[image: Balisage logo]Balisage: The Markup Conference

Systems security assurance as (micro) publishing
Declarative markup for systems description and
 assessment
Wendell Piez

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

How to cite this paper
Piez, Wendell. "Systems security assurance as (micro) publishing." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Piez01.

Abstract
Markup technologies are very general purpose, as reflects
 their generality of conception. They become interesting as well
 as useful as they are applied to accomplish goals in the real
 world. Since principles of generic declarative markup were first
 applied to accomplishing publishing-related goals in information
 management, design and application, 25 or 40 years ago, they
 have repeatedly demonstrated both their generality – they really
 do work – and their demand for applicability. Get one thing
 wrong, or leave it out, and the effort sits on a shelf. Design
 and deploy it carefully and sensitively, and even an inexpensive
 initiative can pay dividends for years. These systems become
 sustainable in the context of the sustainable operations of
 which they are a part.
Decades of experience have shown us how to use declarative
 markup to sustain publishing operations. Now we have to deal
 with similar problems of information description, management,
 reuse across contexts, referencing, tracing, and authentication,
 only at even larger scales than before, both in size and
 complexity. This paper proposes some lessons and insights we can
 bring from our experience with publishing technologies, and
 suggests how they might be applicable in the growing domain of
 systems security assurance.

Balisage: The Markup Conference

 Systems security assurance as (micro) publishing

 Declarative markup for systems description and
 assessment

 Table of Contents

 	Title Page

 	Context of the conversation
 	Practical successes of declarative markup

 	What is publishing? challenges of documentation in systems
 security

 	What have we learned from technology in publishing?
 	Your system is someone else's subsystem

 	Declarative markup adds value

 	Data acquisition is hard

 	Activities are supported by incentive structures

 	Quality is defined within context

 	Evolution works by little revolutions

 	How do we know we need (something like) OSCAL?

 	The OSCAL Approach

 	Applying the lessons: conclusions and expectations

 	About the Author

 Systems security assurance as (micro) publishing
Declarative markup for systems description and
 assessment

Context of the conversation
Note
Disclaimer: Certain commercial equipment, instruments, or
 materials are identified in this paper to foster understanding.
 Such identification does not imply recommendation or endorsement
 by the National Institute of Standards and Technology, nor does
 it imply that the materials or equipment identified are
 necessarily the best available for the purpose. The opinions,
 recommendations, findings, and conclusions in this publication
 do not necessarily reflect the views or policies of NIST or the
 United States Government.

Practical successes of declarative markup
In the form of XML (Extensible Markup Language), for twenty
 years we have had systems exploiting the principles of
 declarative markup on a standards basis, with commodity tools.
 If you count XML's predecessors including both SGML[1] and applications of other technologies that are or
 can be declarative in their approach (such as LaTeX),[2] this history is much longer. This is no accident
 inasmuch as the roots of these technologies are in typesetting,
 among other requirements, which presents problems difficult
 enough to demand we factor out and layer
 solutions addressing challenges in functionality,
 configurability and maintainability. The layered solution to the
 problem of maintaining multiple publishing streams from complex
 aggregated sources, it turns out, is the layered solution to
 much else as well.
What has not happened? Whether considered as a standard
 processing stack based on the W3C (Worldwide Web Consortium)
 XPath/XQuery Data Model (XDM [xdm2017]), or only
 as a data format, XML has not become the single and sufficient
 solution to all problems. Perhaps it was never, indeed, meant to
 be, at least not seriously – let us distinguish advocacy from
 marketing – yet in 2020, even as the broad domains of digital
 information stretch far beyond what visionaries of 20 years ago
 imagined, XML or even layered, declarative
 approaches considered more generally, are by no means
 predominant. This is in part because other solutions have
 emerged to other problems, which have seemed more exigent or
 demanding than the long-term problems solved by descriptive
 markup or XML, and which do not entail its overhead. Those of us
 who work with it know that XML (or the more important principle
 it stands for) has not failed; yet at the same
 time, it has not altogether taken the field either. Sometimes
 its successes have been ambiguous. (War stories could be told.)
 It is probably closer to say that XML has been remarkably, even
 spectacularly successful in some ways – while in other ways, the
 future we imagined has not come to pass, or if it has, it
 appears in a form quite unlike what we expected. (People edit
 wikis. They use Markdown! War stories could be told.)

What is publishing? challenges of documentation in systems
 security
Into this ambiguous context we step with a new set of
 problems, unprecedented and yet (in many respects) familiar at
 the same time. Systems security assessment, assurance,
 authorization. Information exchange around systems security –
 this is not publishing exactly, in anything like the common
 sense (of making materials available to a public), yet it
 entails all the same problems of information gathering,
 organization, exposition, design and presentation for the
 consumption of readers and consumers, both sentient (people) and
 automated (machines).
In particular, systems security assessment or RMF-based
 security assurance activities[3] are not publishing in the sense that they entail
 creating productions for a general audience. Few of the
 documents produced by security professionals in their work are
 published in a normal sense. But the size of
 the audience, or even whether a document is released or
 disseminated to a public, are not the only defining features of
 what is publishing. Perhaps we could refer to
 this (formal and informal) circulation of formatted office
 documents as micropublishing or targeted
 publishing. A PDF or Word document, that is, prepared at
 considerable trouble and expense by dedicated professionals, and
 submitted for review, whether it be by potential customers,
 regulatory authorities, or partner organizations, might never be
 published, while it is nevertheless subject
 to all the same functional requirements in information creation,
 production, management, and tracking – and most especially, for
 revision cycles and quality control.
Compared to more normal sorts of publishing, this set of
 activities might work at a higher order of complexity, over
 faster – and also more extended! – time frames, with larger and
 more articulated information sets. Even how this is to be done
 adequately, much less at its best or in its ideal form, has
 hardly been defined, and its definition is itself dynamic, a
 moving target, as we learn more about systems and risk
 migitation and management. At the same time at a certain level
 we have no choice: this is work that will and must be done, at
 some level, the only question being how well. In this respect,
 publishing serves as shorthand for an entire
 range of activities entailing data collection, composition,
 analysis, review, formatting for presentation and finally the
 production of artifacts for consumption, be they
 reports or proposals or
 reviews, specifications or
 assessments in whatever form - paper, PDF,
 Office or word-processor formats, web pages, or any other form.
 In these forms, these artifacts are disseminated to recipients
 that are able to make use of them for their own
 processes..
In a paper delivered to Balisage 2019, some of the special
 challenges of the (so-called) system security
 application domain – as seen from the point of view of a
 relative newcomer – were described at some length. Additionally,
 Joshua Lubell's companion paper to this one frames in much
 greater detail the questions of security assurance processes as
 a specifically documentary
 activity, and one in which (moreover) the questions of
 authority, knowledge, sources of knowledge, trust,
 accountability, traceability and transparency – all issues that
 have been implicit in every publishing system ever built
 (whether digital and networked, or by any analog media) – become
 especially salient. For purposes of this paper, this background
 is assumed as context.
Indeed, insofar as systems security may also entail both
 marketing and customer
 relations – even while it entails much else – we can
 recognize that even when it is not formalized to the extent that
 we see with the United States Federal Government's Risk
 Management Framework – as one approach to security among others
 – it is always based in the appropriate
 transmission and communication of information between
 points. In other words, it always comes down to a
 kind of publishing, albeit, as noted, a kind of targeted
 micropublishing. The details are always different. But a
 principled approach to the design of information technologies,
 which works to address one set of thorny problems in information
 exchange, should provide similar advantages when dealing with
 another.

