[image: Balisage logo]Balisage: The Markup Conference

Attempts to modernize XML conversion at PubMed Central
Martin Latterner
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Dax Bamberger
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Kelly Peters
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Jeffrey D. Beck
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Balisage: The Markup Conference 2021
August 2 - 6, 2021

Author’s contribution to the Work was done as part of the Author’s official duties as an NIH employee and is a Work of the United States Government. Therefore, copyright may not be established in the United States. 17 U.S.C. § 105. If Publisher intends to disseminate the Work outside the U.S., Publisher may secure copyright to the extent authorized under the domestic laws of the relevant country, subject to a paid-up, nonexclusive, irrevocable worldwide license to the United States in such copyrighted work to reproduce, prepare derivative works, distribute copies to the public and perform publicly and display publicly the work, and to permit others to do so.

How to cite this paper
Latterner, Martin, Dax Bamberger, Kelly Peters and Jeffrey D. Beck. "Attempts to modernize XML conversion at PubMed Central." Presented at: Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021. In Proceedings of Balisage: The Markup Conference 2021.
 Balisage Series on Markup Technologies vol. 26 (2021). https://doi.org/10.4242/BalisageVol26.Latterner01.

Abstract
PubMed Central® (PMC) is a free full-text archive of biomedical and life sciences journal literature at the U.S. National Institutes of Health's National Library of Medicine. PMC receives about 70,000 XML articles every month and uses XSLT to convert them into its preferred format. In 2021, PMC started to explore options to modernize its extensive conversion codebase leveraging XSLT 3.0. This paper describes XML conversion and its challenges at PMC. It then outlines the first approach that PMC is evaluating: breaking a single conversion operation into multiple, dynamic transformations using fn:transform, one of the powerful new tools available with XSLT 3.0.

Balisage: The Markup Conference

 Attempts to modernize XML conversion at PubMed Central

 Table of Contents

 	Title Page

 	XML Conversion at PMC
 	Schema conversion

 	Data normalization

 	Challenges

 	A new approach with XSLT 3.0

 	Conclusion

 	Acknowledgments

 	About the Authors

 Attempts to modernize XML conversion at PubMed Central

XML Conversion at PMC
PubMed Central® (PMC) is a free full-text archive of biomedical and life sciences journal literature at the U.S. National Institutes of Health's National Library of Medicine (NLM). PMC converts about 70,000 full text XML articles per month. Over 750 submitters supply the source data in varying XML formats. Data providers are primarily journal publishers, but also government organizations, non-governmental organizations, or publishing vendors. The submitters deposit data packages to a dedicated FTP site. The packages contain the full text article XML as well as corresponding PDFs, images, and supplementary data files. PMC’s automated ingest process picks up the packages and processes them into the PMC database. The process entails content repackaging and validation as well as XML and image conversion. Once in a standard format, the article XML can be made useful in multiple ways. First and foremost, PMC renders the articles to HTML for its users to read. A subset of the XML, or derivations of it, is also shared with other databases at the NLM and with the public.[1]
Figure 1
[image:]
The PMC dataflow

Schema conversion
Over the years, PMC has received content in over 50 different SGML and XML DTDs and schemas. In total, they amount to more than 250 different DTD versions. PMC converts all incoming articles into its preferred format, the latest version of the Journal Archiving and Interchange Tag Set, ANSI/NISO Z39.96 (JATS).[2] Transforming non-JATS articles into JATS is referred to here as “schema conversion”.
The main conversion work is performed by XSLT 2.0 stylesheets. The codebase is of significant size, including about 200,000 lines of XSL in over 400 stylesheets. The code is primarily organized by source XML schema. There is a repository for each major submission DTD. It is supported by a set of “common modules”, a library of helper templates and functions that are used across multiple conversions. A repository for a specific DTD is itself broken down into several stylesheets. PMC organizes the stylesheets by the major JATS elements that make up the conversion, for example front.xsl for all metadata, and body.xsl, figures.xsl, math.xsl, or xref.xsl for the main narrative. A main stylesheet includes all the modules and serves as an entry point for the conversion.
Figure 2
[image:]
Sketch of the current conversion infrastructure.

