[image: Balisage logo]Balisage: The Markup Conference

Topic-based SGML? Really?
Ari Nordström

Balisage: The Markup Conference 2021
August 2 - 6, 2021

©2021 Ari Nordström

How to cite this paper
Nordström, Ari. "Topic-based SGML? Really?." Presented at: Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021.  In Proceedings of Balisage: The Markup Conference 2021. 
        Balisage Series on Markup Technologies vol. 26 (2021). https://doi.org/10.4242/BalisageVol26.Nordstrom01.

Abstract
Topic-based technical documentation is all the rage these days, made popular by
                DITA and others. Topics can be integrated with the engineering data for the products
                both describe using nifty Product Life Management (PLM) tools that make this easier
                than ever. But what if you're stuck with SGML, voluntarily or involuntarily? Can
                you, too, bring your content into the topic-based paradigm or should you rather
                not?
This paper explores your options and the state of SGML in the PLM world today. It
                nose-dives into the ATA iSpec 2200 SGML, discusses some of the pains to implement
                it, and finally converts the ATA to DITA.



Balisage: The Markup Conference


      Topic-based SGML? Really?

      
         Table of Contents

         
            	Title Page

            	Intro

            	Marrying Engineering Data and Techpub
                  	Authoring

                  	Content Management

               

            

            	The Power of a Good Sales Team

            	The Proof of Concept
                  	ATA SGML Engine Manuals

                  	PoC Implementation Notes
                        	DOCTYPE and SGML

                        	We Don't Do Entities

                        	We Don't Do Entities, Part Two

                        	Notable Differences Between SGML and XML

                        	SGML in the Editor

                     

                  

               

            

            	Publishing
                  	Conversion Outline

                  	Normalising the SGML

                  	SGML to XML

                  	Character Entities

                  	Graphic Entities

                  	ATA XML to Normalised DITA XML
                        	ATA Topics?

                     

                  

                  	Topic Breakdown

                  	DITA to HTML

               

            

            	Was It A Good Idea?
                  	Breaking Down, Decomposing, Splitting

                  	SGML in the 21st Century

               

            

            	End Notes
                  	Postscript

               

            

            	About the Author

         

      
   Topic-based SGML? Really?

Intro
Topic-based content has been a thing for a number of years by now, with standards such
            as DITA [DITA Version 1.3] making
            it increasingly popular in the techpub world I frequently inhabit. The idea is to split
            your technical documentation, for example, a User Guide or a Programmer's Manual, into
            smaller topics that by themselves only describe a single subject or task. This makes it
            easy to reuse and process them in a variety of contexts and output media, from multiple
            User Guide variants to describe a range of products to context-sensitive help texts
            online.
The topics are marked up with profiling information that identifies their valid
            contexts. For example, a topic may be applicable to products A and B, but only partially
            C and D, while another may apply to the entire product range. Different properties are
            made available, for example, to state that the content is applicable only to specific
            serial number ranges or when the product is equipped with a specific module.
The individual topics seldom have a section hierarchy, instead leaving that job to
            map-like constructs that link to the topics and define whatever chapter, section, etc
            structures that particular topic assembly requires.
Figure 1: Topic Structure Defined in Map
[image: ]


DITA in particular has been pushing the idea for the last decade or two, and DITA
            implementations are now available out of the box for many editors and other tools.
            There's now a host of DITA solutions out there for your content, regardless of your
            business area, including software that help you integrate your topics with your
            engineering data, and more. Topic-based authoring is entering mainstream in
            techpub.
There are plenty of non-DITA topic-based solutions, too. Among them is S1000D [S1000D], a standard
            originally intended to cater for the maintenance documentation needs of military
            aircraft but now greatly expanded to describe the operation and maintenance of any land,
            sea, and air vehicle[1]. S1000D topics are known as data modules, but the idea is the same: one
            module describes one aspect of the product, be it a description. parts list or
            maintenance task, to enable reuse in multiple contexts. S1000D has also spawned a
            variant specifically for seagoing vessels, known as Shipdex.
Note
S1000D is very much meant for information exchange, and so businesses agreeing on
                exchanging information using the standard will often define business rules to detail
                which parts of the standard are used, and how.

