[image: Balisage logo]Balisage: The Markup Conference

Hyper, Multi, or Single? Thinking about Text in Graphs and Trees
Elli Bleeker
Researcher
Huygens Institute for the History of the Netherlands

Ronald Haentjens Dekker
Software engineer
Huygens Institute for the History of the Netherlands

Bram Buitendijk
Software engineer
Digital Infrastructure Department, Humanities Cluster, Royal Netherlands
 Academy for Arts and Sciences

Balisage: The Markup Conference 2021
August 2-6, 2021

Copyright ©2021 by the authors. Used with permission.

How to cite this paper
Bleeker, Elli, Ronald Haentjens Dekker and Bram Buitendijk. "Hyper, Multi, or Single? Thinking about Text in Graphs and Trees." Presented at: Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021. In Proceedings of Balisage: The Markup Conference 2021.
 Balisage Series on Markup Technologies vol. 26 (2021). https://doi.org/10.4242/BalisageVol26.Bleeker01.

Abstract
This paper explores the potential of combining the Text-As-Graph (TAG) and the XML
 data models. It proposes a digital editing workflow in which users can model, edit,
 and store text in TAG, and subsequently export the data to XML for further analysis
 or publication with XML-based tools. The conversion from TAGML to XML presents
 several interesting challenges on a technical level as well as a philological level.
 Overall, we argue that there may be many pragmatic reasons to encode cultural
 heritage texts in XML, but we have to be mindful of the XML framework becoming
 synonymous with the framework in which we conceptualize text. The paper therefore
 dives deep into the translation from conceptual model to logical model(s) and argues
 in favor of understanding the affordances and limitations of the text modeling
 technologies we use.

Balisage: The Markup Conference

 Hyper, Multi, or Single? Thinking about Text in Graphs and Trees

 Table of Contents

 	Title Page

 	Premise

 	Data models for texts and documents
 	Data models
 	Text as a hypergraph

 	Text as Multi-Colored Trees

 	Text features
 	Discontinuous text

 	Overlapping structures

 	From TAGML to XML and beyond
 	Workflow

 	The code

 	The user

 	Future work

 	Reflection

 	About the Authors

 Hyper, Multi, or Single? Thinking about Text in Graphs and Trees

Premise[1]
There are many pragmatic reasons to encode cultural heritage texts in TEI-compliant
 XML, but we have to be mindful of the XML framework becoming synonymous with the
 framework in which we conceptualize text. As various textual scholars have pointed out,
 the limitations of a technology can delimit the selection, modelling, and analysis of
 textual aspects.[2]
They remind us of the frequently used analogy of the hammer and the toolbox: if all
 you have is a hammer, everything will look like a nail. Indeed, the limitations of the
 XML data model have influenced and shaped our text encoding praxis (cf. Pierazzo 2015) and will continue to do so. If all you know is XML, every text
 will start to look like a tree. And while there are enough cases where a tree data model
 suffices, other cases benefit from an alternative.
This paper explores the potential of combining the XML data model and the
 Text-As-Graph (TAG) data model. The primary aim of the paper is to examine a practical
 and workable method for modeling and editing documents. TAG is still under development
 and not (yet) as mature as XML. Still, we find the affordances of the TAG model to be
 highly suitable for modeling and storing literary historical documents. XML remains a
 prominent technology for the analysis and publishing of texts. The question is, then,
 can we combine the strengths of TAG and XML into one powerful tool for everything we may
 want to do with text: modeling, storing, (collaborative) editing, processing, analyzing,
 and publishing? This paper explores that possibility by proposing a digital editing
 workflow in which scholarly editors can model, edit, and store text as a TAG hypergraph,
 and subsequently export the textual data to an XML format for further analysis or
 publication with XML-based tools.
Developing a more inclusive, flexible data model for text has been one of the guiding
 principles behind the design of TAG, a graph-based model under development at the Royal
 Netherlands Academy of Arts and Sciences. In previous Balisage contributions we
 discussed the TAG data model (Haentjens Dekker and Birnbaum 2017), its markup language TAGML and
 reference implementation Alexandria (Haentjens Dekker et al. 2018), and explored the ways in which TAGML can be used to model
 certain textual features that are notoriously difficult to model in XML (Bleeker et al. 2020). Over the course of the four+ years we have been working on
 the TAG markup stack (i.e., its data model, syntax, query language, and schema) we have
 gained some valuable insights. In some cases, this resulted in some small modifications
 of the data model and syntax.[3]

In each communication we pointed out that even though TAG was under active
 development, we considered our work, findings, and reflections already relevant for a
 general discussion on text modeling. We illustrated how other data models and markup
 systems express complex features like overlap and non-linear text, and we argued that
 text could best be expressed as a network structure (i.e., a graph). In doing so, we
 aimed to encourage a reflexive awareness of the relationship between an intellectual
 model and data models of text. One of the motivations for our continued work on TAG is
 to emphasize the value of, first, having a wider assortment of tools in one’s
 metaphorical text modeling toolbox and, secondly, knowing to select the right tool for
 the job you want to do. We believe that scholars can make an informed choice only when
 they know both the strong and the weak points of a data model.

Data models for texts and documents
Our work is informed by a definition of text as a
 sequence of characters (e.g., letters, digits, spaces, and punctuation, including
 symbols and music notation) that is inscribed on a material carrier: a document. From the text on a document, a reader derives
 information. In earlier contributions, we argued that this
 information can best be organized in a network structure. We stated that text is
 partially ordered, which means that it is not always possible
 to determine the order of all characters in the sequence. Examples of partially ordered
 text are non-linear, discontinuous, or overlapping structures.
Generally speaking, certain data models are more suitable for expressing complex
 features than others: as said, the inherent properties of a data model provide its scope
 and determine its limits. While TAG is conceptually based on a hypergraph, the model can
 be implemented in different ways. The best logical implementation of TAG depends on the
 purpose: we found that a variation on the Multi-Colored Trees (MCT or Colorful XML,
 developed by Jagadish et al. 2004) and the GODDAG model (Sperberg-McQueen and Huitfeldt 2000, Sperberg-McQueen 2018), which we described as a colored
 GODDAG (Haentjens Dekker et al. 2020), works best for overlapping
 structures as well as for export and visualization purposes. With export being the focus
 of the paper, we will describe both the hypergraph and the Colored GODDAG models in the
 following sections.
Data models
Text as a hypergraph
Just like any other graph, a hypergraph consists of nodes and edges. The
 important difference is that some edges in a hypergraph can join together two or
 more nodes (in contrast to the one-to-one edges of regular graphs). These are
 called hyperedges. Hyperedges are typically
 undirected and they can be used to express group relations. The hypergraph is
 not a common data structure in the (digital) humanities, but it is fairly
 well-known in the STEM research fields. By means of illustration, figure 1
 (Figure 1) shows a hypergraph used in microbiology:
 Figure 1: Visualization of a hypergraph
[image:]
Visualization of a hypergraph with five hyperedges (labeled e1-e5,
 in red) and eight nodes (labeled v1-v8), used for microbe-disease
 association prediction. Source: Niu et al. 2019 Note, for
 instance, that hyperedge e4 is associated with two vertices, v6 and
 v7, one of which (v7) is also associated with hyperedge e3.

The TAG hypergraph is slightly different than the model in figure 1. First,
 the nodes in the TAG hypergraph are typed. We distinguish five different node
 types: each hypergraph consists of exactly one document
 node (the root), zero or more text
 nodes, zero or more markup
 nodes, zero or more annotation
 nodes, and zero or more branching
 nodes. Furthermore, the TAG model consists of undirected
 hyperedges as well as directed one-to-one edges. The document node, the text
 nodes, and the branching nodes indicate the stream of the text and are therefore
 connected by directed, regular edges. The markup and annotation nodes in the TAG
 hypergraph can be connected with either a hyperedge or a regular one-to-one
 edge. For example, a hyperedge can associate multiple text nodes with one and
 the same markup node, and an annotation node can be associated with one markup
 node by means of a regular edge. Figure 2 below exemplifies the different types
 of nodes and edges. The text nodes are white, the regular edges are visualized
 as arrows, and the hyperedges are labelled and visualized in different colors:
 Figure 2: Visualization of a TAG hypergraph
[image:]
Visualization of a TAG hypergraph with hyperedges and regular
 edges.