All XSLT converters are run by a single script. It starts by resolving the source DTD or schema of an XML instance. This is done with the help of PMC’s XML catalog. Knowing the source format, the script can then pick the appropriate XSLT to run. DTD and XSLT are linked in a configuration file that contains other settings such as which XSLT processor to run.
Figure 3

<param-nested id="docbookx.dtd">
	<param name="xsl-processor" value="saxon9ee"/>
	<param name="src-format" value="XML"/>
	<param name="xslt" value="/pmc/xsl/docbook/docbook2jats.xsl"/>
</param-nested>
Example snippet from a PMC conversion configuration.

Converter maintenance consumes significant resources. A team of three to four XML developers maintains the XSLT codebase, among other tasks. This includes bug fixes as well as improvements necessary to accommodate new data suppliers or new DTD versions. Changes are, of course, also necessary to address the evolving needs of PMC as a product, its users, and its stakeholders. The codebase receives on average 70 updates per month. The team operates at the intersection of production and development; reported bugs and issues are addressed quickly. The team works against a rapidly rising and ebbing backlog.
Frequent updates to a large codebase always pose the risk of bugs and regression. A conversion testing framework helps to minimize this risk. For unit testing, PMC has integrated XSpec into its development workflow.[3] To avoid regression, PMC employs a simple article testing mechanism. A baseline test set of articles exhibiting varying features is converted with the production version of the XSLT and with the modified XSLT. The converter output is then normalized to remove insignificant differences such as the order of attributes or irrelevant whitespace. A simple text diff compares the production version with the development version. The differences are then made available for review in an HTML report. If the changes are expected, then the developer accepts them into a new baseline. If they look wrong, then the developer needs to fix the code. All tests run automatically again prior to deployment of the updated XSLT. At this stage, any differences will count as an error, just like any failed XSpec test. Deployment will be aborted, and the development group will be notified of the problem.
Figure 4
[image:]
Sample of a PMC regression test report. The report shows that a converter change produced an extra <related-object> element. It also alerts to the fact that the markup is not PMC-style compliant.

Data normalization
The output XML must conform not only to JATS, but also to PMC’s own markup rules, documented in the PMC tagging guidelines and enforced by the PMC style-checker.[4, 5] The latter is an XSL-based validation tool. It checks for poor markup and “common sense” quality issues, such as empty formatting elements or links without pointers. It also enforces PMC-specific restrictions on markup such as attribute values or JATS element structures. XML conversion at PMC is, to a large degree, data normalization.[6]
The high volume of incoming content means a great variety of tagging flavors, conventions, and styles. Different publishers may maintain proprietary lists of attribute values such as for article types or link types. PMC needs to map each of these to its own supported list. Article publication dates are another area that requires a lot of work. Different publishers use different elements and qualifiers to describe their publication models. PMC needs to standardize all these dialects so that the downstream systems can understand the dates. Variations may even exist within a single publisher; for example, one large data supplier has tagged license statements in 13 different places over the years.
The converters also spend a lot of effort standardizing core metadata and objects that are of elevated interest to PMC stakeholders and users. These may include license statements, supplementary material, or data availability statements. For downstream applications to make good use of the content, it is essential to standardize markup and reduce variability. A good example is conflict of interest statements (COIs). In 2016, prominent voices in the research community highlighted the importance of proper disclosure of conflicts in research papers.[7] This culminated in a letter by five U.S. senators urging the inclusion and display of COIs in PubMed, NLM’s citation database. PMC submits a subset of citations to PubMed.[8] Therefore, it was necessary to identify and standardize the varying methods of tagging COIs in conversion. Unsurprisingly, different publishers use many ways to mark up COIs. They may come as footnotes, article notes, sections, or dedicated elements. Generic elements are typed with varying qualifiers, such as “conflict”, “COI”, “coi-statement”, “disclosure”, etc. XML conversion at PMC means identifying these variations and reducing the complexity to a more manageable way of handling markup options.
Data normalization has become increasingly important as PMC has evolved. This is also related to an ongoing trend: the adoption of JATS as the de facto industry standard in scholarly publishing. Publishers are increasingly abandoning their proprietary journal article DTDs and switching to JATS. For PMC, this means that the converter for the JATS DTD family needs to handle an ever-increasing volume of submitters and tagging flavors while other converters go dormant. Not having to deal with a multitude of vocabularies is naturally a welcome development. PMC finds it much easier to deal with an article tagged in JATS than to deal with a DOCBOOK article. The former is, however, not simply ready for ingest. Getting it into the PMC tagging style still requires conversion work. The shift to JATS means a shift in focus from strict “schema conversion”, meaning the translation of one vocabulary into another, to data normalization.
Figure 5
[image:]
Percentage of articles submitted in the JATS DTD family and its predecessor, the NLM Journal Archiving and Interchange Tag Suite.