The aerospace industry has produced other standards to help maintain their products.
                Airlines for America (A4A), formerly known as Air
                Transport Association of America (ATA) [ATA], started publishing
            aviation technical documentation guidelines in the 1950s and has updated them ever
            since, eventually including SGML tag sets (DTDs) alongside the spec itself. The ATA
            iSpec 2200 standard [ATA iSpec 2200], a 3,000+-page book describing all aspects aircraft
            maintenance documentation, and with accompanying SGML DTDs, is still in active development[2]. ATA is an industry standard; their systems-oriented maintenance numbering
            system [ATA iSpec 100] is
            used by the majority of aviation industry manufacturers, regardless of what
            documentation format they use.
The ATA iSpec 2200 SGML DTDs are typical SGML-age creations, with typically
            monolithic, book-like approaches to the information. For example, documents using their
            Aircraft Maintenance or Engine Manual DTDs tend to be huge, with thousands of
            illustrations, 50+ chapters, and text content weighing in at dozens of megabytes. You'd
            be hard-pressed to label them as topic-based.
Or can you?

Marrying Engineering Data and Techpub
I currently work in the aerospace techpub industry, as my current client is a PLM
            (Product Life Management) service provider for many of the big aerospace manufacturers.
            I was brought in as the markup guy, the go-to guy for anything related to angled
            brackets but also older standards, including SGML. It's interesting work, but just
            between you and me, I'd sometimes kill for a modern XML standard.
My client has heavily invested into services around Siemens
                Teamcenter, a suite of product lifecycle management computer
                software applications. [Teamcenter on Wikipedia] [Siemens Teamcenter]
I would describe Teamcenter, or TC, as we tend to call it, like this
            (but I'm a layman and will probably get it wrong):
Imagine your product - be it an alarm clock, a coffee maker or a jet engine - as a 3D
            model. The model is complete; it contains every single part, pacer, and screw. You can
            view the model from any angle, disassemble and explode any portion of it, and assemble
            it again. And you can edit and change it, and base all of your product design and
            engineering on it. This is what TC manages. Some of it you'll need other software for,
            but you get the idea.
Mind, there are a number of these around; TC is by no means alone in this space. CAD
            has changed engineering far beyond recognition since I went to school[3].
From a documentation point of view, there are obvious advantages. A 3D model can
            provide parts lists, generate 2D illustrations of the parts, and express the disassembly
            and assembly procedures built in to it as maintenance tasks, but also update both as
            soon as the engineering data is updated.
Topic-based authoring is very much the standard to aim for in the PLM space.
            Topic-based profiling and reuse à la DITA is perfect if you need to add documentation to
            your 3D model.
Authoring
Enter Cortona3D RapidAuthor [RapidAuthor], a suite of
                products to manipulate the engineering data that can be integrated with Teamcenter.
                RapidAuthor can then be used to author techpub content, from multimedia 3D content
                to illustrated parts catalogues to assembly and disassembly tasks, all based on the
                engineering data.
Figure 2: Rapid Author and a DITA Task
[image: ]


Based on the engineering data and defining the procedure in Rapid Author, it can
                    generate a disassembly/assembly task in any format known to
                it, from DITA to S1000D. The generated markup is not perfect but can be edited
                manually, using an embedded instance of XMAX, the XMetaL Author ActiveX plug-in,
                including adding 2D images from the 3D model the procedure is based. It's a powerful
                way to create documentation, and it's inherently topic-oriented, as the focus is on
                assemblies and disassemblies of parts of the product[4]. Alternatively, you can configure an external editor to handle the
                markup instead.