 Text in a hypergraph is read from left to right, starting with the
 document node and following the directed edges. There are two branches in the
 hypergraph; the beginning and the end of the branches is indicated with a
 branching node. The markup node labelled “subst” in figure 2 (Figure 2) is associated with two text nodes via a labelled
 hyperedge (yellow); the markup node labelled “add” is associated with one text
 node via a labelled hyperedge (dark green) and has an associated annotation node
 (light green) with information about the place of the addition in the source
 text.
Note that the markup in this example is properly nested: it represents one
 hierarchical structure and the markup elements do not overlap. Expressing
 multiple overlapping hierarchical structures in TAG is done by grouping together
 related markup nodes in a group.[4] The markup nodes within each group form a single hierarchy, but
 groups can share markup nodes and a TAG document can contain any number of
 groups. This way, overlapping structures can be easily expressed in TAG. The
 following section exemplifies the logical model (section “Text as Multi-Colored Trees”).

Text as Multi-Colored Trees
Alexandria implements a MCT, an ordered
 directed acyclic graph with colors on the markup nodes. The MCT is inspired by
 the multitrees of GODDAG, the colored nodes of Colorful XML, and the combination
 of several XML trees of XConcur (Jagadish et al. 2004, Hilbert et al. 2005). The MCT model extends the XML tree in two ways: a
 node in a MCT has an additional property (its color), and a MCT database can
 consist of one or more colored trees (instead of XML’s single-rooted tree). Each
 tree has a different color. A node can be shared by more than one tree, in that
 case it has multiple colors. The trees within a MCT document can be navigated
 and manipulated with extended XQuery or XPath expressions in which the user
 first selects a leading color (Jagadish et al. 2004, see also Portier et al. 2012). The MCT is implemented in the Alexandria repository of TAG; see section section “Workflow”. In the Alexandria
 MCT, the text nodes as well as the root document node are shared between all the
 colors.
Overlapping hierarchies in TAG are expressed as a MCT by assigning a colored
 tree to each group of markup nodes. Figure 3 shows a visualization of a MCT
 implementation with two groups of markup nodes i.e., two colored trees. Figure 3: Visualization of a MCT
[image:]
Visualization of a Multi-Colored tree implementation of TAG. The
 MCT contains two partly overlapping trees, represented in red and
 blue.

 This simple example shows how two groups of markup nodes, one with the
 identifier “D” and the other with the identifier “T”, can be expressed as a red
 and a blue tree, respectively. The red tree (i.e., the group of markup nodes
 identified with “D”) shares the markup nodes labeled “s” and “add” with the blue
 tree (i.e., the group labeled “T”). The markup node labeled “del” is only part
 of the red tree. Each node is stored only once in the MCT model; edges between
 nodes are specified in each colored tree.

Text features
In earlier publications, we distinguished at least three complex features with
 which digital scholarly editors have to deal on a regular basis: overlapping or
 concurrent hiearchies, discontinuous text, and non-linear structures (Haentjens Dekker and Birnbaum 2017, Haentjens Dekker et al. 2018). Expressing concurrent or
 overlapping structures is, if not the biggest, surely the most famous and most
 debated obstacle for text modeling in XML and therefore needs little explaining.
 Discontinuous text is usually illustrated with a quotation that is interrupted by an
 aside or by the narrator’s voice (cf. Sperberg-McQueen and Huitfeldt 2008). Non-linear
 structures, finally, can be found on the level of the source text as well as the
 markup, e.g., in-text revisions on a manuscript or an abbrevation and its expansion
 supplied by the editor in markup. The common denominator is a temporary break in the
 linearity of the text that can be conceptualized as a split of the text stream in
 two or more substreams or branches.
In this section we show how (or to what extent) these features are modeled in TAG.
 We take our examples from three pages of Love and Freindship, a
 short epistolary novel by Jane Austen, written between 1790-1793. The novel is
 written in a notebook entitled “Volume the Second” and is part of her
 Juvenalia manuscripts.[5]
For each text feature, we first describe our philological interpretation of the
 feature in question. We then show the syntactical serialization of the feature in
 TAGML and in XML, combined with visualizations of the underlying data models. This
 will facilitate the comparison between TAGML and XML and, we hope, increase the
 readers’ awareness of the relationship between the conceptual model and its logical
 implementation(s). Figure 4: Jane Austen, Love and Freindship, p.6
[image:]
Page 6 of the manuscript of Love and Freindship,
 written by Jane Austen between 1790-1793. Source: Austen 2010,
 https://janeausten.ac.uk/manuscripts/blvolsecond/6.html.

 Figure 5: Jane Austen, Love and Freindship, p.7
[image:]
Page 7 of the manuscript of Love and Freindship,
 written by Jane Austen between 1790-1793. Source: Austen 2010,
 https://janeausten.ac.uk/manuscripts/blvolsecond/7.html.

 Figure 6: Jane Austen, Love and Freindship, p.8
[image:]
Page 8 of the manuscript of Love and Freindship,
 written by Jane Austen between 1790-1793. Source: Austen 2010,
 https://janeausten.ac.uk/manuscripts/blvolsecond/8.html.

Discontinuous text
Discontinuous text can be found in the fragment of the text displayed in
 figure 7, which reads: Beware my Laura (she would often say) Beware of
 the insipid Vanities and idle Dissipations […]. The aside
 (she would often say) is a comment by the letter writer Laura
 upon the quoted text and can therefore be identified as a break in the
 quotation.Figure 7: Fragment of the text of Love and
 Freindship
[image:]
Fragment from Love and Freindship, letter 4, in
 which the character Laura quotes something another character has said to
 her. Source: Austen 2010,
 https://janeausten.ac.uk/manuscripts/blvolsecond/7.html.

Discontinuous text in TAGML
The TAGML encoding of discontinuous text is similar to the TexMECS
 proposal: the q element is “paused” and subsequently “resumed”
 with the affixes - and + (see Sperberg-McQueen and Huitfeldt 2008).[6]Figure 8: Discontinuous text encoded in TAGML
[image:]
Simplified TAGML transcription of discontinuous text, using the
 affixed - and + on the q
 element.

 On the level of the conceptual hypergraph model, the discontinuous
 text is part of one and the same q element, as is illustrated
 by figure 9 (Figure 9). Figure 9: Visualization of discontinuous text in the TAG
 hypergraph
[image:]
Visualization of the conceptual model of discontinuous text in
 TAG: the discontinued q element (represented in green)
 is one markup node in the hypergraph.

 The relationship between the two parts of the q
 element is also stored in the MCT implementation of Alexandria: Figure 10: Visualization of discontinuous text in the MCT
[image:]
Visualization of the MCT in Alexandria. The
 dotted line indicates that the two q nodes are, in
 fact, one and the same node.

Discontinuous text in XML
The TEI Guidelines offer several options to encode discontinuous text,
 such as the use of next and prev attributes on the
 discontinued elements.[7] A simplified TEI XML transcription of the example sentence would
 then be:

<?xml version="1.0" encoding="UTF-8"?>
<TEI xmlns="http://www.tei-c.org/ns/1.0">
<teiHeader>
 <!-- metadata information here -->
</teiHeader>
 <text>
 <body>
 <p>
 <!-- more text here -->
 <s>
 <q xml:id="q1" next="#q2">"Beware my Laura </q>
 (she would often say) <q xml:id="q2" prev="#q1"> Beware of [...] Southampton."</q>
 </s>
 <!-- more text here -->
 </p>
 </body>
</text>
</teiHeader>
</TEI>

Here the q elements are given an xml:id and the
 next and prev attributes are used to indicate
 that the first q element is continued in the next. Instead of,
 or in addition to, next and prev attributes, the
 two parts can be joined together using a link element:
 <link type="join" target="#q1 #q2"/>. As figure 11
 shows, the elements are only linked on a syntactical level. On the level of
 the data model the q elements are two separate child elements
 of the div element. Figure 11: Visualization of the XML tree
[image:]
Visualization of the discontinued quotation in the XML
 tree.