Challenges
PMC’s approach to XML conversion has remained remarkably stable over the years. In many respects, the transforms work just like in the early days of PMC, even though the volume is many times what it used to be. PMC undertook the last significant modernization project beginning in 2009, when all converters were upgraded from XSLT 1.0 to XSLT 2.0. This mammoth project was a game changer, as the capabilities of XSLT 2.0 far outdo those of its predecessor. In 2019, PMC implemented a new framework for automatic testing of all changes as described above. This helped minimize bugs and regression, but it did not reform the codebase itself.
The stability of PMC’s approach to XML conversion is certainly a sign of success. It has worked well for almost 20 years, as PMC grew from two journals to over 7 million articles. However, XML conversion at PMC is not without challenges. To a large degree, it exposes the typical problems of any large, aging, and still-growing codebase. Over the years, many conversion templates have grown increasingly complex. Staff turnover has also had an impact. Contributions of developers with different skill levels and varying coding styles naturally led to inconsistencies and, over time, impacted readability. As a result, it is not always possible to code a bug fix or an improvement in the most efficient manner, as this would require refactoring larger related swathes of XSLT. Challenges like this, sometimes referred to as “code rot” or “software entropy”, are not particular to XML conversion at PMC.[9] Any development shop will eventually experience them in one form or another.
A more PMC-specific problem is the shift from schema conversion to data normalization as described above. The converter that handles JATS submissions needs to account for an ever-increasing number of new suppliers. XML conversion at PMC has been set up for “schema conversion”, but by now it is doing much more than this. To understand the challenges PMC faces, consider the following template which illustrates the kind of data normalization the PMC codebase performs:

<xsl:template match="DOI">
 <xsl:choose>
 <xsl:when test="$publisher = 'Publisher A'">
 <!-- Skip it: They use <DOI> to capture the DOI of the whole journal,
	 the actual article DOI is in <ArtID> -->
 </xsl:when>
 <xsl:when test="$publisher = 'Publisher B' and
 $article-type = 'book-review'">
 <!-- They issue one DOI for all book reviews, but send us each
 individual review as a separate article
		 do not capture as "doi" to avoid duplicates in the PMC system
 -->
 <article-id pub-id-type="publisher-id">
 <xsl:value-of select="."/>
 </article-id>
	/xsl:when>
	<xsl:when test="normalize-space(.) = ''">
 <!-- Empty: ignore -->
	</xsl:when>
	<xsl:when test="starts-with(., 'http://dx.doi.org/')">
 <!-- Do not capture the URL portion -->
 <article-id pub-id-type="doi">
 <xsl:value-of select="substring-after(.,'http://dx.doi.org/')"/>
	 </article-id>
	</xsl:when>
 <xsl:otherwise>
 <!-- All good! -->
 <article-id pub-id-type="doi">
 <xsl:value-of select="."/>
 </article-id>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>
This template performs several functions in one:
	It converts the source <DOI> element into JATS, thus performing strict “schema conversion”.

	Additionally, it normalizes output to comply with PMC tagging style by removing empty DOI elements. Additionally, the article-id element for DOIs must contain only the identifier string and not a full URL.

	Lastly, it takes care of publisher-specific idiosyncrasies addressing usage that is uncommon or that will present problems in the PMC system.

The above template does not contain difficult XSLT. PMC’s challenge, however, is the growing volume and variability: these four tests could easily grow to 40 tests. Over time, this leads to a complexity that becomes harder and harder to maintain.

A new approach with XSLT 3.0
The increased complexities of many converters and the shift from schema conversion to data normalization coincided with the release of XSLT 3.0 in 2017. These factors led PMC to explore options for modernizing the conversion codebase. Before weighing approaches, a few basic requirements were formulated:
	The conversion group did not want to embark on a complex and linear modernization project fully consuming all resources. Rather, it envisioned a gradual transition in many small steps.