Content Management
Teamcenter (TC) also offers topic-based documentation support with their Content
                Management module, be it DITA or some other markup vocabulary. There's support for
                gathering the topics into DITA-like relational maps to build up what is known as a
                    publication structure.
Figure 3: Publication Structure
[image: ]


A publication structure is a gathering of nested topics and multimedia that
                together comprise a manual. The approach is to express the individual topics as
                markup while leaving the rest to a relational hierarchy of headings. It's very much
                DITA-inspired, of course and can be exported as a DITA map. They claim to be
                vocabulary-agnostic, though, and provide support for S1000D and other DTDs and XML
                Schemas, allowing you to split the input document into topic-sized chunks when
                importing it to TC by defining XML Attribute Mapping[5] rules, essentially XPath/like expressions[6].
Figure 4: XML Attribute Mapping
[image: ]


For example, given an XML document containing chapters, sections, and subsections,
                you might define rules that break it down into topics on those levels, storing each
                topic separately and representing the hierarchy in the relational database,
                including using the titles of each topic as topic heading properties in the database
                (see Figure 3).
                Mapping rules can also represent other properties, from IDs to cross-references to
                content transclusions and image references.
If you're thinking just like DITA maps but in a relational
                database, you're not wrong.
But here's the thing: they also claim to support SGML.


The Power of a Good Sales Team
Enter the topic[7] at hand. The end customer is a large manufacturer in the aerospace industry.
            They've been using ATA iSpec 2200 for years, their partners and subcontractors have been
            using it, they all require it when exchanging components and documentation, and getting
            from SGML to the 21st century isn't easy. Not that they haven't tried; some time ago,
            when introducing S1000D XML for some deliveries, they made an attempt at moving
            everything to XML but failed. Now, though, the software and tools they have been using
            are being phased out, and they've had to start looking elsewhere.
Enter an enterprising Teamcenter sales team. TC has been part of the customer's
            engineering data setup for years, but recently, it was pointed out to them that
            Teamcenter Content Management can also handle SGML. They were shown flashy presentations
            of engineering data married to content, document breakdown into individual topics for
            storage and editing, export of composed documents, and flawless PDF and HTML output, all
            based on engineering data. Yes, they could have it all, too, and everything could be
            based on their ATA SGML.

The Proof of Concept
A Proof of Concept (PoC) was agreed on, comprising a single product and two document
            types, Engine Manuals and Service Bulletins. Both would be imported into Teamcenter and
            broken down into bite-sized chunks for editing, and then reassembled into suitable
            publications. And it would all be ATA SGML.
Service Bulletins are short documents, usually no more than a handful of published
            pages with few or no images, and no breakdown into smaller topics is actually required.
            The Engine Manuals, however, are a different story.
ATA SGML Engine Manuals
The Engine Manual ATA DTD is a child of its time, a rather typical SGML DTD
                representing a monolithic printed book. It has chapters and sections and subsections
                (known as subjects), it has markup for individual maintenance tasks and subtasks,
                and there are front matters inserted into all of its main parts.
Figure 5: Engine Manual DTD Main Structures
[image: ]


The content is authored from pgblk (pageblock) and
                down, and as the element name suggests, its origins really are the printed page.
                Binders of them, to be exact.. The chapter, section, and subject hierarchy is a
                systems-oriented breakdown of aircraft maintenance content, specified in ATA iSpec
                100 [ATA iSpec 100] and,
                to some extent, in ATA iSpec 2200 [ATA iSpec 2200]. The headings are mostly predetermined, and there is
                no content beyond revision markup and change descriptions.
For block-level purposes, there is the usual array of text paragraphs, lists,
                graphics, and tables (CALS). The lists in particular have multiple levels, and are
                sometimes used for content I'd today label as procedures. Inline elements include
                cross-references, subscript and superscript, and some domain-specific semantics for
                part numbers and such.
Being an SGML DTD, it uses inclusions and exclusions for some semantics — see the
                inclusions from the root element in Figure 5. Notably, it allows revision and effectivity[8] markup all over the place, both of which are modelled with
                    EMPTY elements. The revision markup in particular is implemented as
                standoff markup - a revst (revision start) element is
                inserted somewhere in the structure, followed by a revend
                    (revision end) element elsewhere. The two together mark a change:
                    from here to here, we've changed something. Since both are
                    EMPTY elements, they can be inserted anywhere without regard to
                well-formedness.
I should also mention that there is a certain degree of freedom for ATA adopters,
                as the DTDs can be adapted with custom markup, depending on the level of compliance
                aimed for as defined in the spec.