Overlapping structures
Finding an example of overlapping structures in the manuscript notebook of
 Love and Freindship is fairly simple. Let’s say we want
 to express both the material features of the document and the linguistic
 structure of the text, i.e., the lines on the page and the sentences
 respectively. As the sentences run over several page lines and one page
 boundary, they overlap partly with the material structure of the
 document.
Overlap in TAG
As mentioned in section 2.1.2. (section “Text as Multi-Colored Trees”), TAG handles
 overlapping structures by grouping the markup nodes of each structure into a
 separate group. Within each group, the markup nodes are hierarchically
 ordered. Figure 12 (Figure 12) illustrates the
 TAGML-encoded text of Austen’s text containing the overlapping hierarchies:
 the material structure, which nodes are assigned the identifier “D”, and the
 linguistic structure of the letter, which nodes are assigned the identifier
 “T” . For example, the page and l markup elements
 have the identifier “D”, the s markup elements are given the
 identifier “T”.[8] In this particular TAGML document, the root node
 text is shared: it has both the “D”, “T”, and the “P”
 identifier. Figure 12: Overlapping structures encoded in TAGML
[image:]
A TAGML-encoded fragment from Love and
 Freindship with overlapping hierarchies,
 shortened and simplified for readability. The identifiers “D”,
 “T”, and “P” indicate to which group the markup nodes
 belong.

 The MCT of the entire novel is too large to visualize here, but
 this simplified visualization below shows the colored trees constituted by
 the material and linguistic structures: Figure 13: Visualization of the overlapping structures in the MCT
[image:]
Visualization of the MCT with two overlapping
 structures.

Overlap in XML
The ubiquity of overlapping structures in cultural heritage texts produced
 a wide variety of TEI P5 encoding systems. In our case it would be
 convenient to use empty elements <lb/> for the structure of
 the page lines, and the aforementioned next and
 prev attributes for the sentence that runs across the two
 pages. Belowe a simplified TEI-compliant XML transcription in which the
 linguistic structure of the sentences are leading looks. Note again that the
 last sentence is made up of two separate s elements that are
 only linked on a syntactical
 level.

<?xml version="1.0" encoding="UTF-8"?>
<TEI xmlns="http://www.tei-c.org/ns/1.0">
<teiHeader>
 <!-- metadata information here -->
</teiHeader>
 <text>
 <body>
 <!-- some text here -->
 <p>
 <s xml:id="s1" next="#s2">
 <lb/>Our neighbourhood consisted <lb/>only of your Mother.</s>
 <s>She may probably have already <lb/>told you that being left by her Parents in indegent
 <lb/>Circumstances she had retired into Wales on economi-</s>
 </p>
 <pb/>
 <p>
 <s xml:id="s2" prev="#s1
 <lb/>cal motives.</s>
 <!-- some text and markup here -->
 </p>
 </body>
</text>
</teiHeader>
</TEI>

From TAGML to XML and beyond
Workflow
After having encoded the text in TAGML, the document can be uploaded to the
 Alexandria repository. Alexandria is operated on the command line and is set up to work
 similar to git, the version control software often used by programmers and digital
 humanists to work collaboratively on code. Via command line commands, users can
 “check in” and “check out” TAGML documents to the Alexandria repository. In addition to a TAGML document, users can
 also upload one or more views in which they can
 define which (groups of) markup nodes can be filtered out. We created the view
 functionality because the TAG document in Alexandria can
 potentially contain a large amount of information, and we assume that not all users
 will always be interested in all information. A view is expressed in JSON, for
 example: {"includeGroups":["D"]} {"includeMarkup:["del"]"}. In this
 example, the view says to include the markup nodes that are grouped with the
 identifier “D” and all markup nodes labelled “del” when the TAGML document is
 checked out of the Alexandria repository.
An Alexandria check-in means that the TAGML
 document is parsed, verified for well-formedness, and stored as a MCT in the
 repository. A check-out in combination with a view generates a new TAGML document
 that contains the selected markup nodes, while the master TAGML document remains
 intact in the repository. The checked-out document can be edited and checked-in
 again. Alternatively, users can indicate upon checkout whether they want the master
 document to be exported to another format: currently, we support SVG, XML, DOT, or
 PNG. Figure 14 depicts this workflow: Figure 14: Editorial workflow in Alexandria
[image:]
Visualization of the editorial workflow in Alexandria. The upper row represents the user actions,
 the second row the commands given to Alexandria. The third row represents what happens in the
 user’s workspace and the final row shows what takes place in the
 localized repository of Alexandria.
 Note that this workflow is depicted as linear; in reality it will rather
 be iterative, with steps being repeated as often as needed.

Let’s zoom in on the last step in this workflow diagram: the export to XML. The
 Alexandria command export-xml
 seems easy enough and to some extent it is: technically, converting a MCT to a
 single tree is fairly simple. Like XML, TAGML has markup tags with names,
 attributes, and values. And although TAGML supports different data types for
 attribute values (in addition to a string, TAGML attribute values can be integers,
 floats, strings, lists, or Booleans), the TAGML attribute values can be converted to
 string type attribute values in XML. Still, a graph with multiple concurrent
 hierarchies contains more information than a mono-hierarchical tree, so a
 graph-to-tree conversion implies that we have to decide how to express that
 information. This depends in part on how the user plans to use the exported
 document. Representing overlapping hierarchies in a single tree, for example, will
 require additional tagging. Users may therefore want to scale down the amount of
 information in the XML document and select only the information that is relevant for
 their purpose. This means deciding whether the exported XML document should have a
 leading hierarchy and if so, which markup nodes should be part of it. After
 addressing the algorithmic side of the TAGML-to-XML conversion in section section “The code”, we will discuss
 the editorial side.

The code
The steps taken during the TAGML to XML conversion are as follows:	The user gives the xml-export command to the Alexandria server;

	The TAGTraverser iterates over the MCT of the TAGML
 document. If the user has provided it, the traverser will also use
 information from the view and ignore certain (groups of) markup
 nodes;

	The TAGTraverser generates a stream of
 Events;

	For each Event, check to see whether it is an open tag, a
 close tag, or text characters;

	If the Event is text, the characters are transformed into
 an XML text node;

	If the Event is an open tag or a close tag, check to see
 if the user provided information about the leading hierarchy and if so,
 whether the tag is part of the leading hierarchy;	If not, the open tag or close tag is transformed into a
 Trojan Horse start or end element, respectively;

	If the tag is part of the leading hierarchy, the open tag
 or close tag is transformed into an XML open tag or an XML
 close tag.

Figure 15 (Figure 15) shows a flowchart of this
 process. The flowchart starts after the user has created a TAGML document and a view
 and uploaded them in the Alexandria repository.

 Figure 15: Flowchart of the steps taken during the TAGML-to-XML conversion
[image:]
Visualization of the TAGML-to-XML conversion process.