	One goal was to disentangle the different tasks that the converters perform (schema conversion and data normalization). To make the converters simpler and more scalable, it was deemed especially valuable to separate conversion rules for just a subset of publishers or journals from the general rules applying to all the source documents.

	It was recognized that intense, continuing maintenance is a reality that needed to be factored in. XSLTs at PMC are not written once and then run with minimal intervention. Rather, they undergo continuous updates. Therefore, easy maintenance is a primary goal. When dealing with a bug, for example, the developer should be able to quickly find and understand the problematic piece of code.

XSLT 3.0 exhibits many great new features. One function, however, is particularly well-suited for achieving these goals: fn:transform allows a stylesheet to invoke another, dynamically loaded conversion. The ability to call one XSLT from within another XSLT makes it very easy to separate concerns and build a more modular conversion architecture.
Importantly, fn:transform can easily wrap around the legacy converters. As described above, PMC picks converters by source DTD. Switching all JATS articles at once to a new codebase would constitute a dramatic change and require a long period of prior testing. With fn:transform, however, it is possible to define smaller collections of articles on the fly and to choose whether to simply convert them with the “old” XSLTs, or whether to use a new conversion approach. It is possible, for example, to start “switching” only articles from data suppliers who provide simple, high quality tagging. More complicated or problematic article collections can be addressed when the codebase has matured.
fn:transform is also very appealing because all updates are strictly limited to the XSLT layer. It enables PMC to take a substantially different approach to article conversion. Yet the software that runs the XSLT does not need to know anything about these changes. This makes transitioning significantly easier, since no coordination between XSLT and other software components is required. The project would be a lot more involved and expensive if PMC were to build a wholly new method to run transformation pipelines, for example by adopting XProc. Encapsulating all changes at the XSLT layer reduces complexity and friction.
Dynamic transformations with fn:transform can also contribute to the goal of separating general conversion from publisher- or journal-specific modifications. PMC can define respective article collections and run dedicated XSLTs for them, like publisher-a.xsl, publisher-b.xsl, or journal-c.xsl.
PMC thus breaks up the single legacy conversion into multiple discrete transformations.
	For each source schema or DTD, conversion starts by sending the articles to a “dispatcher” stylesheet which serves as the main entry point. The dispatcher establishes article collections by publisher, by journal, or possibly also by other convenient criteria such as article type. The dispatcher concurrently determines whether the collection is “ready for XSL3” or whether to invoke the legacy transformation.

	If the article is ready for the new conversion approach, then the first step is to convert it to the current version of JATS. The only goal of this pass is to produce valid JATS. The output does not need to conform to PMC style nor address tagging idiosyncrasies. This makes the transformation much simpler, as many complicated normalizing operations do not need to be performed at this stage. If the source article is already tagged per the current JATS version, then this step is skipped.

	The second transformation then addresses collection-specific needs. The dispatcher invokes a stylesheet dedicated exclusively to the article collection. This is where issues like publisher-specific article types or very particular tagging structures get addressed. Articles that are not in the collection are not impacted by this transformation. Some articles may not need to undergo this step at all. If the markup is already very close to the PMC standard and requires no special handling, then this step can also be skipped.

	The last conversion is a general normalization step to produce PMC-style compliant JATS as the final output. Many supplier-specific problems and variations have already been addressed in the previous pass. All articles now undergo a final polishing. Poor tagging such as empty formatting elements gets removed. Restricted attribute values undergo a final standardization. ID attributes are added where necessary.

Figure 6
[image:]
Sketch of the new PMC conversion flow.