PoC Implementation Notes
I was first introduced to the proof of concept project right around the time I
                first started my new contract, a few days after I first encountered TC. Beyond some
                tests with ATA SGML, all of them unsuccessful but initially attributed to my
                inexperience, I spent the first several months of my contract on the DITA
                implementation. Among other things, I drafted an ATA iSpec 100 system and subsystem-based[9] DITA solution in TC for another aerospace customer, and while that
                experience was not without its horrors, it seemed to me that the topic-based
                approach was clearly what TC did best.
Cut back to the PoC, several months later. I created a few XML Attribute Mapping
                rules in TC[10] to import an SGML Engine Manual, and failed miserably. No matter what I
                tried, the SGML import would fail.
A tiny test SGML DTD and instance also failed.
Siemens suggested changes to my import rules, and I was able to import my test
                SGML, breaking down the contents into topics where I wanted them to. However, when
                checking out a topic to edit in XMetaL, the editor chosen for the PoC[11], the topics came out as XML, without any graphics and without a
                    DOCTYPE declaration to put the graphic entity declarations in.
                Oops.
Eventually Siemens acknowledged that their SGML implementation had a few bugs,
                assigned a developer to fix them, and thus began a cycle of frequent DLL deliveries
                and tests, alongside daily meetings.
DOCTYPE and SGML
Among the first issues fixed was the missing DOCTYPE declaration
                    and the little matter of TC outputting XML rather than SGML. It turned out,
                    unsurprisingly, that internally it handled everything in XML, using OpenSP
                        [OpenJade]
                    as a parser and as the main software for conversions between SGML to XML. They
                    had never broken down SGML into smaller topics and so had never realised that
                    this particular issue existed.
The fixes brought back SGML for the edited topics, and with the SGML the
                        DOCTYPE declaration. This is where I discovered the next set of
                    problems.

We Don't Do Entities
The graphics used in the Engine Manual were declared as graphic entities, like
                    so:
<!ENTITY name SYSTEM "filename.suffix" NDATA CGM>
In other word, the graphic file, filename.suffix, is given an
                    alias, name, that is then referenced in ENTITY-type
                    attributes in the content to insert the image. The NDATA bit is
                    there to explain to the SGML application how the entity should be processed. The
                    entire Engine Manual contained 6,000 of these, one for each image
                    inserted.
Teamcenter requires you to first import any images, using mapping rules to
                    name the images in the system so that name can then be used to associate the
                    graphics with the content. When I did this and then imported the document, I
                    realised that only some graphics were associated with the content as expected,
                    namely those where the graphic entity declarations followed this pattern:
<!ENTITY name SYSTEM "name.suffix" NDATA CGM>
That is, the entity name must be the same as the file name, minus the suffix.
                    Siemens confirmed, adding that we don't do entities. They had no
                    intention of changing this, either; SGML and entities were dead technologies and
                    would go away.
I added an Ant script to update graphic file names accordingly — I much wanted
                    a solution where I didn't have to change anything other than the
                        DOCTYPE in the SGML; writing a script that would rename a
                        SYSTEM identifier and the corresponding file was far easier
                    than changing entity references inside the SGML.
Here's where I discovered the next problem. The customer had obviously had
                    entity naming problems and their solutions had been to use the file name, with
                    the suffix, as both the entity name and the file name:
<!ENTITY name.suffix SYSTEM "name.suffix" NDATA CGM>
This was a no go with Teamcenter, but, as I discovered, so was my scripted fix
                    that added an extra suffix to appease Teamcenter:
<!ENTITY name.suffix SYSTEM "name.suffix.suffix" NDATA CGM>
For some reason, the software doesn't like multiple suffixes, and nothing I
                    did helped. For the PoC, I've simply updated the test documents semi-manually,
                    using regular expressions.