The code base of Alexandria is written in Kotlin.
 The code fragment below shows the class definitions of Node,
 MCT, and Event. Edges are stored in two directions:
 incoming and outgoing. Target nodes are stored in LinkedHashMaps to preserve the
 order of the nodes.

sealed class Node
data class Markup(val label: String, val colors: List<String>, val id: Long = System.currentTimeMillis()) : Node()
data class Text(val content: String, val id: Long = System.currentTimeMillis()) : Node()

class MCT(val rootNode: Markup) {
	val outgoingEdges: MutableMap<Markup, LinkedHashSet<Node>> = HashMap()
	val incomingEdges: MutableMap<Node, LinkedHashSet<Markup>> = HashMap()
}

sealed class Event
data class MarkupOpen(val node: Markup) : Event()
data class MarkupClose(val node: Markup) : Event()
data class TextEvent(val node: Text) : Event()

As described above (section section “Workflow”), a TAGML document that is
 checked into the Alexandria repository is parsed
 and stored as a MCT. When the user gives the export-xml command to
 Alexandria, the TAGTraverser
 iterates over the MCT and generates a stream of Events. The Kotlin code
 fragment below describes the traversal algorithm. It traverses over the nodes in
 topological order and creates TextEvents, MarkupOpen, or
 MarkupClose events. A text node generates a TextEvent;
 a markup node generates a MarkupOpen event of that node. In order to
 link the MarkupClose events to the appropriate MarkupOpen
 events, we keep track of the markup that is currently open by using markup stacks.
 There is a global stack as well as one stack for each color in the MCT. Each markup
 node is added to the global stack and to the relevant color stack. Before we can
 generate a TextEvent or a MarkupOpen event for a node, we
 need to check the top of the relevant color stack(s) to see if it’s not a parent of
 the current node. Those markup nodes generate MarkupClose events and
 can be removed from both the color stacks and the global stack. After all nodes have
 been processed in this manner, the markup that is left on the global stack generates
 the remaining MarkupClose events.

 fun traverseMCT(mct: MCT): List<Event> {
	val nodes = topologicalSort(mct)
	val result = arrayListOf<Event>()
	val colorToStackMap = HashMap<String, Stack<Markup>>()
	val globalStack = LinkedHashSet<Markup>()
	for (node in nodes) {
		val parents = mct.incomingEdges.getOrElse(node) { emptySet<Markup>() }
		val stacksToCheck: List<Stack<Markup>> =
				when (node) {
					is Markup -> colorToStackMap.entries.filter { node.colors.contains(it.key) }.map { it.value }
					is Text -> colorToStackMap.values.toList()
				}
		for (stack in stacksToCheck) {
			while (stack.peek() !in parents) {
				val nodeToPop = stack.pop()
				if (globalStack.remove(nodeToPop)) result.add(MarkupClose(nodeToPop))
			}
		}
		when (node) {
			is Markup -> {
				node.colors.map { colorToStackMap.getOrPut(it) { Stack() } }.forEach { it.push(node) }
				globalStack.add(node)
				result.add(MarkupOpen(node))
			}
			is Text -> result.add(TextEvent(node))
		}
	}
	globalStack.reversed().forEach { node -> result.add(MarkupClose(node)) }
	return result
}

Finally, the algorithm creates the XML document from the MCT. The code below
 describes how the algorithm loops over the Events and creates XML tags.
 The XML tags are based on the type of event and whether the node associated with the
 event is the leading hierarchy or not. Nodes in the leading hierarchy are used to
 create XML content elements, nodes in the other hierarchies are converted to Trojan
 Horse elements. Trojan Horse elements are a specific type of elements or
 “segment-boundary delimeters” with a namespace definition th: (see .
 Two related milestones are linked by means of matching @start and
 @end attributes, so the regular XML <s>The sun is
 yellow</s> becomes <s th:s sID="foo"/>The sun is yellow<s
 th:s eID="foo"/> in Trojan Horse markup (De Rose 2004,
 Barnard et al. 1995, Sperberg-McQueen 2018). Additionally, the
 Trojan Horse markup elements are given an attribute that is generated from their
 TAGML group identifier, e.g., @th:doc="D" for all markup nodes in a
 group called “D”.

 fun createXML(mct: MCT, leadingHierarchy: String, writer: Writer) {
	val events = traverseMCT(mct)
	val xml = XMLOutputFactory.newFactory().createXMLStreamWriter(writer)
	for (event in events) {
		when (event) {
			is TextEvent -> xml.writeCharacters(event.node.content)
			is MarkupOpen -> if (event.node.colors.contains(leadingHierarchy)) xml.writeStartElement(event.node.label)
					 else xml.apply {writeEmptyElement(event.node.label)
						writeAttribute("sID", event.node.id.toString()) }
			is MarkupClose -> if (event.node.colors.contains(leadingHierarchy)) xml.writeEndElement()
					 else xml.apply { writeEmptyElement(event.node.label)
						writeAttribute("eID", event.node.id.toString()) }
		}
	}
	writer.close()
}

The user
The user is usually not aware of the algorithmic details of the XML export and —
 although the code is open source and there for anyone to look at — not required to
 either. Still, the conversion process is not just a matter of clicking a button: it
 is designed so that the user can influence it. Let’s take a closer look. Figure 16
 (Figure 16) shows the (simplified) TAGML transcription of
 the entire text of the fourth letter from Love and
 Freindship.Figure 16: TAGML encoded document
[image:]
The TAGML-encoded text of the fourth letter in Love and
 Freindship, indented for readability.

 The overlapping hierarchical structures in TAGML cannot be automatically
 transformed to XML. This is where the user comes in: they can choose the hierarchy
 formed by the group of markup nodes labelled “D”, the hierarchy formed by the markup
 nodes labelled “T”, or no leading hierarchy in the XML output. In case of the
 latter, it suffices to use the command alexandria export-xml
 Austen_VtS, which says as much as “Hi Alexandria, please export the document
 called Austen_VtS to XML”. Subsequently, the
 TAGTraverser described in the previous section will iterate over
 the MCT, generate a stream of events, and build an XML tree. All TAGML markup nodes
 will be transformed into Trojan Horse elements. A short fragment of the Trojan Horse
 XML output is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<xml xmlns:tag="http://tag.di.huc.knaw.nl/ns/tag"
 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse" th:doc="D P T">
 <text title="Love and Freindship" type="novel" author="Jane Austen" date="1790">
<page n="6" th:doc="D" th:sId="page0"/><head th:doc="D T" th:sId="head1"/><l th:doc="D" th:sId="l2"
 />Letter 4th<l th:doc="D" th:eId="l2"/><head th:doc="D T" th:eId="head1"/><l th:doc="D"
 th:sId="l3"/>Laura to Marianne<l th:doc="D" th:eId="l3"/><s th:doc="T" th:sId="s4"/><l
 th:doc="D" th:sId="l5"/>Our neighbourhood was small, for it consisted <l th:doc="D"
 th:eId="l5"/><l th:doc="D" th:sId="l6"/>only of your Mother. <s th:doc="T" th:eId="s4"
 />
<s th:doc="T" th:sId="s7"/>She may probably have already <l th:doc="D" th:eId="l6"/><l
 th:doc="D" th:sId="l8"/>told you that being left by her Parents in indegent <l
 th:doc="D" th:eId="l8"/><l th:doc="D" th:sId="l9"/>Circumstances she had retired into
 Wales on economi-<l th:doc="D" th:eId="l9"/><page th:doc="D" th:eId="page0"/>
<page n="7" th:doc="D" th:sId="page10"/><l th:doc="D" th:sId="l11"/>cal motives. <s th:doc="T"
 th:eId="s7"/><s th:doc="T" th:sId="s12"/>There it was our freindship first <l th:doc="D"
 th:eId="l11"/><l th:doc="D" th:sId="l13"/>commenced – Isabel was then one and twenty –
<l th:doc="D" th:eId="l13"/><s th:doc="T" th:eId="s12"/><s th:doc="T" th:sId="s14"/>
<l th:doc="D" th:sId="l15"/>Tho' pleasing in both her Person and Manners
<l th:doc="D th:eId="l15"/><l th:doc="D" th:sId="l16"/>(between ourselves) she never possessed the
hun-<l th:doc="D" th:eId="l16"/><l th:doc="D" th:sId="l17"/>dreth part of my Beauty or
Accomplishments.<l th:doc="D" th:eId="l17"/><s th:doc="T" th:eId="s14"/>

 <!-- more text and markup -->
 <page th:doc="D" th:eId="page10"/>
 </text>
</xml>