What have we learned from technology in publishing?
Your system is someone else's subsystem
Self-similarity across scales -
 Information ecosystems or ecologies, as noted at
 Balisage 2018 (Piez 2018), are fractal in
 organization; one way we know this is by the way we find similar
 organizations and patterns of organization appearing at many
 levels of scale. In particular, with publishing workflows we can
 see a great range of scales and indeed nested scales. Every
 system is made of systems, with more or less articulated
 boundaries within the subsystems; and this is true of subsystems
 too. Essentially, all systems are hybrid systems, and the way to
 look at any one of them (whether at a system
 level or that of a component) is to consider its interfaces and
 externalities (including operational and technical dependencies)
 and especially the way these affect its capacity for
 maintenance, adaptation and scaling.
Consider for example the banal case of a scientific or
 scholarly journal. Its communications are carried forward for
 the sake of producing articles and making them available to a
 readership. Each article entails a complex choreography of data
 exchange, as the text of the article is submitted to the journal
 by its author, reviewed, revised (or rather: rejected in favor
 of revision), finally accepted and then processed
 (the means varies) for publication. Each of these steps entails
 one or more communications between parties to accomplish. These
 communications include the article itself but also the
 coordination and meta-commentary around it.
In principle this is measurable. A typical small journal might
 publish four or six issues per year; each of these issues might
 contain four or six articles, averaging 20 to 30 articles per
 year. Each of these articles requires a varying (small) number
 of peer reviews – which we can also count, yielding another
 number – say, between 50 and 100 peer reviews, per journal, per
 year. Circulating these peer reviews – and, more importantly,
 ensuring that documents are revised accordingly – constitutes
 much (though, not all) of the work of the journal editor perhaps
 with the help of staff. Since many or most peer reviews will
 then be returned to an author, for each peer review, there are
 at least three or four participants in the workflow (author,
 editor, peer reviewer, staff). To the extent there is attrition,
 as not all peer reviews and article revisions are carried
 through successfully, we could quantify this as well. In any
 case, even without numbers and figures (elapsed time per peer
 review, to edit it and return it to the author), it becomes
 clear how the work associated with such circulation is probably
 the largest limiting factor preventing a journal (on this model)
 from scaling up to a larger run. Essentially this means that due
 to the centrality of the editor in the worflow (if only as
 peer review conductor) – there is a limit to
 the effective size of a journal. Making a journal bigger (in
 terms of production, not circulation) is much harder than
 spinning off a new journal.
One gating factor here is the relative difficulty of not just
 peer review, that is, but all the coordination around it.
 Author, editor, managing editors, peer reviewers: as long as
 they share no simple platform or standard for the handling of
 peer reviews, their peer reviewing system is essentially made up
 of the combination and intersection of all their personal
 systems, and maintaining communications this way is costly (even
 while regarded as normal and regular). Migrate peer reviewing to
 an online system, for example, that consolidates the effort of
 reviewing and tracking, and the numbers shift. Scaling is now
 easier – albeit other limiting factors such as availability or
 motivation, might remain.
Similarly, further along the lifecycle, once journals start
 being aggregated together, peer review is no longer a limiting
 factor. Once articles enter post publication,
 they are more like black boxes, identifiable by metadata but not
 requiring intervention for particular cases (as peer review
 might). So publishers or aggregators of published information
 can pull together multiple issues of multiple journals, and the
 scaling bottleneck posed by peer reviews (or again more
 precisely, by the interventions they require), does not apply.
 Similarly – but differently – this particular bottleneck does
 not apply to other sorts of publishing such as trade or
 monograph publishing, where peer review and the revision process
 are done and managed differently.
These differences and distinctions between systems and the
 industries they serve, are driven and defined by their
 information processing requirements, and the difficulty and
 expense of those requirements – most of which are the expenses
 of time and expert attention. What we do not have, to take
 account of all this, is a science of workflows,[4] which is to say a set of principles and governing
 ideas for how workflows actually work: a branch of sociology and
 economics, but with a technical aspect insofar as workflows lend
 themselves to quasi-formal definition, once (for example) we
 start to specify the details of inputs and outputs.
Figure 1: Elements of workflow
[image:]
One principle of a science of worflow should be the
 concept of exchange. A party gives something to another
 party, who gives something in return. This response
 typically triggers another action, perhaps an iteration
 with a modified input. Such exchanges might be the
 elements or conceptual primitives of
 a systematic accounting.
When the parties are reciprocal and co-equal, and
 contents of the exchanges are equally contributed by
 both, we have a basic Correspondence
 pattern.

Figure 2: Peer review pattern
[image:]
Peer review is one pattern in a
 (potential) pattern language to describe information
 workflows. Others might be bundle;
 enhance (e.g., provide metadata);
 test or confirm;
 publish (maybe both
 push and pull); and so
 forth.

What a science of workflow would enable us to see would be the
 articulated joints of these related processes – where there are
 hand-offs in responsibility, and where there are requirements
 and capabilities for (what should be called) transformations, in that their
 outputs (results, what is produced) are
 modifications, translations and enhancements of their inputs
 (their sources and raw materials). These can be and typically
 are very specific operations to very local sets of requirements.
 Nor is this a bug or a problem, in that these particularities
 are often the entire point of the exercise. (The reason we send
 an article to a peer reviewer, is that we would like to see what
 comes back.)
Without such a science, however, there are still things we can
 know from experience. One reason it is useful to work through a
 mundane example such as a peer review exercise in a hypothetic
 journal, is that it dramatizes the underlying reasons why, for
 example, rates of technological evolution are so uneven. It
 remains an open question, for example, in 2020, what format or
 formats are best used to share draft articles (or more
 precisely, the raw materials of what is to become an article) in
 a peer review process. Externalities (such as the ubiquity of
 certain tools or toolkits) push one way, while functional
 requirements – or even cultural considerations – in the system
 itself may push another. Thus there is no perfect solution –
 journals accept documents created with proprietary word
 processors because that is all their authors are prepared for.
 When an unusual consistuency is able to provide a journal with
 something better (perhaps a community of scientists, or academic
 scholars with text encoding skills, has tools they prefer) they
 will often take that. This is all because
 the system of the journal is just a subsystem for each of
 its authors.
In a fractal landscape, scales are relative, we should expect
 the same problems or versions of them to turn up in more than
 one place, albeit differently. While by definition and design,
 technologies of automation can support scaling, the fact that
 they also need to be fitted so
 closely – that two cases (say, two journals, or two research
 articles in a journal) are so similar without being alike –
 frustrates and even prohibits a cookie cutter approach.
What is true in one domain of information processing, might
 well be true in others. In publishing, especially technical
 publishing (however defined), things are always the same except
 where they are not. Precisely to deal with this variability,
 experience shows, only a well-defined, openly-specified, and
 non-proprietary technology can serve as the basis for
 (open-ended) solutions, which can be adapted to
 serve a heterogeneous and changing set of organizations, with
 their interlocking goals. Experience with academic, scientific
 and technical publishing indicates that such a technology will
 be declarative in form. For machine-readable data to be useful
 for the duration (that is the lifecycle of
 the information, not the system it currently sits in or the form
 it currently takes), it must systematically and consistently
 address and characterize the data itself as both artifact and
 mechanism. What that mechanism is or should
 be, is relative to the uses to which we put this information and
 our needs for handling and processing it.