We Don't Do Entities, Part Two
Having finally imported the full Engine Manual and its 6,000 graphics, I
                    discovered that Siemens' new DLL added all 6,000 to each and every pageblock
                    being checked out and edited. A pageblock might only use four graphics, yet the
                        DOCTYPE would contain all 6,000.
Thankfully, all 6,000 graphics are not exported for every checkout.

Notable Differences Between SGML and XML
Remember the revision markup I mentioned earlier, with EMPTY
                    elements being used to mark the start and end of a revision? Something like
                    this:
<PARA>S/B<SBNBR>73-0177</SBNBR>,<REVST>Revision 1<REVEND></PARA>
The above is valid SGML, of course, since EMPTY elements in SGML
                    look like start tags. In the DTD, they use the OMITTAG feature
                        (- O) and, as they are declared as EMPTY, that's
                    all there can ever be.
XML did away with this when it introduced the concept of well-formedness, and
                    for a good reason; trying to figure out where an end tag should go was always a
                    problem for SGML tools, not to mention browsers. It did define shorthand for
                        EMPTY elements, though, so in XML,
                        <REVST></REVST> is equal to
                    <REVST/>.
Any translation between SGML and XML and back needs to address this problem.
                    This is what Teamcenter exported, however:
<PARA>S/B<SBNBR>73-0177</SBNBR>,<REVST>Revision 1</REVST></REVEND></PARA>
Note the REVEND end tag. The XML handled internally must be
                    converted to SGML on the fly when checking out or exporting. Clearly, the code
                    thinks the REVEND tag was meant to be the REVST end
                    tag. Why REVEND is still there is a mystery to me. Other
                        EMPTY elements, for example, COLSPEC in CALS
                    tables, are handled similarly and can produce similar weirdness on
                    export.
The SGML DTD includes the REVST and REVEND elements
                    from the root and down, the idea being to be able to use them anywhere, and I
                    very much doubt Teamcenter's SGML to XML and back conversions are schema aware.
                    Yet sometimes there is an end tag where it simply cannot be, such as the above,
                    which, to me, suggets a streaming parser artifact. 

SGML in the Editor
The SGML editor used in the PoC is JustSystems' XMetaL Author[12]. It's one of the very few editors to support SGML today, and it does
                    it well. ATA iSpec 2200 caused no issues in XMetaL, and implementing a working
                    authoring environment was a matter of tweaking some display CSS, adding SGML
                    templates to help authors create new tasks, and a couple of macros to support
                    viewing CGM images directly in the editor — XMetaL allows you to add in-place
                    controls to handle graphics, and I was able to add Cortona2D
                        Viewer with a few lines of JavaScript code[13], the most difficult part being to find the Cortona method giving me
                    access to the graphic URL.



Publishing
The PoC also requires us to show that the SGML managed by Teamcenter can be published.
            HTML output was deemed as enough.
I had no wish to implement DSSSL[14] in TC, so I decided that easiest would be to first convert the SGML to XML[15], convert that XML to some XML-based industry standard, and then use
            ready-made stylesheets to produce the HTML. And what could be better to represent
            topic-based SGML than topic-based XML? I decided go for DITA
Conversion Outline
The ATA iSpec 2200 SGML to DITA 1.3 XML conversion has a number of distinct
                parts:
	Normalise the SGML to include default attribute values, general entities,
                        etc.

	Convert the normalised SGML to XML syntax.

	Insert XML versions of the ISO character entity file declarations and
                        calls to the internal subset.