The user could also decide to make one of the hierarchical structures leading in
 the XML output. In that case, they can add a parameter to the Alexandria command with which they indicate which grouped markup
 nodes should form the leading hierarchy, e.g., alexandria export-xml
 Austen_VtS -l D. In this example commend, the markup nodes in group “D”
 are transformed into XML content elements; the markup nodes not belonging to the
 leading hierarchy will be transformed into Trojan Horse elements. A fragment of the
 XML output with the markup group “D” as leading structure would look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xml xmlns:tag="http://tag.di.huc.knaw.nl/ns/tag"
 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse" th:doc="P T">
 <text title="Love and Freindship" type="novel" author="Jane Austen" date="1790">
 <page n="6">
 <head><l>Letter 4th</l></head>
 <l>Laura to Marianne</l>
 <s th:doc="T" th:sId="s0"/><l>Our neighbourhood was small, for it consisted </l>
 <l>only of your Mother. <s th:doc="T" th:eId="s0"/>
 <s th:doc="T" th:sId="s1"/>She may probably have already </l>
 <l>told you that being left by her Parents in indegent </l>
 <l>Circumstances she had retired into Wales on economi-</l>
 </page>
 <page n="7">
 <l>cal motives. <s th:doc="T" th:eId="s1"/>
 <s th:doc="T" th:sId="s2"/>There it was our freindship first </l>
 <l>commenced – Isabel was then one and twenty – </l> <s th:doc="T" th:eId="s2"/>
 <s th:doc="T" th:sId="s3"/><l>Tho' pleasing in both her Person and Manners </l>
 <l>(between ourselves) she never possessed the hun-</l>
 <l>dreth part of my Beauty or Accomplishments.</l> <s th:doc="T" th:eId="s3"/>
 <!-- more text and markup -->
 <s th:doc="T" th:sId="s9"/> <q tag:n="1" th:doc="P" th:sId="q10"/>
 <l>"Beware my Laura<q th:doc="P" th:eId="q10"/> (she would often say) </l>
 <q tag:n="1" th:doc="P" th:sId="q11"/>
 <l>Beware of the insipid Vanities and idle Dissipations </l>
 <l>of the Metropolis of England; Beware of the </l>
 <l>unmeaning Luxuries of Bath & of the Stink-</l>
 <l>ing fish of Southampton."</l>
 <q th:doc="P" th:eId="q11"/> <s th:doc="T" th:eId="s9"/>

 </page>
 </text>
</xml>

Note how the discontinuous text, marked with the suspend and resume signs in
 TAGML, is coverted to XML. With the attribute @tag:n="1" the
 discontinued parts of the quotation are linked together. This approach is also
 suggested by Wendell Piez in Piez 2008. Finally, the header of both
 fragments contains information about which group of markup nodes are represented in
 Trojan Horse (th:doc="T D P" versus th:doc="T P").
In order to illustrate the variety of options created by the XML export function
 of Alexandria, the final paragraphs of this section
 explore two hypothetical yet highly likely user scenarios. Let’s say that, after
 modeling the text in TAGML and uploading the TAGML document in Alexandria, a user wants to (1) publish it online, so they need an
 HTML version of the encoded text; (2) send it for approval to another scholarly
 editor who prefers to work in Word (e.g., using LibreOffice of Microsoft Office). We
 can update the workflow diagram by adding these two steps: Figure 17: Editorial workflow in Alexandria and
 beyond
[image:]
Visualization of the editorial workflow with two additional
 transformation steps.

 As the diagram illustrates, the transformation steps in the editorial
 workflow do not take place in the context of Alexandria, but in the user’s own workspace. This is a conscious
 choice: we assume that most users prefer their own, possibly customized, tools,
 transformation scenario’s, and work environments. Accordingly, we provide TAGML
 users with the opportunity to create workflows and pipelines in which TAGML is
 seamlessly integrated with other tools. For instance, the user can use XSLT in order
 to create an HTML document from the XML document.
For the transformation to Word, we use the open source software OxGarage, a
 RESTful web service that was created by members of the TEI community and allows
 users to manage transformations between various document formats.[9] Even without any additional information, the XML document sampled above
 (with the page structure as leading hierarchy) is easily transformed into a clearly
 readable Word document: Figure 18: Word document created with OxGarage
[image:]
The Word document created using OxGarage.

Note that the text of the addition, marked with add tags in
 both the source TAGML and the XML output, is automatically surrounded by diacritical
 marks in the Word output, and that the text marked as deleted in the TAGML and XML
 sources is represented as crossed out text between square brackets.

Future work
So far, our contribution to Balisage about TAG have discussed work in progress, and
 the present contribution is no different. While the basic export funtionalities perform
 well, there are a few steps that need to be taken before TAGML documents can be fully
 converted to an XML format. At the moment, non-linear structures are not optimally
 converted. We conceptualized this structure as a linear stream of text “splitting” into
 two or more branches. In the case of an in-text revision like a substitution, the split
 leads to two branches of the text, each with a different reading. As the attentive
 reader may have seen in figure 15 (Figure 16), the TAGML approach
 to a non-linear structure is to encode the splitting into branches as follows:
 some linear text <| branch 1 | branch 2 |> more linear text.[10] For example, the non-linear structure caused by the substitution in Austen’s
 text is encoded as follows:

[s> […] had spent a fortnight in Bath & had <|[del>slept<del]|[add>supped<add]|> one night in Southampton.<s]

 Here, the notation <| and |> indicates the start and end of
 branches, with the | to separate them. One branch reads
 slept and one reads supped. Currently, this branching
 strcuture is quite literally converted as such to XML:

<s> had spent a fortnight in Bath & had
 <tag:branches th:doc="_default" th:sId=":branches6"/>
 <tag:branch th:doc="_default" th:sId=":branch7"/>
 slept
 <tag:branch th:doc="_default" th:eId=":branch7"/>
 <tag:branch th:doc="_default" th:sId=":branch8"/>
 <add>supped</add>
 <tag:branch th:doc="_default" th:eId=":branch8"/>
 <tag:branches th:doc="_default" th:eId=":branches6"/>
 one night in Southampton.
<s/>

 The branches are represented as Trojan Horse element and linked
 to one another with the Trojan Horse attributes. While this is technically correct, it
 is difficult to read for humans and equally hard to transform to valid TEI-XML.
 Non-linear TAGML is however not as easy to transform automatically into XML: where TAGML
 uses general syntactical symbols, TEI proposes multiple options with markup elements
 like subst, mod, or choice. Potentially this
 conversion will require user-input as well.
Another item on our “(Soon) To Do” list is to move away from grouping markup elements
 with identifiers. We are at present examining the possibilities to implement a TAGML
 schema and to include in the schema information about the hierarchical structure(s) in a
 TAGML document. This would mean, for instance, that the user identifies which markup
 nodes are part of a certain hierarchy, which nodes can be shared between hierarchies,
 etc. In line with an XSL file, the schema may contain other information about the
 export. The user can subsequently point to this TAGML schema document when they give the
 export command to the Alexandria
 server. And finally, on a more general level, future work entails the possibilty for
 multiple users to collaborate in Alexandria. The
 repository is now initialized locally, and a user of Alexandria can already check-in, check-out, and edit a TAGML document on
 their local machine, but we aim to enable a collaboration between multiple users. This
 requires among others further development of the diff-functionality, as we want to track
 the edits made to a TAGML document on the level of the text as well as the
 markup.