Declarative markup adds value
As noted, it is possible for a scholar, researcher or
 information professional in 2020 to be
 entirely on a digital platform, where all the works apart from
 some odd print artifacts, consumed as well as produced, take
 digital form, and indeed in which XML, standards, declarative
 markup and open systems (perhaps broadly including wikis, git
 repositories, and assorted other forms of hybrid hypertext media
 on line) are central to the system, while word processors and
 other page-oriented tools are secondary.
But those are outliers, and almost everyone involved in
 authoring or research phases
 of publishing today still uses word processors, spreadsheets and
 document formats along with email – almost necessarily a one-off
 format with little potential for data reuse – for passing their
 information across systems. Office documents as
 we broadly call them, are the assumed basis for data
 interchange. Although they exist, journals or publishers that
 readily work with other kinds of data inputs, even nominally
 standard formats, are indeed quite rare, and the cases that do
 so are illustrative. Similarly, despite all the demonstrated
 advantages of single source publishing,
 publishers that produce anything but pages first (albeit in
 digitally encoded form, which is to say digital artifacts in PDF
 or Postscript®), are also quite rare; any web version or archive
 version is treated as a secondary production. The possible
 efficiencies to say nothing of the more outlandish potentials of
 an XML-first workflow, are simply not perceived to be worth it.
 And indeed they may not be, if the trouble, expense and
 disruption are certain while the gains are hypothetical.
On the other hand, to claim that markup technologies have had
 no impact would be to entirely misconstrue what has happened in
 25-some years. While to some it may appear that XML's day has
 come and gone, it keeps coming back and proving its usefulness:
 indeed it might be said that the larger-scale activities now
 happening routinely in the publishing space enabling both
 access, and long-term stability, for collections of
 unprecedented size and complexity – all of these would be for
 practical purposes impossible without strategies of declarative
 (descriptive) markup and the principle of open lingua franca
 that can be established on its base. Even if markup technologies
 have not made their way explicitly into the work practices of
 writers, researchers and editors, it still cannot be said – most
 especially in the case of HTML (Hypertext Markup Language) and
 the web, but this is not the only case – that these technologies
 are not significant. Indeed, the reasons we invest energy in
 producing these representations (indexable, retrievable,
 massable, filterable, stylable – in ways their word processor
 documents are not), is because they prove to be so
 valuable.
To a great extent, this is because the principles themselves
 are sound. Of course there is nothing especially
 XML about cleanly layered separation, and an
 architecture that reflects and responds to the requirements of
 its users not to paint information to appear one
 way or another, but to expose and maintain the information
 as information – which
 interestingly we do by describing it. XML, with its associated
 technologies, is a means to this end.

Data acquisition is hard
Perhaps we all agree already that rich, clean declarative
 markup is by far the preferred form not only for archiving but
 for production. Even if we do (and I am not sure I do), the
 question remains of where that rich information set comes from:
 how does the XML get there in the first place? By XML, here, we
 mean of course not XML itself, but a particular kind of XML, as
 exemplified by documentary formats with descriptive tag sets.
 For reasons that will become clearer later, I also mean
 (paradoxically) an XML that is not XML at all (in
 that, as I will discuss, the JSON Javascript Object Notation]
 variants of OSCAL formats seeks to share the same advantages
 offered by the XML variants). (OSCAL, the Open Security Controls
 Assessment Language, is discussed further below.)
In the real world, the answer to the problem of how do we
 acquire the data to start is generally, with difficulty. When
 information sources are created and first transmitted as
 office documents (meaning any of a species of
 word processor, spreadsheet software, whether proprietary or
 open-standard), conversion into XML can be done (with care, by a
 skilled operator) by hand, or it can be
 semi-automated. Either way it will require additionally a
 skilled human operator for supervision, definition of data
 quality, assessment. Given these challenges, automation is
 expensive, becoming cost-effective only when rates of
 production are large enough – and rules are clear enough – to
 reward economies of scale.
In general, as well, while large-scale data conversions
 supported by externalized providers is a way of making XML, this
 approach is only affordable or sustainable for certain kinds of
 information. Systems security and assessment is actually
 characterized by a great heterogeneity of information formats,
 including data sets produced by machines as well as by people.
 This great heterogeneity, plus requirements for sensitive
 handling of private or confidential data, together make it
 difficult to outsource the task of data description to a third
 party or external provider. Data security questions aside (how
 do you shop for a conversion vendor to reformat your most
 sensitive and proprietary strategic information?), the
 combination of high data complexity and distinctiveness (at the
 levels of subdomain, markets and enterprise) may make for no
 sweet spot for outsourcing data conversions,
 across the domain of systems security. Partner organizations may
 need to be able to do this for themselves and each other,
 without always relying on external expertise.
Other methods of acquiring XML markup also present
 opportunities along with their own challenges. For example, we
 can bring XML tools such as structured editors earlier into the
 workflow; similarly, we can design systems with user interfaces
 (wizards, forms interfaces) that abstract the structure and its
 encoding away from the view. Both of these have the effect of
 providing support for the human operator (writer or editor),
 while permitting the information to be XML
 native; and the advantages of such system, where they
 can be used, can be considerable. Where
 they can be used here is the operative qualifier
 – since this is by no means everywhere: both development and
 deployment require a level of engagement with both goals and
 technical means. Generally speaking it is only the more agile
 and more technically-minded organizations that have been able to
 take advantage of such opportunities.
Yet there may also be a narrow and somewhat arduous path
 forward to structured data that goes through office documents, not around them. The
 key here may be templates, which already have the advantage of
 being the preferred method for much of the industry for
 capturing their information – largely because the promises of
 templates are, in many
 respects, the promises of structured data, while the deployment
 architecture (documents layered with so-called styles) is the
 same or similar, albeit in proprietary form. In some cases, it
 may be possible to design combinations of templates, rule sets,
 transformations and document validations (dynamic checks and
 feedback) that together can help with the job of data
 conversion, from a representation internal to the word
 processor, into an externalized form. For certain very regular
 and generalizable species or subspecies of documents, in certain
 organizations, this approach might serve as a useful accelerant
 to getting structured information into the mix. Word processor
 as structured editor.
While such a solution is possible, who is going to build the
 solution, for whose use? Will it have to be producers of the
 data themselves (which would demand an extraordinary combination
 of disparate skills), or can there be a market for such
 development and innovation? If the model of the third-party data
 conversion vendor does not serve for addressing the need here,
 what does?
Moreover, it can be expected that this question will remain
 acute until we have both adequate specifications for shared data
 description (to whatever level of standard
 possible), and working systems that respect and implement these
 standards. Until then, cumbersome data conversions will remain
 an impediment. Organizations who can insulate themselves at the
 boundaries, defining for their partners what the specifications
 of these formats will look like, will have an advantage.
This brings us to incentive structures.

Activities are supported by incentive structures
‘When I use a word,’ Humpty Dumpty said in rather a
 scornful tone, ‘it means just what I choose it to mean —
 neither more nor less.’
‘The question is,’ said Alice, ‘whether you can make words
 mean so many different things.’
‘The question is,’ said Humpty Dumpty, ‘which is to be
 master — that’s all.’

