="chips" quantity=".5" unit="cup"
 treatment="slightly heaping" topping="butterscotch-chips"
 alt="any preferred chips"/>
 <ingredient xml:id="cashews" quantity=".5" unit="cup"
 quality="toasted" treatment="slightly heaping"
 vegetable="cashew"/>
 <ingredient xml:id="cream" quantity=".5" unit="cup"
 quality="heavy" dairy="cream"/>
 <ingredient xml:id="egg" quantity="1" size="large"
 treatment="beaten" part="egg"/>
 </ingredients>
 <method>
 <step>
 <para>Preheat oven to 400°F.</para>
 </step>
 <step>
 <para>Combine together <ing i="plainflour wwflour sugar
 bp salt"/> in medium bowl.</para>
 </step>
 <step>
 <para>Add the <ing i="butter"/>; using fingertips,
 rub to form coarse meal.</para>
 </step>
 <step>
 <para>In separate bowl, whisk the <ing i="milk"/> and
 the <ing i="egg"/>.</para>
 </step>
 <step>
 <para>Gradually add the <ing i="milk egg"/> mix to the
 flour mixture, keeping back 1 tsp of the egg mix to use
 for glazing.</para>
 </step>
 <step>
 <para>Toss or knead it to thoroughly moisten it and form a
 clumpy dough (add more milk if too dry).</para>
 </step>
 <step>
 <para>Mix in the <ing i="chips"/>.</para>
 </step>
 <step>
 <para>Drop the dough by ¼ cupfuls onto a nonstick or lightly
 greased baking sheet at least 1 inch apart, to give 8–10
 drop-scones. (You can line a regular pan with aluminum foil
 instead of greasing it.)</para>
 </step>
 <step>
 <para>Brush the remaining <ing i="egg"/> on top as a
 glaze.</para>
 </step>
 <step>
 <para>Bake for about 20 minutes or until golden brown.</para>
 </step>
 </method>
 <para>You can also use a mini-scone baking pan, like the Nordic Ware
 cast-aluminum one, which gives you 16 triangular scones.</para>
 <para>If you use the “freeze the portioned dough” technique, they
 will need to bake 3–5 minutes longer.</para>
 <para>¹ Possibly because the ingredients didn’t match the method in
 several places.</para>
</recipe>
	
Running the current XSLT code produces
 the following log:

Processing cashewscones.xml using xml2html.xsl to cashewscones.html
Using parameters
8. Unused ingredient "slightly heaping ½ cup toasted cashews"
9. Unused ingredient "½ cup heavy cream"
Checking 1. @plainflour
Checking 2. @wwflour
Checking 3. @sugar
Checking 4. @bp
Checking 5. @salt
Checking 6. @butter
Checking 7. @milk
Ingredient "" (milk) is listed 1st but mentioned 7th
Checking 8. @egg
Ingredient "1 large egg, beaten" (egg) is listed 10th but mentioned 8th
Checking 9. @chips
Ingredient "slightly heaping ½ cup butterscotch chips (or any preferred chips)"
 (chips) is listed 7th but mentioned 9th
4. No ingredient matching ID "milk"
5. No ingredient matching ID "milk"

The amended and functional recipe is available on the
 author’s web site at http://xml.silmaril.ie/recipes/cashewscones.html.