Reflection
It’s a well known fact that certain textual and documentary structures are less suited
 to be encoded as XML, such as concurrent or overlapping hierarchies, discontinuous text,
 and non-linear structures. In the past thirty years or so, numerous ways to deal with
 these structures have been proposed, ranging from XML-based approaches (to name but a
 few: empty or virtual elements, linking, Trojan Horse markup, stand-off approaches,
 encoding the same text multiple times, XCONCUR) to non-XML proposals (such as LMNL,
 TexMECS, or EARMARK).[11] There are various reasons why the proposed alternatives have not been
 adopted as text encoding standards. Some of them focused primarily on addressing just
 one limitation of the XML data model — e.g., overlap — and did not address the wider
 range of non-hierarchical text phenomena. Others never transcended the experimental
 phase, or needed to be abandoned simply because funding ran out. Nevertheless, the
 academic publications related to these proposals still make for an interesting read as
 they provide insight into the intellectual and technological history of text modeling.
 Most of them are not “just” technical: they are based on a philosophy of text. After
 all, when examining the question of how to express text informationally, the authors had
 to formulate their definition of text. If it’s not an Ordered Hierarchy of Content
 Objects, then what is it?
We conceptualize text as a partially ordered sequence of characters, inscribed on a
 material carrier. The information derived from the text can best be organized in a
 network structure, for which we propose a hypergraph. In this paper, we aimed to
 demonstrate the value of looking beyond the prevalent technologies and examining the
 alternatives vis-à-vis their philological notions of text, their conceptual model, the
 logical implementation(s), etc. We intended for the reader to realize that each approach
 to text modeling has its advantages and disadvantages. The best choice is not
 necessarily what is most commonly used, but what best addresses one’s research
 requirements and objective(s). There are many pragmatic reasons to encode literary
 historical texts in XML, but the XML framework should not become synonymous with the
 framework in which we conceptualize text.
We illustrated this notion by demonstrating how TAG can be combined with XML in an
 editorial workflow to model, store, edit, process, analyze, and publish text. The
 workflow combines the advantages of two data models: while TAG performs well with
 modeling and storing literary historical text, XML forms the input of many tools for
 further text analysis, transformation, and visualization. The XML output of the TAG
 reference implementation Alexandria uses Trojan Horse
 elements to avoid overlap conflicts. We opted for Trojan Horse because it is well known
 in the text encoding community and it is relatively easy, from a computational
 perspective, to have the computer generate milestones and unique IDs. Discontinuous
 elements are transformed into XML by adding a matching attribute (e.g.,
 tag:n="q1") on the tags of the discontinued elements.
If we consider scholarly editing as an ongoing process of translating information
 from one carrier to another, it’s clear that scholars need to keep track of and
 understand these data transformations in order to make informed choices. By describing
 in detail the choices we made in designing TAG, by illustrating how these choices are
 reflected in the data model, and by proposing a workflow in which users have the
 opportunity to influence the TAGML-to-XML conversion process, we hope to have provoked
 amongst today’s textual scholars a continuous curiosity for data models for text
 modeling.

Bibliography
[Barnard et al. 1995] Barnard, David T., Burnard,
 Lou, Gaspart, Jean-Pierre, Price, Lynne A., Sperberg-McQueen, C. Michael, & Varile,
 Giovanni Battista. Hierarchical encoding of text: Technical problems and SGML
 solutions. Computers and the Humanities, vol.29,
 no.3, 1995, pp: 211-231. doi:https://doi.org/10.1007/BF01830617.
[Bleeker et al. 2020] Bleeker, Elli, Bram
 Buitendijk and Ronald Haentjens Dekker. Marking Up Microrevisions With Major
 Implications: Non-linear Text in TAG. Presented at Balisage: The Markup
 Conference 2020, Washington, DC, July 27-31, 2020. Proceedings of
 Balisage: The Markup Conference 2020. Balisage Series on Markup
 Technologies, vol. 25, 2020.
 doi:https://doi.org/10.4242/BalisageVol25.Bleeker01.
[Cummings 2008] Cummings, James. The Text
 Encoding Initiative and the Study of Literature. A
 Companion to Digital Literary Studies, edited by Susan Schreibman and Ray
 Siemens. Oxford: Blackwell, 2008.
 http://www.digitalhumanities.org/companionDLS/.
[Haentjens Dekker and Birnbaum 2017] Haentjens
 Dekker, Ronald and David J. Birnbaum. It’s More Than Just Overlap: Text As
 Graph. Presented Presented at Balisage: The Markup Conference 2017,
 Washington, DC, August 1-4, 2017. Proceedings of Balisage: The Markup
 Conference 2017. Balisage Series on Markup Technologies, vol. 19, 2017.
 doi:https://doi.org/10.4242/BalisageVol19.Dekker01.
[Haentjens Dekker et al. 2018] Haentjens Dekker,
 Ronald, Elli Bleeker, Bram Buitendijk, Astrid Kulsdom and David J. Birnbaum.
 TAGML: A markup language of many dimensions. Presented at Balisage:
 The Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. Proceedings of Balisage: The Markup Conference 2018. Balisage Series on Markup
 Technologies, vol. 21, 2018.
 doi:https://doi.org/10.4242/BalisageVol21.HaentjensDekker01.
[Haentjens Dekker et al. 2020] Dekker, Ronald
 Haentjens, Bram Buitendijk, and Elli Bleeker. Parsing a Markup Language That
 Supports Overlap and Discontinuity. Proceedings of the
 ACM Symposium on Document Engineering 2020, pp. 1-4.
 doi:https://doi.org/10.1145/3395027.3419590.
[Huitfeldt 1994] Huitfeldt, Claus.
 Multi-dimensional Texts in a One-Dimensional Medium. Computers and the Humanities, vol. 28, no. 4, 1994, pp.
 235-241. doi:https://doi.org/10.1007/BF01830270.
[Hilbert et al. 2005] Hilbert, Mirco, Oliver
 Schonefeld, and Andreas Witt. Making CONCUR work. Presented at Extreme
 Markup Languages 2005, Montréal, Québec, August 1-5, 2005.
 http://conferences.idealliance.org/extreme/html/2005/Witt01/EML2005Witt01.xml.
[Jagadish et al. 2004] Jagadish, H.V., Laks V.S.
 Lakshmanan, M. Scannapieco, D. Srivastava, and N. Wiwatwattana. Colorful XML: One
 Hierarchy Isn’t Enough. Presented at SIGMOD 2004, Paris, France, June 13–18,
 2004. doi:https://doi.org/10.1145/1007568.1007598.
[Kimber 2011] Kimber, Eliot. DITA Document
 Types: Enabling Blind Interchange Through Modular Vocabularies and Controlled
 Extension. Presented at Balisage: The Markup Conference 2011, Montréal,
 Canada, August 2-5, 2011. Proceedings of Balisage: The Markup
 Conference 2011. Balisage Series on Markup Technologies, vol. 7, 2011.
 doi:https://doi.org/10.4242/BalisageVol7.Kimber01.
[Marcoux et al. 2011] Marcoux, Yves, Michael
 Sperberg-McQueen, and Claus Huitfeldt. Expressive Power of Markup Languages and
 Graph Structures. Presented at the Digital Humanities Conference 2011, Stanford, CA, June
 19-22, 2011, pp. 178-180.
 https://core.ac.uk/reader/48606830.
[Niu et al. 2019] Niu Ya-Wei, Qu Cun-Quan, Wang
 Guang-Hui, Yan Gui-Ying. RWHMDA: Random Walk on Hypergraph for Microbe-Disease
 Association Prediction. Frontiers in
 Microbiology, vol. 10, 2019. doi:https://doi.org/10.3389/fmicb.2019.01578.
[Peroni et al. 2014] Peroni, Silvio, Francesco
 Poggi and Fabio Vitali. Overlapproaches in Documents: a Definitive Classification
 (in OWL, 2!). Presented at Balisage: The Markup Conference 2014, Washington,
 DC, August 5-8, 2014. In Proceedings of Balisage: The Markup
 Conference 2014. Balisage Series on Markup Technologies, vol. 13, 2014.
 doi:https://doi.org/10.4242/BalisageVol13.Peroni01.
[Pierazzo 2015] Pierazzo, Elena. TEI: XML
 and Beyond. Presented at the Text Encoding Initiative Conference and Members
 Meeting 2015, Lyon (France), October 28-31, 2015. Abstract of talk available online at
 http://tei2015.huma-num.fr/en/papers/#140.
[Piez 2008] Piez, Wendell. LMNL in miniature. An
 introduction. Presented at the Amsterdam Goddag Workshop, December 1–5, 2008.
 http://piez.org/wendell/LMNL/Amsterdam2008/presentation-slides.html
[Portier et al. 2012] Portier, Pierre-Édouard,
 Noureddine Chatti, Sylvie Calabretto, Elöd Egyed-Zsigmond and Jean-Marie Pinon.
 Modeling, Encoding And Querying Multi-structured Documents. Information Processing & Management, vol. 48, no. 5, 2012,
 pp. 931-955. doi:https://doi.org/10.1016/j.ipm.2011.11.004.
[De Rose 2004] DeRose, Steven J. Markup
 Overlap: a Review and a Horse. Presented at Extreme Markup Languages 2004, Montréal, Québec, August 2-6, 2004.
 http://xml.coverpages.org/DeRoseEML2004.pdf.
[Sahle 2013] Sahle, Patrick. Digitale
 Editionsformen. Zum Umgang mit der Überlieferung unter den Bedingungen des
 Medienwandels. Teil 3: Textbegriffe und Recodierung. Norderstedt: BoD, 2013.
 https://kups.ub.uni-koeln.de/5353/
[Schmidt 2010] Schmidt, Desmond. The
 Inadequacy of Embedded Markup for Cultural Heritage Texts. Literary and Linguistic Computing 25, no. 3, 2010, pp. 337-356.
 doi:https://doi.org/10.1093/llc/fqq007.
[Sperberg-McQueen and Huitfeldt 2008] Sperberg-McQueen, C. M. and Claus Huitfeldt. Markup Discontinued: Discontinuity
 in TexMecs, Goddag Structures, and Rabbit/Duck Grammars. Presented at
 Balisage: The Markup Conference 2008, Montréal, Canada, August 12-15, 2008. Proceedings of Balisage: The Markup Conference 2008. Balisage Series on
 Markup Technologies, vol. 1, 2008.
 doi:https://doi.org/10.4242/BalisageVol1.Sperberg-McQueen01.
[Sperberg-McQueen 2018] Sperberg-McQueen, C.M.
 Representing Concurrent Document Structures Using Trojan Horse
 Markup. Presented at Balisage: The Markup Conference 2018, Washington, DC, July
 31 - August 3, 2018. Proceedings of Balisage: The Markup
 Conference. Balisage Series on
 Markup Technologies, vol. 21, 2018.
doi:https://doi.org/10.4242/BalisageVol21.Sperberg-McQueen01.
[Sperberg-McQueen and Huitfeldt 2000] Sperberg-McQueen, C.M. and Claus Huitfeldt. GODDAG: A Data Structure for
 Overlapping Hierarchies. International Workshop on
 Principles, 2000.
 doi:https://doi.org/10.1007/978-3-540-39916-2_12.
[Austen 2010] Katherine Sutherland, editor. Jane Austen’s Fiction Manuscripts: A Digital Edition. Available
 at http://www.janeausten.ac.uk/, consulted July 16th, 2021.
[Vitali 2016] Vitali, Fabio. The Expressive
 Power of Digital Formats: Criticizing the Manicure of the Wise Man Pointing at the
 Moon. Lecture at the DiXiT Convention 2, Cologne, Germany, March 15, 2016.
 Slides available at
 http://dixit.uni-koeln.de/wp-content/uploads/Vitali_Digital-formats.pdf.
[Watanna, 1916] Watanna, Onoto. Marion, the
 Story of an Artist’s Model. New York: W.J. Watt.
 URN:oclc:record:1048793515.