One key to understanding these articulations – and how they
 implicate practical matters such as the serialization format of
 a data exchange – is to see how the lines and arrows in a
 diagram demarcate lines of authority and responsibility in a
 complex system of exchanges, whose most important considerations
 are not in the details of any single exchange, but rather in the
 operational context in which all of them take place together, as
 an orchestrated set.
By exchange here we mean more than simply an
 exchange of data. Certainly, some of these transitions entail
 data being copied from one system to another. (As a journal
 article is sent as an email attachment from its authors to the
 issue editors.) However, exchanges also happen as data
 transitions in other ways. An editor who assigns to an
 assistant, for example, a task such as copy editing, may
 move nothing, except assign access control
 rights in the system (so the assistant can make changes to the
 copy). Yet to exchange access control is to exchange much else,
 namely the custody of the article, entirely or in part. (In our
 example, the assistant may know that some corrections are in
 scope while others cannot be executed without conducting another
 loop outward, with the author.)
As an example of the signification of such an exchange, over
 and above the communication of the exchange itself: a young
 scholar publishing an article in a leading journal, assumes and
 acquires thereby some of the authority and credibility (as it
 were by proxy) of the journal. The published article becomes a
 line item in a curriculum vitae
 and eventually a tenure application, and as such might be worth
 as much as or more than the article itself. Of course, this is
 of no direct interest to readers of the article, who benefit
 from the scholarship despite the necessarily mixed motives
 behind it. Indeed in principle, the combination produces a
 mutual benefit even if not a perfectly symmetrical one. (The
 journal, and its readers, get the good scholarship. The author
 gets a shot at tenure.) In any case, several exchanges occur
 following on the central one (the article's publication) at
 several levels: exchanges of authority and reputation, as well
 as notice of interests and alliance.
This kind of thing matters since it shows how these structures
 are built on and around incentive structures, which is to say
 combinations of mandates, structured choices, and agreements to
 cooperate that condition how these systems are built and
 maintained. (One such agreement to cooperate takes the form of
 I will do this task if you employ me and make it part
 of my responsibility – which is at one level a
 significant commitment. And yet some kinds of tasks, it seems,
 are not routinely accomplished without it.) At question is
 always not only in what form
 does a data exchange occur (an email, a Word document, a piece
 of registered mail with a signature, a spreadsheet – or an XML
 document, valid to a schema?) but also by
 what rule is that form determined, who makes that rule, and whose interests are served (immediate
 or long-term) by that rule and its rule set, both actually and
 apparently? (Make it a docx file because
 that's what I know how to use.) In our example, the
 young scholar may happily take on the work of formatting the
 bibliography, as the journal submission guidelines demand,
 because she understands this exercise is both valuable in itself
 (or she wouldn't be asked to do it, presumably), and, in a
 sense, the price of admission, the cover charge for the club; a
 demonstration and proof of her willingness and ability to play
 by the journal's rules and pitch in to the common effort. (It is
 not entirely uncommon for scholars to find bibliographies in
 particular as rites of passage.)
Or alternatively (to work this example further) maybe the
 journal discovers that it can't get good enough bibliographies
 from its authors no matter what it does. So the work of
 reformatting bibliographies is handed to an in-house assistant.
 The workflow for handling the article is thus articulated, at
 the point of the bibliography. Custody shifts, with respect to
 an isolable (rules-bound, thus also typical)
 chunk of data, namely that part of the article (the bibliography
 or works cited section) with its links or bindings to the rest
 of the system (conceived in large terms). The workflow becomes
 more complex and the bibliography becomes a special focus.
 Submitted to a more stringent set of rules, by an agent or
 operator who can specialize in them, the bibliography can now be
 enhanced in ways otherwise impossible, normalized for
 integration. So the bibliography of the paper is made by this
 effort to merge more easily with the larger bibliography of the
 journal or publisher's holdings, not only this bibliography but
 all of them. The benefits of having such a mega-bibliography
 grow exponentially as the number of entries grow, so it is worth
 building as largely as possible if you're going to the trouble
 at all. However, this comes at a cost: someone must pay for the
 expert assistance and the technical stack to support it. Someone
 must learn how to do it. In the real world, someone has to
 volunteer to take on this responsibility, or there must be a
 budget to pay someone to do it.
It is not difficult to find examples of such phenomena, which
 are indeed at the heart of publishing activities or more
 largely, of business in general. Exchange happens, we can
 stipulate, when a data set in some form or representation (a
 document, an article, a
 spreadsheet, some sort of formal submission on a template),
 shifts from one party to another, for an operation to be
 performed. Submitted to such a process, there may be a new
 record created, and/or an original record or document may be
 altered or amended: in any case there is a before/after
 relation; in a way of speaking, each discrete step can be
 considered an operation, function or filter.
For each of these, whether machine aided or entirely motivated
 and performed by hand, there is some investment
 (cost), and some reward. In return for providing its value to
 the operation, the function or filtering operation must be paid
 for. Standards-based automation pays for itself when we can make
 these costs linear (by factoring out costs of design and
 development), while the benefits remain exponential, whenever we
 can operationalize such functions or filter to the point that
 they can be automated.

Quality is defined within context
Another key is to see how, within these transmissions, the
 question of quality is both
 construed (defined and determined) and maintained. Again within
 the context of journal publishing, a (nominally)
 high-quality author submission might well
 take the form of a word processor or
 officedocument. (Whether it is Microsoft Word,
 Google Docs or whatever a journal editor might consider
 acceptable these days.) In this case, the criteria of quality
 are not in its formatting – how pretty is the research laid out
 on the page – but rather in its instrinsic properties of
 argument, evidence and exposition, relating it as subject matter
 to other subject matter. (Is it original or novel research in
 its field? Does it relate to the literature in its field in some
 other meaningful way?) As such, the entire purpose of a produced
 artifact such as word processor file is to represent its
 author's work adequately for the purposes of the journal to
 publish it, a complex process that entails
 among other things (and again, because criteria of quality are
 extrinsic to this), that the document will be translated into a
 new form – for example, a PDF for page display, even eventually
 ink on paper.
In its new form, the reformatted document has
 quality (or one might more properly say
 value) that the original document does not,
 and is judged accordingly – now, not only for its argument and
 evidence (its nominal content), but also for its
 aesthetics and accessibility (for example).
In other words, it is worth looking at the before and after
 states when considering appropriate criteria of evaluation.
 Before publication, as submitted, we might like the document to
 look nice on the page; but it is not the page layout by which we
 judge it. This matters because part of what we intend to do,
 indeed, is reformat it so it looks different. In other words, we
 fully expect that the article or work we accept for publication,
 will be changed in that process, if not in essence (as FRBR
 work[5]) then in representation. Yet as publishers (to say
 nothing of the production designer), we expect the work to look
 better or more polished (than the author
 could make it). The publishing enterprise is designed to support
 such activities through processes that work not simply by adding
 value but by doing so within the context of new and more
 stringent criteria for evaluation, changing the definition of
 quality itself.
Moreover, this shift in what might be called the evaluation context for determining
 quality is entirely the point of the workflow, the
 refinement to which the work is subjected.
 Significantly, this can happen irrespective of how the worflow's
 participants constituent – the various players in the exchanges
 – are more or less oblivious to it. The young scholar is
 rewarded by publishing the article in the leading journal. Part
 of the reward is that the article is now listed in indexes; it
 pops up in searches. Other researchers are led to the scholar's
 work through these links. The links were made not by the scholar
 who wrote the article, but by the staff who provided its
 metadata and aggregators who followed after to consume the
 refined works (journal articles, issues and volumes) made from
 the raw word processor documents collected from scholars in the
 field. The very existence of these links, and the aggregators
 who make them, may be unknown to the scholar whose paper is
 being cited. Yet they serve a purpose, and the scholar benefits
 from them indirectly without knowing about it.
In a way, this is to note again that the plan or design of the
 machine of a publishing enterprise is already
 larger and more complex than the various machines, people and
 processes that are embedded in it, sometimes even larger than
 the participants appreciate. The special opportunities of
 automating document workflows, where we can do this – which is
 to say, the opportunities and promise of information
 technologies to enable things that go beyond what could have
 been done with ink and paper or even telegraph and telephone –
 will have to accommodate these
 larger systemic requirements, not work against them. Or they
 will simply not be viable.
The good news is that we are now at a point where we know that
 these systems can work, and indeed work well, when their various
 parts are adequate to their needs and where, just as
 importantly, contributors to the effort know and understand
 something about how the system works, and why it takes the form
 it does. (Even if they cannot see everything all the way to the
 edges.) Enough documentation projects have subsisted long
 enough, at various and very different levels of scale and
 complexity, that we can be confident of what we know about
 this.