References
[Acton 1845] Acton, Eliza (1845) Modern Cookery for Private Families. Longman, London, 644pp.
[Anon 2016] Anon (2016) ‘Recipes’. In Archaeology May/June 2016 May 2016, Archaeological Institute of America, Palm Coast, FL.
[Vehling 1936] Vehling, Joseph Dommers (1936) Cookery and Dining in Imperial Rome. Walter M Hill, Chicago, IL, 301pp.
[Beeton 1861] Beeton, Isabella (1861) [Mrs] Beeton’s Book of Household Management. S.O. Beeton Publishing, London, 1112pp.
[Burros 1997] Burros, Marian (1997) ‘Cookbook Follies’. In New York Times September 1997.
[Cloake 2011] Cloake, Felicity (2011) ‘Cookbook errors’. In The Guardian September 2011.
[Farmer 1896] Farmer, Fannie Merritt (1896) The Boston cooking-school cook book. Little, Brown, & Co, Boston, MA, 620pp. URI:https://d.lib.msu.edu/fa/8#page/2/mode/2up (retrieved 7 February 2020).
[Freeling 1972] Freeling, Nicolas (1972) The Cook Book. Hamish Hamilton, London, 154pp. ISBN:0879238623.
[Hart 2012] Hart, Alice (2012) ‘How to write your first cookbook’. In The Guardian July 2012.
[Sitwell 2012] Sitwell, William (2012) ‘A history of cookbooks’. In The Bookseller June 2012, Bookseller Media Ltd, London.
[Jacob 2010] Jacob, Dianne (2010) 7 Most Common Recipe Writing Errors. Author’s web site, Oakland, CA. URI:https://diannej.com/2010/7-most-common-recipe-writing-errors/ (retrieved 14 December 2019).
[Jacob 2016] Jacob, Dianne (2016) When a Reader Found a Cookbook Error. Author’s web site, Oakland, CA. URI:https://diannej.com/2016/reader-finds-cookbook-recipe-error/ (retrieved 18 December 2019).
[Knauf 2017] Knauf, Torsten (2017) Definition der TEI-basierten culinary editions Markup Language (cueML), Bewertung von Verfahren
	für die automatische Extraktion von Zutatenlisten aus Rezepten
	und die Auszeichnung des Praktischen Kochbuchs für
	 die gewöhnliche und feinere Küche von Henriette
	Davidis (1849). URI:https://shaman-apprentice.github.io/MyMasterThesis/ (retrieved 11 February 2020).
[Klug 2017] Klug, Helmut (2017) ‘Cooking Recipes of the Middle Ages’. URI:https://static.uni-graz.at/fileadmin/gewi-zentren/Informationsmodellierung/PDF/Laurioux__Klug_-_Scientific_Proposal_ANR-FWF_-_full.pdf (retrieved 11 February 2020).
[Masters 2013] Masters, Kristin (2013) ‘The Incredible Treasures of Manuscript Cookbooks’. In ILAB July 2013, International League of Antiquarian Booksellers, Geneva.
[Nestlé 2013] Nestlé, Marion (2013) Food Politics. University of California Press, Berkeley, CA. ISBN:9780520275966.
[Saulnier 1982] Saulnier, Louis (1982) Le Répertoire de la Cuisine. Leon Jaeggi & Sons Ltd, Ashford, UK, 239pp. ASIN:B00I637XDK.
[Shane 2020] Shane, Janelle C (2020) AI recipes are bad (and a proposal for making them	worse). AI Weirdness, Lafayette, CO. URI:https://aiweirdness.com/post/190569291992/ai-recipes-are-bad-and-a-proposal-for-making-them (retrieved 9 February 2020).
[Shane 2020] Shane, Janelle C (2020) AI + Vintage American cooking: a combination that cannot
	be unseen. AI Weirdness, Lafayette, CO. URI:https://aiweirdness.com/post/190721709472/ai-vintage-american-cooking-a-combination-that (retrieved 8 February 2020).
[Northamerica1000 2020] Northamerica1000 (2020) Food group. Wikipedia, The Free Encyclopedia, San Francisco, CA. URI:https://en.wikipedia.org/w/index.php?title=Food_group&oldid=939771878 (retrieved 19 February 2020).

[1] Freeling’s
	 The Cook Book is
	 possibly one of the last from a modern author in Europe to
	 use the narrative style throughout [Freeling 1972].

[2] My thanks to Michael Kay for his suggestions on how to
	 achieve this most efficiently.

[3] As an edge case, the system was tested with a few
	 AI-generated recipes courtesy of [Shane 2020][Shane 2020] where a neural net
	 created recipes without reference to feasibility or
	 edibility (and much else!). However, having coded them to
	 the above standard, they tested correctly, all the errors
	 being picked up.

Balisage: The Markup Conference

Cooking up something new
An XML and XSLT experiment with recipe data
Peter Flynn
Peter Flynn managed the Academic and Collaborative
	 Technologies Group in IT Services at University College
	 Cork, Ireland until his retirement in 2018. He trained at
	 the London College of Printing and did his MA in
	 computerized planning at Central London Poly (now the
	 University of Westminster). He worked in the UK for the
	 Printing and Publishing Industry Training Board, first as
	 researcher and then as DP Manager; and for United
	 Information Services of Kansas as IT consultant before
	 joining UCC as Project Manager for academic and research
	 computing. In 1990 he installed Ireland’s first Web server,
	 and expanded the university’s academic and research
	 publishing support. He has been Secretary of the TeX Users
	 Group, Deputy Director for Ireland of EARN, and a member
	 both of the IETF Working Group on HTML and of the W3C XML
	 SIG; and he has published books on HTML, SGML/XML, and
	 LaTeX. Peter also runs the markup and typesetting
	 consultancy Silmaril, and is editor of the XML FAQ as well
	 as an irregular contributor to conferences and journals in
	 electronic publishing, markup, and Humanities computing, and
	 a regular speaker and session chair at the XML SummerSchool
	 in Oxford. He completed his PhD in User
	 Interfaces to Structured Documents with the Human
	 Factors Research Group in Applied Psychology in UCC in 2014.
	 He maintains a fairly random semi-technical blog at http://blogs.silmaril.ie/peter

Balisage: The Markup Conference

content/images/Flynn01-002.jpg
% S 3 3

B o

BNEREERRERRRERERERER 44,JJJJJJJJJJ44¢gJQJAJQAJJ
G4 i |27 T .. .,v a1 |

Bl {7,

UL LR LR RO AR RN R AR AR NHAAY

e ‘

content/images/Flynn01-001.jpg

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