PMC’s hope is that separating out the different conversion concerns makes the actual templates easier to find and maintain. Having piloted the approach on some article collections, there are many promising signs. To illustrate the benefit, consider the following conversion scenario:
Table I
		

 SOURCE

 	

 JATS

	

 Publisher A

 	

<link Ref="F1">Figure 1</link>

<MediaObject Id="F1" Ref="fig1.jpg"/>

<link Ref="S1">Additional data</link>

<MediaObject Id="S1" Ref="data.xlsx"/>

 	

<xref ref-type="fig" rid="F1">Figure 1</xref>

<fig id="F1"><graphic xlink:href="fig1.jpg"/></fig>

<xref ref-type="supplementary-material" rid="F1">Additional data</xref>

<supplementary-material id="S1" xlink:href="data.xlsx"/>

	

 Publisher B

 	

<MediaObject Ref="fig1"/>

 	

<fig><graphic xlink:href="fig1.tif"/></fig>

Here we have a (fictional) source DTD that uses the <MediaObject> element both for images and for supplementary data files. There is no corresponding element in JATS; images need to be captured as <graphic>, often in <fig>. Supplementary data files get tagged as <supplementary-material>. To determine the JATS output element, the converter has no choice but to check the file extension and use <graphic>, for example, for jpg, png, tiff, etc. There is an additional complication because the objects are cited. The <link> becomes an <xref> element in JATS. PMC tagging style requires that links to images carry the ref-type “fig”, whereas links to supplementary material get typed accordingly with “supplementary-material”. This means the converters also need to check the extension of the <MediaObject> when writing the <xref>, from a different context. However, Publisher B introduces an additional wrinkle – its tagging omits any file extension. Publisher B uses <MediaObject> exclusively for images and ships TIFFs to PMC. The converter is aware of this general business rule and adds the missing extension.
This scenario is typical for XML conversion at PMC. None of the problems are particularly difficult to solve with XSLT. However, when dealing with not two but 200 publishers, the XSLTs can easily grow very complex. Let us further assume that years after talking to PMC about its images, Publisher B now quietly decides that it was a bad idea to omit image extensions all this time. PMC may now begin to find image callouts with duplicated “.tif.tif” extensions in its output. It may not only take quite a while to determine where in the code these duplicated extensions originate, but PMC also now needs to account for two different methods by which Publisher B tags its images. Again, in isolation this is not a difficult fix. However, when multiplied many times, such updates create a complexity that becomes hard to maintain over time.
PMC’s hope is that separating conversion into different passes will make this easier. Publisher B, with its distinct image extension rules, will be afforded a dedicated transformation, publisher-b.xsl. Whatever changes this publisher ultimately makes will not impact the conversion of articles from other publishers. The difference between “schema conversion” and “data normalization” can also reduce complexity of the above transformation scenario. The first pass, DTD conversion, can choose to simply ignore setting the xref @ref-type per PMC style. This can be done during normalization when the appropriate elements are already written, and the conversion only needs to map the referenced target element to a ref-type. This approach reduces complexity and increases consistency. Articles tagged in other source DTDs can undergo the same standardization, and there is one single maintenance point for normalizing the XML.

Conclusion
PMC’s current XML conversion architecture is simple – there is one transformation for each source DTD. This simplicity, however, leads to complexity within the stylesheets themselves. The converters perform different tasks as they deal with a very large volume and variable tagging styles: schema conversion, data normalization, and collection-specific customizations. The new architecture employing fn:transform is more complex; multiple transformations get dispatched dynamically. The hope is that this will make the actual stylesheets simpler. Maintainers should be able to quickly identify code sections of interest and easily fix or modify them. Whether this promise will come true remains to be seen. As of July 2021, converters covering about 1.2 million articles, or 17% of the total, have been updated to XSLT 3.0. So far, the upgrade has proceeded smoothly. PMC has not encountered situations that made it seriously question the validity of the new approach to conversion. In fact, many transformations became much simpler when split over multiple conversion passes. However, the new conversion has required very little maintenance so far, so there are still many lessons to learn as implementation proceeds. Thankfully fn:transform makes it possible to take many small steps toward the greater goal.

Acknowledgments
This work was supported by the Intramural Research Program of the National Library of Medicine, National Institutes of Health.