Evolution works by little revolutions
A technological system exists until the day it stops being
 used. After that day, its relics may subsist, but the system
 itself does not. But a system can also be renewed over time from
 the inside, shedding parts of itself (since a system is made of
 subsystems) and replacing them, as its users continue to use the
 system, but modify it while using it. At one level of the
 organizational hierarchy, a system is brought down or replaced;
 it comes to an end; it is switched out for another. This same
 activity, seen from the next level up – from the point of view
 of the larger system in which this subsystem works – the switch
 out constitutes renewal, not death. Maybe there was a day when
 you used Eudora or Pine for your email, and now you do no
 longer. Has your email system died? Or merely migrated?
 Depending on how we define the system: both.
Just as your system can be someone else's subsystem, all their
 systems can be subsystems of yours, to the extent that you rely
 on them to do things for you, that you do not do for yourself.
 The boundaries in the system are not determined so much by
 extrinsic factors such as the software or platform on which it
 runs (especially when so much runs on the cloud), as they are by
 agency and scopes of responsibility – who is responsible to do
 what – and the interfaces and functionalities that support
 this.
New systems do not successfully replace old systems except
 (ipso facto) when they answer the needs met by the old system,
 and this can happen in only two ways: either the new system
 grows out of the old system, as it were within the context of
 its interfaces, and therefore replaces it organically. Or the
 new system is engineered to replace the old system by offering
 the same capabilities, perhaps along with some other definitive
 advantages such as scalability or ease of use. Again, this might
 be a single process, looked at from two directions.
So we might consider the way email has replaced sending paper
 through the post (mail), for most routine transactions. A
 publisher that once collected stacks of paper manuscripts, now
 pulls together file sets culled from email attachments. This
 development happened organically, but it would not have occurred
 if email had not been designed and extended to serve some of the
 basic (or essential) functions of paper mail,
 even while it is crucially different in other respects. It is
 worth recalling one of Marshall McLuhan's adages, that the
 content of any medium is another medium.[6] It is not quite a drop-in replacement – email
 promised and offers new capabilities beyond what the paper post
 ever did – but it is capable of many of the same functions and
 operations.
Any disparity of perspective here tends to be not a disparity
 of kind but of scale, that is again, of the level of hierarchy
 at which the problem is viewed. To return to the journal
 example, to an editor as email user, for example –
 editor@journal.edu – correspondence with
 contributors and readers is an ongoing and essential process,
 which must occur for the journal to subsist, somehow or other.
 This volume of information (correspondence, manuscripts, edited
 copy, reviews, in-process transcriptions), as a kind of
 information matrix, is the medium out of which the medium of the
 journal itself (through a kind of alchemical distillation) is
 made. From the point of view of the journal – a fish looking at
 an ocean – the case of its correspondence is distinctive, unique
 and special to itself. (The editor does not care for anyone
 else's journal correspondence, nor are they expected to.) As a
 team, the journal staff undertakes the responsibility of
 supporting this exchange with the people they wish to reach.
 (This is what it means to produce a journal.) Does this mean
 they need to develop their own postal service or messaging
 platform? No: in the real world, what they do is necessarily
 what their correspondents and partners in exchange (authors,
 readers) already do. In other words they do not and indeed
 cannot invent something new, instead, adopting as an externality
 a shared platform or system (the post, or email on the Internet,
 or a package delivery provider) already available (an
 externality) and indeed designed and engineered as a system,
 working at a higher scale, for a more general purpose than to
 join this journal with its authors and readers (namely to enable
 any such journal, and many others as well, and many activities
 and enterprises beyond journals). From this point of view, this
 journal's particular problem (as a user, we might
 say) becomes only another instance of a more generalized problem
 – not maintaining a correspondence with readers and writers, but
 only an email system (or, before email existed, a postal system)
 among others.
It might be an interesting debate to discuss whether and in
 what respects the journals we produce today, with the support of
 electronic communications such as email and file exchange over
 the Internet, are better or worse
 than journals once produced on platforms we have long ago
 migrated away from. (A science of workflow might interestingly
 also be an archaeology of workflow.) Certainly the volume and
 rapidity of information exchange today is greater by orders of
 magnitude. There may also be shifts in who is able or permitted
 to participate, and for what presumed as well as actual
 purposes. However, we do not now prefer email, or our digital
 platforms of choice, to paper and postage, because they enable
 better work, so much as because the scale at which we now work – the number of
 partner exchanges we have, of what quality, and of what kinds of
 information codified in what forms – would simply not be
 achievable (much less sustainable) without the capabilities of
 the digital machine for information storage and
 manipulation.
We have seen a similar migration in the progression in
 camera ready copy for production of both
 print, and print surrogates, from literal image files, through
 printer instruction sets (such as PostScript ™) to today's PDF
 transmissions. All of these systems had to be engineered, but
 almost no one who adopted them paid much attention to the
 engineering itself. Each successive system merely met the need
 better than its predecessor. Today we have something far
 superior to what was ever possible without the networked
 exchange platform we now have (the Internet) and all the
 standards developed to support it. But no one exactly noticed
 much as our means of sending pages improved – as
 one subsystem replaced another. It simply happened.
Of course, it did not simply happen by itself, and the
 emergence of superior means (or at least, more capable means at
 scale) for maintaining business correspondence (email) or
 producing materials for the eyes of readers (camera-ready copy)
 reflected significant efforts by their developers and early
 proponents. The efforts were not made by the eventual users,
 however. Similarly, our users should not have to design their
 own technical solutions. A new platform emerges because we work
 at several levels of the system at once – and because we exploit
 emerging opportunities.
 If our aim is to provide any downstream user
 with the kinds of capability and leverage one gets from external
 control, specification and testability of the kinds of
 regularities – at multiple levels of semantics –
 that can be usefully discovered or introduced into our data. We
 do this by working at different layers, providing users and
 indeed application developers not with solutions, but with the
 foundations and technical infrastructure on which their
 solutions can be constructed; but once that has been done, the
 solutions themselves just work. In other words,
 what from one point of view, is an engineered solution, must be
 from another, just a better way to do the same thing.
Yet in a world where processes are already well defined and
 described, this is a challenge, since application design must in
 some way come first – at least insofar as engineers must build
 to specific problems, not just general ones, to motivate the
 efforts. Solutions will emerge – someone will put effort into
 building them – if the base works well enough to enable and
 streamline these efforts. With a combination of good data, and
 good data description, we believe this is possible and necessary
 in a domain as complex and semantically rich as this one.

How do we know we need (something like) OSCAL?
As pointed out in a 2019 paper for this conference, many or most
 of the functional requirements for data capture and relation
 (linking) that we face in systems security could be achieved, with
 only a bit of stretch, by extant markup technologies. The reason we
 need OSCAL is not because existing technologies including DITA,
 ISO/NISO STS, HTML microformats, XBRL, or even TEI, not capable of
 representing the data adequately (just to mention a few reasonable candidates[7]). Indeed if we assume that any of these has such
 capability, the question becomes why documents relating to systems
 security, and their exchange, remain firmly locked into proprietary
 technologies of production such as word processors and spreadsheets,
 given their well-understood limitations for systems working at
 scales beyond the enterprise. Why, in other words, has this
 migration not long ago happened?
One answer to this question is in plain view in the form of a
 common office document feature, namely templates, and the simple
 fact that an Office document (whether Microsoft Word or Excel, or a
 similar application on or off the web), for all its limitations, is
 the most flexible, powerful and accessible tool available (to one
 definition of accessible) to a security professional,
 for data modeling. And data modeling – the definition, collection,
 management and deployment of structured, semantic data – is indeed
 at the core of their work. Available encoding standards all assume
 one thing: that the schema that adequately describes the document
 for its intended application, can be known ahead of time, indeed is
 not only known, but anticipated and accounted for by the
 general-purpose schema in question.
But every new structured document and every spreadsheet implies a
 model, and usually one (assuming a good designer) whose outlines are
 readily discernible to an informed reader. Indeed frequently,
 documents in use must conform to a type and follow
 rules for that type – evidence of the model again – with templates
 used as one (not the only) criterion for measuring conformance to
 the type (considered informally). Now, these new models are not made
 just for the enjoyment of it (although that could play a factor). On
 the contrary, we invest the effort because we can see the benefits
 (in higher quality, better and more throughput – that is, data
 processing capacity and capability) of doing so. The rules are not
 an impediment but a track to follow.
Many data professionals understand the shortcoming of office
 documents (considered as a genre) for truly widespread data, secure
 data exchange. But even they have no choice but to use them, since
 document templates are also what their own downstream users can use
 – while XML application stacks and libraries of stylesheets (or even
 the functional equivalent for JSON) are not.
Indeed it might be said that the essence of our problem is to make
 it possible for data professionals to do more than encode their
 information optimally for exchange (only) with their
 immediate partners – however necessary this
 is, and great the benefits of doing so. A workable standard for
 active information exchange is a sine qua
 non, but beyond it is another essential, since the
 requirements for exchange themselves in this domain are so local and
 so particular to processes, and defined and mandated at several
 levels at once.
This meant that whatever language we adopted or developed to
 address the needs, its own extensibility model would be crucial.
 (This is not an unfamiliar problem to the designers of documentary
 encoding standards.) Ideally, extensibility features would be free
 to users in the sense that no work in a schema or formal layer
 should be necessary for local applications to define and then
 enforce their own semantics (for example, by offering features
 enabling extension by restriction). But mechanisms for them to
 introduce such enforcement are also essential. We found a solution
 to this issue in our Metaschema technology (as described in the 2019
 paper).
From this point of view, OSCAL (the Open Security Controls
 Assessment Language) should be regarded not as a solution, so much
 as a process for developing solutions. This process is technical and
 entails the definition and specification of information models as
 means to and end (successful, meaningful data exchange). But it is
 also very granular, and happens on the ground. Like
 any documentary standard, OSCAL may be able to provide for 80 % of
 what is needed for its normal cases, and what
 constitutes a normal case for it, as all technologies, will be a
 direct reflection of its capabilities. What is most important,
 however, is how OSCAL permits its users to deal with their 20
 %.
It is not the aim of this paper to describe in any detail the
 OSCAL models or how they address requirements: a certain amount of
 background information on the project might be a prerequisite for
 much of what follows. It is too early to say whether and to what
 extent any adoption of OSCAL may change or improve the actual
 practice of security assurance. But it is not too early to reflect
 further on the challenges that could impede its success. And if the
 basic premise of OSCAL, like other markup technologies, is in
 declarative markup and descriptive encoding, it seems necessary to
 consider what problems or issues we might watch out for.