[1] The authors are very grateful for the reviewers’ comments which have been insightful, useful, and highly appreciated. Many thanks.
[2] See notably Huitfeldt 1994 (p. 143; 147-151), Sahle 2013 (p. 381-382), and Pierazzo 2015 (p.73-74)
 in relation to the conceptual model on which the encoding guidelines of the TEI
 are based.
[3] To give but one example, the edges in the graph were first directed (Haentjens Dekker and Birnbaum 2017), then undirected with the order of the Text nodes in
 the graph derived from their distance from the root node (Haentjens Dekker et al. 2018). The current version of the hypergraph data model has
 both directed edges (for the text-to-text nodes) and undirected edges (for the
 markup and annotation nodes).
[4] In earlier publications, we referred to groups of Markup nodes as
 layers, but we found this term to
 be confusing as “layers” are often used differently in different
 (humanities) contexts.
[5] All text, documentary transcriptions, and facsimiles are retrieved from
 the digital diplomatic edition Jane Austen’s Fiction
 Manuscripts: Digital Edition, edited by Katherine Sutherland
 and her team. The digital edition can be found at https://janeausten.ac.uk/index.html.
[6] The TAGML transcription is made in Sublime Text Editor that offers
 syntax TAGML highlighting. See the Github page of the project for the most up-to-date
 information about the TAGML syntax highlighting.
[7] See the TEI Guidelines, chapter 16.7. See also the (suggestions for the)
 question posted by Joey Takeda on the TEI mailing list, “Another q
 question”, March 23, 2019 (permalink:
 https://listserv.brown.edu/cgi-bin/wa?A2=TEI-L;48339dc2.1903).
[8] Note that the quotation q is given the identifier
 “P”, because it overlaps locally with the s
 element.
[9] See the website and
 the Github page
 of OxGarage for more information.
[10] For a detailed discussion of the representation of non-linear structures in
 TAGML, see Haentjens Dekker et al. 2018 and Bleeker et al. 2020.
[11] For an overview and description of these and other proposals, we recommend
 among others De Rose 2004, Schmidt 2010, Portier et al. 2012, Peroni et al. 2014, and Vitali 2016.

Balisage: The Markup Conference

Hyper, Multi, or Single? Thinking about Text in Graphs and Trees
Elli Bleeker
Researcher
Huygens Institute for the History of the Netherlands

Elli Bleeker works as a researcher at the Huygens Institute for the History of
 the Netherlands. As a Research Fellow in the Marie Sklodowska-Curie funded
 network DiXiT (2013–2017), she received advanced training in manuscript studies,
 text modeling, and XML technologies for text modeling. She completing her PhD at
 the Centre for Manuscript Genetics at Antwerp University (2017) on the role of
 the scholarly editor in the digital environment. She specialized in digital
 scholarly editing with a focus on modern manuscripts, genetic criticism, and
 semi-automated collation. Currently, she works together with Ronald Haentjens
 Dekker and studies the potential of graph technologies for the modeling of
 literary and historical texts. This confronts her frequently with complex
 manuscripts that are very challenging to model computationally. Still, she would
 choose it again without a doubt.

Ronald Dekker
Software engineer
Huygens Institute for the History of the Netherlands

Ronald Haentjens Dekker is a software architect and lead
 engineer of the Computational Modelling for Textual Sources (ComTES) at the
 Huygens Institute for the History of the Netherlands, part of the Royal
 Netherlands Academy of Arts and Sciences. As a software architect, he is
 responsible for translating research questions into technology or algorithms and
 explaining to researchers and management how specific technologies will
 influence their research. He has worked on transcription and annotation
 software, collation software, and repository software, and he is the lead
 developer of the CollateX collation tool. He also conducts workshops to teach
 researchers how to use scripting languages in combination with digital editions
 to enhance their research.

Bram Buitendijk
Software engineer
Digital Infrastructure Department, Humanities Cluster, Royal Netherlands
 Academy for Arts and Sciences

Bram Buitendijk is a software developer at the Humanities
 Cluster, part of the Royal Netherlands Academy of Arts and Sciences. He has
 worked on transcription and annotation software, collation software, and
 repository software.