References
[1] Beck, Jeff. “Report from the Field: PubMed Central, an XML-based Archive of Life Sciences Journal Articles.” Presented at International Symposium on XML for the Long Haul: Issues in the Long-term Preservation of XML, Montréal, Canada, August 2, 2010. In Proceedings of the International Symposium on XML for the Long Haul: Issues in the Long-term Preservation of XML. Balisage Series on Markup Technologies, vol. 6 (2010). doi:https://doi.org/10.4242/BalisageVol6.Beck01.
[2] American National Standards Institute/National Information Standards Organization (ANSI/NISO). 2019. ANSI/NISO Z39.96-2019, JATS: Journal Article Tag Suite, version 1.2. Baltimore (MD): National Information Standards Organization. https://groups.niso.org/apps/group_public/download.php/21030/ANSI-NISO-Z39.96-2019.pdf
[3] What is XSpec? 2017 Mar 15. https://www.xml.com/articles/2017/03/15/what-xspec/
[4] PMC XML Tagging Guidelines. Bethesda (MD): National Library of Medicine (US); 2021. http://www.ncbi.nlm.nih​.gov/pmc/pmcdoc/tagging-guidelines​/article​/
[5] PMC Style Checker. Bethesda (MD): National Library of Medicine (US); 2021. https://www.ncbi.nlm.nih.gov/pmc/tools/stylechecker/
[6] Elbow A, Krick B, Kelly L. “PMC Tagging Guidelines: A case study in normalization.” In: Journal Article Tag Suite Conference (JATS-Con) Proceedings 2011 [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK62090/
[7] Blumenthal R, Warren E, Markey EJ, Schatz B, Durbin D. Letter to: US National Library of Medicine. 2016 Mar 30. https://www.blumenthal.senate.gov/imo/media/doc/PubMed-Letter.pdf
[8] Center for Science in the Public Interest. PubMed to Include Conflict-of-Interest Statements with Study Abstracts. 2017 Apr 30. https://cspinet.org/news/pubmed-include-conflict-interest-statements-study-abstracts-20170418
[9] Warne H. Code rot. 2017 Apr 28. https://henrikwarne.com/2017/04/28/code-rot/

Balisage: The Markup Conference

Attempts to modernize XML conversion at PubMed Central
Martin Latterner
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Martin Latterner is a Technical Information Specialist at the National Center for Biotechnology Information at the US National Library of Medicine. He has been involved in XML conversion for NCBI literature databases since 2008. Prior to coming to NCBI, he worked at Alexander Street Press, an electronic publisher in the humanities.

Dax Bamberger
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Dax Bamberger is a Technical Information Specialist at the National Center for Biotechnology Information at the US National Library of Medicine. He just recently joined NCBI’s XML conversion team, but has been working on XML conversion in the online scholarly publishing field since 2000, with 19 of those years at HighWire Press.

Kelly Peters
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Kelly Peters is a Technical Information Specialist at the National Center for Biotechnology Information at the US National Library of Medicine. She joined NCBI as a journal manager for PubMed Central in 2012. She then moved to working in XML conversion for NCBI literature databases in 2014. Prior to coming to NCBI, she worked at CVPath Institute, Inc., as the head archivist.

Jeffrey D. Beck
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Jeffrey Beck is a Technical Information Specialist at the National Center for Biotechnology Information at the US National Library of Medicine. He has been involved in the PubMed Central project since it began in 2000. He has been working in print and then electronic journal publishing since the early 1990s. Currently he is co-chair of the NISO Z39.96 JATS Standing Committee and is a BELS-certified Editor in the Life Sciences.

Balisage: The Markup Conference

content/images/Latterner01-005.png
handle
collections

dispatch convert to
JATS

normalize

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Latterner01-003.png
@ contrib-group

@ fig-group-media

@ fig-group

@ fn-coi

@ funding-sec

@ funding

@ jats

@ nim3

@ public-domain-oa-pi

Details

contrib-group

Stylecheck failed

related-object check: <related-object> requires an @id. <tlink target="https://wm.ncbi.nlm.nih.gov/pmc/pmcdoc/tagging-guidelines/article/tags.html#
related-object check: <related-object> must must describe a link to something: a work, a document in a work, or an object in a document in a work. <
Changes:

274a275,283

> <related-object xmlns:xlink="http://wms.u3.0rg/1999/x1ink"

> ext-Link-type="url"

> xLink:href="https://sciences.org/articles/al23v1">

> <date date-type="v1" iso-8601-date="2017-10-18">

> <day>18</day>

> <month>16</month>

> <year>2017</year>

> </date>

> </related-object>

content/images/Latterner01-004.png
Percentage of NLM/JATS submissions to PMC

B EREERRER

content/images/Latterner01-001.png

content/images/Latterner01-002.png
docbook2jats.xsl B

docbook