The OSCAL Approach
This paper is for two audiences at once: information technologists
 who specialize in open data formats and the standards that sustain
 them; and systems and information security professionals who bring
 an understanding of the requirements of their domain, not
 necessarily deeply informed of available approaches or solutions (in
 the form of available technologies), but who bring an interest to
 this topic because they know or sense enough about it, to understand
 the significance of their impact. If anything, what makes our
 project interesting to the first of these audiences, is our relation
 with the second. Briefly, we are hoping to change the practice of
 systems security and its documentation, by presenting its
 stakeholders and practitioners with better ways of doing things.
 While we have some ideas (or we would not be making the attempt) of
 what these better ways look like, we must assume, however (quality
 is defined in context) that they are in a better position than we
 are to know what better will be. This means our
 primary challenge is to listen, with the goal of empowering them
 (users, stakeholders, the community, the market) to do what we would
 do for them, if we knew what they know.
In view of this, it may be worth considering briefly what OSCAL
 (the Open Security Controls Assessment Language) is, and is not.
 OSCAL is:	A set of related and interlocking data models

	A data description language for a domain, and thus
 defined by that domain: systems security assurance and
 related documentary activities, as defined by IT
 (information technology) practice and statute.

As described in Piez 2019, these
 models are defined by a schema back end or Metaschema technology that permits us to provide
 support for these models in multiple syntaxes, specifically (to
 date) XML, JSON and YAML syntax.[8] This support takes the form of schemas for validation,
 conversion utilities and much else (documentation, starter
 stylesheets for designing representations, code generation, etc.).
 Together, these offer the platform for a stack of capabilities for
 data description, application and interchange. In this it is
 analogous to many other standard or common encoding technologies
 (XML-based and not), as they address their respective
 domains.
What then is OSCAL not? 	It is not a markup language.
While OSCAL has an XML expression, and is designed for
 use in and with markup-based systems, it is also not a
 substitute for DITA, JATS/BITS, NISO STS, HTML[9] or any other extant markup technology, which
 are considered to be (from the OSCAL perspective) not
 alternatives (since they do not address the same set of
 functional requirements for data representation), but
 rather as complementary technologies and (as such)
 exploitable assets.

	OSCAL is also not an attempt to engineer a workflow or
 solution to the problem of data
 management in this complex domain. Rather, it is intended to provide the foundation or
 groundwork for the development of workflows and
 solutions.
Again, existing workflows might be regarded as
 externalized assets and as opportunities, insofar as to
 the extent they can be OSCALized (enabled
 with and by OSCAL), they can work together with other
 systems more seamlessly, acquiring new capabilities via
 network effects.

So what about those functional requirements? The core concept is
 close to that of standards-based markup languages, albeit scoped
 within the particular domain of a specialized information set: we
 wish to enable better system security and security assurance by
 providing a foundation for rich (semantic) data exchange among
 partners and organizations. If we succeed, we will lower the costs to organizations and
 users of participating in such exchanges, by helping
 to define and apply the rules that
 enable it.
So how are the requirements we are addressing unlike requirements
 for publishing systems?	When publishing for an audience of no more than three
 or four parties, requirements for production values are
 different, and economies of scale in production will not
 benefit in the same ways. Return on investment still
 comes from economies of scale, but not to the same
 (exponential) degree. At this time, achieving superior
 results, arguably, is as important as lowering costs.
 (This is not always true in publishing, which has been
 subject to economic stresses for much longer.)

	With respect to the data sets themselves, the
 granularity of description they require is (as compared
 to many applications of markup languages) relatively
 rough. This is
 reflected in the fact that OSCAL applications do not
 need much functionality at the word and phrase level –
 the data models is seeks to capture generally do not
 require it – and that when it comes to discursive
 contents (prose), it does not need much
 beyond some inline formatting plus a generalized
 insertion or transclusion mechanism (somewhat analogous
 to DITA key/keyref)
 working at the phrase level. Since these together can be
 accommodated using a near-subset of HTML or Markdown,
 the information can also (with some compromise) be
 constrained to representations that fit well within the
 limitations of JSON or similar object notations. In the
 terms I used in my Balisage 2018 paper Piez 2018, the data is higher on the
 semantic stair.
The flip side of this is that at a higher level of
 granularity – groupings of prose and structured data –
 the requirements for what might be called
 hypertext are comparatively intricate
 . Documents and their parts and components present
 complex interlinkings, both to one another and to
 similar or different parts of similar or different but
 related documents. For example, System Assessment Plans
 must make targeted references from their parts, to parts
 of system descriptions given in System Security Plans.
 Those references are semantic in the
 sense that they must be distinguished by type according
 to intended use and the kind of relations they encode;
 and when the links break, the documents break.

	Above all, OSCAL's users are different from the users
 of publishing systems or even from operators of
 documentary-production workflows.
Most importantly, OSCAL's users will not only be CMEs
 (content matter experts) who use OSCAL-based systems to
 acquire and represent data to do their security
 assessment jobs, but also developers of systems and
 software to use it. While we do not expect that most
 OSCAL data will be published widely (the exception being
 canonical documentation such as the catalogs and
 baselines to which other OSCAL documents refer), we do
 expect it to be useful within organizations and between
 partners, in multiple unforeseeable ways. This means
 that developers need to be able to build to it.
In order to win their support as well as maximize the
 chances for their success, we do not wish to constrain,
 any more than absolutely necessary, those developers
 with any encumbrances with respect to formats, software
 platform(s), or technical dependencies in general.
 Because we expect and rely on them to take us places we
 cannot go, we must trust them to use the means that seem
 most appropriate to them.
In our experience, most dev/ops professionals become
 literate in multiple different formats for information
 interchange. However, it is also important to meet them
 where they are, and to enable them to use tools they
 know (while opening opportunities to use tools they do
 not yet know).

	This means that while we are free to define,
 demonstrate and promote models that enable functionality
 to be delivered, we are not free to stipulate that only
 XML may be used. Today, it is either JSON and other
 formats (including but not limited to XML), or JSON
 only.
And indeed, since the information in our domain is not
 only documentary and not only suited to XML, having the
 capability to work in either format is a huge advantage.
 And designing from the start to be able to support and
 address either, also positions us over the longer term –
 as adding support for yet more alternatives (YAML, for
 example) becomes easier to do.

Notwithstanding these differences, both the complexity of the
 requirements, and the documentary and
 fractal nature of the data sets themselves – they
 exhibit regularities, but they are not entirely regular –
 necessitate the layered approach to systems design. As stated at the
 outset, we believe that a layered system that relies on declarative,
 descriptive encoding of data structures, with a separation from both
 underlying platforms (operating systems, storage media etc.) and
 from application logic, is the only practical approach to dealing
 with information management this complex. Indeed, the problem
 presented by systems security (planning, analysis, implementation,
 documentation, assessment) – whether considered as
 micropublishing or not – might be described as
 similar to the problem of designing robust, sustainable
 (platform-independent) publishing systems, except on
 steroids: perhaps an order of magnitude more complex.
 The only way we have of managing that complexity is to factor it out
 into separate interrelated sets of requirements, which can be
 addressed separately as well as together.
If we have built and operated successful systems on that basis,
 the next question becomes what that experience teaches us.