Balisage: The Markup Conference

content/images/Bleeker01-001.jpg

content/images/Bleeker01-003.png
#PCDATA
This is an

#PCDATA

easy

#PCDATA
example of

#PCDATA
the

#PCDATA
TAGML syntax.

content/images/Bleeker01-002.png

content/images/Bleeker01-005.jpg

content/images/Bleeker01-004.jpg

content/images/Bleeker01-007.png

content/images/Bleeker01-006.jpg
Al

content/images/Bleeker01-009.png

content/images/Bleeker01-008.png
[text type="novel" title="Love and Freindship" author="Jane Austen" date={1790-1793}>
[page>

[s>[g>"Beware my Laura<-g! (she would often say) [+g-Beware of the insipid Vanities and idle
Dissipations of the Metropolis of England; Beware of the unmeaning Luxuries of Bath & of the
Stinking fish of Southampton."<ql<s]

<page]
<text]

content/images/Bleeker01-010.png
text

C

()
|\

&

#PCDATA
"Beware my Laura

#PCDATA
(she would often say)

#PCDATA
Beware of [...] Southampton."

content/images/Bleeker01-012.png
[text |+D,+T,+P title="Love and Freindship" type="novel" author="Jane Austen" date=1790>
[page|D n=6>

[1|D>[head|D,T>Letter 4th<head!<1l][1|D>Laura to Marianne<l![s|T>[1|D>0ur neighbourhood was
small, for it consisted <l][1|D>only of your Mother. <s|[s|T>She may probably have already <1/
[1/D>told you that being left by her Parents in indegent <1][1|D>Circumstances she had

retired into Wales on economi-<1]

<pagel

[page|D n=7>[1|D>cal motives. <s!|[s|T>There it was our freindship first <1][1|D>commenced —
Isabel was then one and twenty — <s!<1][s|T>[1|D>Tho' pleasing in both her Person and Manners
<11 [1|D>(between ourselves) she never possessed the hun-<1][1|D>dreth part of my Beauty or
Accomplishments.<s|<1![s|T>[1|D>Isabel had seen the World. <s![s|T>She had passed 2 <1][1|D>
Years at one of the first Boarding-schools in <1![1|D>London; had spent a fortnight in Bath &
had <1] [1|D><|[del|D>slept<dell | [add|D>supped<add! |> one night in Southampton.<1ll<s][1|D>[s|T>
[q|P>"Beware my Laura<-ql (she would often say) <1![1|D>[+q|P>Beware of the insipid Vanities
and idle Dissipations <1![1|D>of the Metropolis of England; Beware of the <1][1|D>unmeaning
Luxuries of Bath & of the Stink-<1][1|D>ing fish of Southampton."<ql<s!<l][1|D>[q|P>[s|T>
"Alas! <-q! (exclaimed I) [+q|P>how am I to avoid <1][1|D>those evils I shall never be
exposed to? <s|[s|T=What <l][1|D>probability is there of my ever tasting the Dissipations <1!!
1/D>of London, the Luxuries of Bath, or the stinking <1![1|D>Fish of Southampton?<s![s|T>I
who am doomed to <1 [1|D>waste my Days of Youth & Beauty in an <1/

<pagel

[page|D n=8>[1|D>humble Cottage in the Vale of Uske."<ql<s!<1]

<pagel

<text]

content/images/Bleeker01-011.png
(she would often say)

"Beware my Laura

Beware of [..]
Southampton.”

content/images/Bleeker01-014.png
create initialise. add commit ‘commit view checkout export view 1o
2| TAGML repostory TAGML document add view torepo view on XL
£ gocument document torepo document
£ v L2 L2 v
E ‘alexandria alexandria alexandria ‘alexandria ‘alexandria alexandria
H slexanasia aad ot S comit || chackont || exportoam
H A tagal A tagal viewi.gaon | | viewl.3sen viewd
v v v "
L TAGHL do o N
doc doc doc VIEW VIEW
= ‘ %
§ L3 Y v
§
] [] el

content/images/Bleeker01-013.png
sIT

+ (" pagelD

1)

textID,

sIT

#PCDATA
Our neighbourhood [...] consisted

#PCDATA
only [...] Mother.

#PCDATA
She [...] already

#PCDATA
told [...] indegent

#PCDATA
Circumstances [...] economi-

#PCDATA

cal [...] motives.

#PCDATA
There [...] first

content/images/Bleeker01-016.png
[text |+D,+T,+P title="Love and Freindship" type="novel" author="Jane Austen" date=1790>

[page|D n=6>[1|D>

[head |D,T>Letter 4th<head!<1][l|D>Laura to Marianne<l][s|T>[1|D>0ur neighbourhood was small, for
it consisted <1![1|D>only of your Mother. <s![s|T>She may probably have already <1/ [1|D>told you
that being left by her Parents in indegent <1][1|D>Circumstances she had retired into Wales on
economi-<1]

<pagel

[page|D n=7>[1|D>cal motives. <s!|[s|T>There it was our freindship first <1][1|D>commenced —
Isabel was then one and twenty — <s!<1][s|T>[1|D>Tho' pleasing in both her Person and Manners <1|
[1/D>(between ourselves) she never possessed the hun-<1] [1|D>dreth part of my Beauty or
Accomplishments.<s|<1![s|T>[1|D>Isabel had seen the World. <s![s|T>She had passed 2 <1][1|D>
Years at one of the first Boarding-schools in <1![1|D>London; had spent a fortnight in Bath &
had <1] [1|D><|[del|D>slept<del] | [add|D>supped<add!|> one night in Southampton.<1]<s]
[1|D>[s|T>[q|P>"Beware my Laura<—q! (she would often say) <1l][1|D>[+q|P-Beware of the insipid
Vanities and idle Dissipations <1![1|D>of the Metropolis of England; Beware of the <1/ [1|D>
unmeaning Luxuries of Bath & of the Stink—<1][1|D>ing fish of Southampton."<ql!<s|<l]
[1/D>[qg|P>[s|T>"Alas! <-q| (exclaimed I) [+q|P>how am I to avoid <1][1|D>those evils I shall
never be exposed to? <s![s|T-What <l][1|D>probability is there of my ever tasting the
Dissipations <1/ [l1|D>of London, the Luxuries of Bath, or the stinking <l! [1|D>Fish of
Southampton?<s] [s|T>I who am doomed to <1l][1|D>waste my Days of Youth & Beauty in an <1l]<page!
[page|D n=8>[1|D>humble Cottage in the Vale of Uske."<ql<s!<1]

[s|T=[1|D>Ah! little did I then think I was ordained <1][1|D>so soon to quit that humble Cottage
for the <1] [1|D>Deceitfull Pleasures of the World.<1l]<s]

[1|D>[s|T>adeiu<l] [1|D>Laura —<1l]<s]<pagel<text]

content/images/Bleeker01-015.png
Alexandria
repository

TAGTraverser

Events.

XMLBuilder

_tagpart lﬂleuﬂlng /" Create XML
e=p /—L’\ content element |

o
no / create Trojan

. Horse element

XML document

content/images/Bleeker01-018.png
Letter the 4th

Laura to Marianne

Our neighbourhood was small, for it consisted

only of your Mother. She may probably have already
told you that being left by her Parents in indegent
Circumstances she had retired into Wales on economi-
cal motives. There it was our freindship first
commenced — Isabel was then one and twenty —
Tho' pleasing in both her Person and Manners
(between ourselves) she never possessed the hun-
dreth part of my Beauty or Accomplishments.
Isabel had seen the World. She had passed 2

Years at one of the first Boarding-schools in
London; had spent a fortnight in Bath & had
stept(supped) one night in Southampton.

"Beware my Laura®’ (she would often say)

Beware of the insipid Vanities and idle Dissipations
of the Metropolis of England; Beware of the
unmeaning Luxuries of Bath & of the Stink-

ing fish of Southampton."

"Alas! (exclaimed I) how am I to avoid

those evils I shall never be exposed to? What
probability is there of my ever tasting the Dissipations
of London, the Luxuries of Bath, or the stinking
Fish of Southampton? I who am doomed to

waste my Days of Youth & Beauty in an

humble Cottage in the Vale of Uske."

Ah! little did I then think I was ordained

50 soon to quit that humble Cottage for the
Deceitfull Pleasures of the World.

adeiu

Laura —

content/images/Bleeker01-017.png
Checkout

transform XML transform XML
documentto document to
HTML MSWord

A tagml

viewl. json

viewl json

T et inaise 2dd commit " commit view export view to
2| TAGML reposiory TAGML document addview torepo view on XL
2| document document o repo document
¥ v
Slexanaria Slexanaria | [elexanarie
slexanaria wand e Lexands

Alexandria repo

tagm)

/L HTML
o i , -
wowl mem| (6O (6O o o, il
o) L doo) VIEW VIEW i ;
v h 2 A2 v

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