Applying the lessons: conclusions and expectations
To state that there is a way forward is not to say that it will be
 easy. Considering the lessons of XML in publishing, with its
 challenges, can help us reflect on the challenges we also
 face:
	Your system is someone else's
 subsystem
This is even more true in the realm of RMF-based security
 assurance activities than it is in mainstream publishing. By
 design, an OSCAL document produced in and for one system,
 will be used, worked and integrated within another. An OSCAL
 system component description, for example, can be encoded
 once in one resource, then referenced by many systems plans
 that integrate that component. These documents will all be
 composed, produced and shared in different organizations
 (such as when the component in question is developed by one
 vendor and then used as a platform by another); and the
 links must hold together.
One of the keys to scaling within the publishing domain is
 that an article, monograph or any published
 artifact is conceived as, in principle, a
 self-contained and self-sufficient entity, which can be
 written and produced for publication separately from others
 of its kind. Of course (as discussed above), this
 self-containment is partial and qualified, as much of the
 work of publishing is the integration of such an entity with
 other such entities within a larger structure – articles are
 integrated into a journal and even monographs are anchored
 into larger infrastructures for purposes of marketing,
 distribution, cataloging and so on. This is achieved through
 the application of two principles: (1) distinguishing
 kinds or classes of publication that can
 be treated alike within larger systems; and (2) associating
 metadata with each publication that can distinguish the
 instance among the members of the class.
A primary goal of OSCAL is to begin to do this, and to
 provide a foundation for continuing to do so, within the
 domain of systems security documentation. Of course, the
 idea of kinds or classes of documents brings us to
 declarative markup.

	Declarative markup adds
 value
The layering that is characteristic of systems based on
 declarative principles has been well explored at this
 conference and elsewhere. This layering enables separation
 of concerns between the production of data content
 (information sets), and its subsequent management,
 processing, rendering (presentation) and downstream
 application. When applied to publishing, this principle
 works.
Again, however, the fact that there is a principle we can
 follow, does not make the design problem easy. In this case,
 distinguishing meaningful classes of information according
 to their nature, purposes and uses, depends on a clear and
 articulated sense of both commonalities across, and
 boundaries between different information sets, as well as
 their complex relations. Shared documentary structures that
 reappear throughout OSCAL's models reflect these
 commonalities; rules on their use reflect the boundaries.
 But both the shape of those structures and the rules applied
 to them, must make sense in terms of the data set as the
 practitioner sees it.
And because our view of this is partial and evolving, we
 have also made efforts to enable the modeling to be agile
 and flexible and adaptive, most especially in the back end
 (Metaschema) technology we have developed to enable modeling
 across the gap between XML and object notations (see Piez 2019).

	Data acquisition is
 hard
If only because it is so challenging in other domains, we
 should be ready to place special focus on developing means
 to convert relevant data sets into well-structured,
 well-described OSCAL.
Multiple methods and approaches could be explored, using
 an all of the above strategy: structured
 editors; forms interfaces; semi-structured resources such as
 wikis or issue (ticket) systems; office
 document conversion pathways. Different methods or
 strategies may be appropriate for different parts of the
 system.

	Activities are supported by
 incentive structures
The incentive structures within this domain are very
 different from publishing, and positive incentives are
 arguably scarce. Historically, activity related to systems
 security (beyond the functional minimum) has too often been
 a low priority, a kind of optional insurance policy for
 cases where the implicit security model of trust your
 neighbors and leave the door unlocked has
 failed. Similarly, the second-order benefits of
 well-documented systems security (exposure of latent issues;
 traceability; assurance; contingency planning) have been
 considered at best as nice to haves. Without
 the heavy hand of regulation, security typically gets little
 if any attention from designers or developers until after a
 system is implemented and stakeholders are happy with its
 functionality and performance.
In order for RMF-based activities to be fruitful, we need
 to keep incentive structures in mind, and look for
 opportunities to provide positive as well as negative
 incentives. To be sure, impediments must also be removed for
 positive incentives to come into play – thus for the OSCAL
 project we have done our best to address non-negotiable
 operational requirements (such as XML versus
 JSON) in ways that make it possible for deployed
 systems to actually start to realize benefits in data
 interchange.
Noteworthy positive incentives should include, first and
 foremost, improved capabilities: more and better risk
 management at less expense. The more substantial positive
 incentives might take the form of better and more secure
 systems – that is, not only the documentation, but the
 systems themselves will be more secure, while also easier to
 develop, test, reuse and adapt in a security
 first mindset.
Additionally there are important secondary incentives,
 such as a more efficient use of time invested in assessment
 when the overhead of manual operations is reduced. Given
 that there is always more to assess, it is difficult to
 imagine how security assessments themselves can become
 cheaper. But with the aid of machining, and given better and
 more consistent, more easily consumed artifacts to represent
 the subjects of their assessment, one could expect
 assessments in general to be better, even to the point that
 light touch assessments (of
 well-documented, well-vetted systems) might be deemed to be
 adequate.
There are perhaps some further benefits of automation and
 automatability that might become incentives, to the extent
 that it can be recognized how achievable they are given
 appropriate investment. Much of the design of OSCAL is
 intended so that the considerable efforts of authors at
 lower layers – people who define and publish catalogs and
 baselines – can be better leveraged and exploited by the
 consumers of their information whether that be planners,
 assessors or others responsible for defining policy. This
 could become an incentive were it possible to monetize or
 otherwise feed back that benefit. (Pay a license to use an
 especially good baseline?) More likely, it becomes an
 incentive to the extent that such use and reuse of one's
 catalog (or baseline) is itself considered a criterion for
 success.
Finally, it is worth stressing that a significant factor
 in getting work done – to say nothing of good work – is
 inevitably in the imponderable aspects of pride and
 satisfaction with good work that good workers cultivate. It
 may be possible, by developing good tools, to build in
 micro incentives in the form of
 opportunities for good work, which serves as its own reward
 for those who see how consistency, transparency and
 integrity of the data they produce can contribute to the
 soundness of the system as a whole.

	Quality is defined within
 context
With respect to security-related activities in general, or
 even RMF-based activities in particular, because operational
 context is hard to define and open-ended, no single solution
 will be a comprehensive solution. In the publishing domain,
 we have learned that the high degree of requirements for
 local adaptation and customizability has been critical to
 the success of the standard encoding formats. This is likely
 to be even more true for us.
Tolerance of variation – and recognition of variation as a
 source of information – is an important characteristic of
 these systems. It being difficult to distinguish in general
 where variation is meaningful – where it is signal, and
 where it is noise – these systems need to be well defined,
 well managed and transparent, but also flexible and
 adaptable, with extension mechanisms that permit local
 adaptation without unnecessary
 forking.
Although it is outside the scope of this paper, the design
 of OSCAL's schemas and validation infrastructure permits
 addressing this set of issues in ways already familiar to
 designers and users of publishing systems: namely, by
 deploying not a single one size fits all
 validation regimen, but rather by supporting a layered or
 tiered approach, mix and match. This permits
 organizations to define their own rules and rules sets and
 gain leverage over their own data, for their own (and
 partners’) processes, even while they also conform to a more
 general set of rules shared by everyone.

	Evolution works by little
 revolutions
Everything we have learned about the application of
 information technologies to publishing suggests that in this
 domain as well, progress towards better practices and more
 capable systems will be incremental before it is systemic.
 With a view to this likelihood, OSCAL aims to offer early
 rewards for users who can adopt it for solving problems,
 whatever those problems are, without imposing a requirement
 for any top-down overhaul. Even when OSCAL is never used at
 the core of a documentary system, it might be useful at its
 interfaces. And if it is useful at the edges of any system,
 it will eventually be useful at the core of others.
Yet experience also suggests that developers and
 stakeholders must get it, for progress to
 happen at all. There is no substitute for understanding, and
 thus for data transparency to the extent practical and
 possible. A commitment to open, non-proprietary declarative
 encoding – even within a secure operational context – is
 crucial, if only because a monoculture is not secure. But it
 is not only because of its long-term security, that the
 system must be open; it is because its success will depend
 above all on who understands it and how well, and how well
 they can adopt it for appropriate and intended use.

Within this context, one final principle might be recognized:
 the platform is not the
 capability. This might, indeed, be considered to be a
 core insight, in the sense that the entire enabling paradox of
 declarative markup is based on it – by defining the encoding in a
 way independent of and abstracted from its
 local application, we enable applications not only locally (any
 application must be local) but in general. While a technical
 platform (considered in the broadest sense) is necessary for a
 technical capability, this practical dependency is a reflection of
 the fact that the logical dependency is the other way – unless it
 enables a meaningful capability, a platform or technical means
 remains inert and ineffective. A platform that offers no useful
 capability, will soon be abandoned. Conversely, while it is
 necessary for developing and demonstrating a capability, the very
 fact that a requirement can be described without commitment to a
 platform, is an indication that no platform or technical solution is
 a sine qua non. The different
 strengths of different technologies (whether XML/XDM,
 Javascript/JSON, comma-delimited values exported and imported into
 spreadsheets, or anything else) give them comparative advantages –
 and these can be exploited. Thus a platform that is developed to
 enable capabilities we already understand – and already have the
 means to accomplish – can also be a springboard.

References
[declarative-bibliography] Declarative
 Markup: An Annotated Bibliography. See
 https://markupdeclaration.org/resources/bibliography.html.
[rmf2018] Joint Task Force Transformation
 Initiative. Risk management framework for information systems
 and organizations: a system life cycle approach for security and
 privacy. National Institute of Standards and Technology,
 Gaithersburg, MD, NIST SP 800-37r2, Dec. 2018. doi:https://doi.org/10.6028/NIST.SP.800-37r2.
Lubell, Joshua. Integrating Top-down and Bottom-up
 Cybersecurity Guidance using XML. Presented at Balisage: The Markup
 Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings
 of Balisage: The Markup Conference 2016. Balisage Series on Markup
 Technologies, vol. 17 (2016). doi:https://doi.org/10.4242/BalisageVol17.Lubell01.
Lubell, Joshua. Using DITA to Create Security
 Configuration Checklists: A Case Study. Presented at Balisage: The
 Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In
 Proceedings of Balisage: The Markup Conference 2017. Balisage Series
 on Markup Technologies, vol. 19 (2017). doi:https://doi.org/10.4242/BalisageVol19.Lubell01.
Lubell, Joshua. SCAP Composer: A DITA Open Toolkit Plug-in
 for Packaging Security Content. Presented at Balisage: The Markup
 Conference 2019, Washington, DC, July 30 - August 2, 2019. In
 Proceedings of Balisage: The Markup Conference 2019. Balisage Series
 on Markup Technologies, vol. 23 (2019). doi:https://doi.org/10.4242/BalisageVol23.Lubell01.
[Lubell 2020] Lubell, Joshua. A Document-based View of the Risk Management Framework. Presented at Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020. Balisage Series on Markup Technologies, vol. 25 (2020). doi:https://doi.org/10.4242/BalisageVol25.Lubell01.
[McLuhan 1964] McLuhan,
 Marshall. Understanding Media. 1964. Cambridge
 and London: The MIT Press, 1994.
[a-130] Office of Management and Budget Circular
 A-130. Managing Information as a Strategic
 Resource, July 2016. https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/circulars/A130/a130revised.pdf.
[OSCAL on the web] OSCAL:
 the Open Security Controls Assessment Language.
 https://pages.nist.gov/OSCAL/ (accessed Mar. 24,
 2020).
[Piez 2018] Piez, Wendell.
 Fractal information is. Presented at Balisage: The Markup
 Conference 2018, Washington, DC, July 31 - August 3, 2018. In
 Proceedings of Balisage: The Markup Conference 2018. Balisage Series
 on Markup Technologies, vol. 21 (2018). doi:https://doi.org/10.4242/BalisageVol21.Piez01.
[Piez 2019] Piez, Wendell.
 The Open Security Controls Assessment Language (OSCAL):
 schema and Metaschema. In Proceedings of Balisage: The Markup Conference 2019.
 Balisage Series on Markup Technologies, vol. 23 (2019). doi:https://doi.org/10.4242/BalisageVol23.Piez01.
[Piez 2001] Piez, Wendell.
 Beyond the Procedural vs Descriptive Distinction.
 Extreme Markup Languages 2001. Archived at
 http://wendellpiez.com/resources/publications/beyonddistinction.pdf.
[Tillett 2004] Tillett,
 Barbara. What is FRBR? A Conceptual Model for the
 Bibliographic Universe. Library of Congress Cataloging
 Distribution Service. Revised February 2004. Archived at
 https://www.loc.gov/cds/downloads/FRBR.PDF.
Walsh, Norman, and Bethan Tovey. The Markup Declaration.
 Presented at Balisage: The Markup Conference 2018, Washington, DC,
 July 31 - August 3, 2018. In Proceedings of Balisage: The Markup
 Conference 2018. Balisage Series on Markup Technologies, vol. 21
 (2018). doi:https://doi.org/10.4242/BalisageVol21.Tovey01.
[xdm2017] XQuery and XPath Data Model 3.1.
 https://www.w3.org/TR/xpath-datamodel/.

[1] SGML is Standard Generalized Markup
 Language, ISO 8879:1986.
[2] LaTeX, a document processing system, is hosted at
 https://www.latex-project.org/.
[3] RMF is the Risk Management
 Framework, an approach to systems
 security management and documentation codified in NIST
 Special Publication (SP) 800-37. See [rmf2018] and Lubell 2020.
[4] Rheology is a branch of physics. A
 science of workflow would be a branch of data science
 and cybernetics, applied at the level of the human
 organization, drawing (at least) from sociology,
 economics, general systems theory and operations
 research.
[5] FRBR is the Functional Requirements for Bibliographic
 Records, a model defining categories of description for
 bibliographical objects such as books and
 articles so that the
 same (book or article) can be distinguished
 and related systematically even across different
 variants or representations, including editions,
 translations, printings and copies. The
 work is the highest and most abstract
 category within FRBR. See Tillett 2004.
[6] As he writes in Understanding
 Media (McLuhan 1964 p.
 8), … the ‘content’ of any medium is always
 another medium. The content of writing is speech,
 just as the written word is the content of print,
 and print is the content of the
 telegraph.
[7] DITA: the Darwin Information Typing Architecture; ISO/NISO
 STS: the Standards Tag Suite; for HTML microformats, see (for
 example) schema.org; for XBRL, see https://www.xbrl.org/; for
 TEI (Text Encoding Initiative), see https://tei-c.org/.

[8] YAML is YAML Ain't Markup Language (web
 site https://yaml.org/), a notation describing
 an abstract data structure amenable to processing in
 object-oriented languages. Its data model is an enhanced
 superset of the JSON object model; so by aligning with the
 requirements of JSON, an object model is thereby also
 expressible in YAML.
[9] JATS is the Journal Article Tag
 Suite, an encoding standard hosted
 at the National Information Standards
 Organization (NISO), hosted at
 https://www.niso.org/standards-committees/jats.
 BITS is Book Interchange Tag Set,
 a related encoding system hosted at the National
 Center for Biomatics Information, National
 Library of Medicine (NIH/NCBI); see
 https://jats.nlm.nih.gov/extensions/bits/.
 NISO STS is Standards Tag Suite,
 a related encoding system designed specifically
 to support the publication and maintenance of
 technical standards documents; see
 https://www.niso.org/standards-committees/sts.

Balisage: The Markup Conference

Systems security assurance as (micro) publishing
Declarative markup for systems description and
 assessment
Wendell Piez
Markup advocate, systems developer and Balisage presenter
 since early days.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Piez01-002.png

content/images/Piez01-001.png
Author

Respondent _