	Do away with the graphic entities and add @href attributes to
                        the graphic elements to point at the files directly.

	Convert the XML to a sort of normalised DITA.

	Break down the normalised DITA into maps and topics to produce valid
                        DITA.

	Publish the DITA in HTML format using default DITA HTML
                        stylesheets.


The first two steps above are doable with OpenSP, the first with
                    ospam and the second with osx. Steps three and four
                are easily doable with XSLT, as are five and six. And since TC likes to do its
                publishing with Ant scripts,orchestrating everything in Ant would do[16].

Normalising the SGML
Normalising the SGML with ospam was easy, even trivial. This does the
                trick:
<target name="spam" depends="prepare" description="Normalise file">
    <local name="local.sgm"/>
    <propertyregex
        property="local.sgm"
        input="${file}"
        regexp="${regex.filename}\.sgm"
        replace="\2.sgm"
        global="true"/>
    
    <exec executable="${sp-loc.path.spam}" output="${base.spam}/${local.sgm}" dir="." inputstring="&#10;">
        <arg value="-p"/>
        <arg value="-p"/>
        <arg value="-x"/>
        <arg value="-x"/>
        <arg value="-l"/>
        <arg value="-c"/>
        <arg value="${sgml-catalogs.input}"/>
        <arg value="${file}"/>
    </exec>
    
    <concat destfile="${base.reports}/spam-report.txt" append="true">
        <filelist dir="." files="errspam.txt"/>
    </concat>
    
    <echo>Normalised ${local.sgm}</echo>
</target>
Essentially this is just calling ospam (essentially James Clark's
                    spam [SP 1.3.4]) to bring everything into a single SGML file.

SGML to XML
Converting the SGML to XML with osx is just as trivial. This does
                it:
<target name="sx" depends="prepare" description="Convert file from SGML to XML">
    
    <!-- Output file is XML, not SGML, so change file suffix -->
    <local name="local.xml"/>
    <propertyregex
        property="local.xml"
        input="${file}"
        regexp="${regex.filename}\.sgm"
        replace="\2.xml"
        global="true"/>
    
    <exec executable="${sp-loc.path.sx}" output="${base.sx}/${local.xml}">
        <arg value="-c"/>
        <arg value="${sgml-catalogs.output}"/>
        <arg value="-xndata"/>
        <arg value="-xnotation"/>
        <arg value="-xlower"/>
        <arg value="-xempty"/>
        <arg value="${file}"/>
    </exec>
    
    <concat destfile="${base.reports}/sx-report.txt" append="true">
        <filelist dir="." files="errsx.txt"/>
    </concat>
    
    <echo message="Converted ${file} to XML"/>
</target>
This calls osx (essentially the same as James Clark's sx
                syntax [SP 1.3.4]) to
                convert the SGML to XML. This is little more than rewriting the SGML using XML
                syntax with the help of an SGML declaration for XML. I really like OpenSP (and James
                Clark's SP that it is based on), I have to say. The syntax is weird and the
                documentation not the clearest I have seen, but it's an incredibly reliable parser
                package.

Character Entities
Those of you who've done the move from SGML to XML will remember the many
                character entities used to add special characters. A character entity declaration
                looked like this:
<!ENTITY cularr SDATA "[cularr]"--/curvearrowleft A: left curved arrow -->
These were all found in files grouping related entities, with the file declared
                and invoked like so:
<!ENTITY % ISOamsa PUBLIC "ISO 8879-1986//ENTITIES Added Math Symbols Arrow Relations//EN">
%ISOamsa;
SDATA entities were done away with in XML, so the easy solution to
                map them to Unicode and UTF-8 was to replace the SDATA files with
                equivalent Unicode declarations:
<!ENTITY cularr "&#x21B6;"> <!-- ANTICLOCKWISE TOP SEMICIRCLE ARROW -->
DocBook used to include most ISO character entity files when they still used SGML
                DTDs, and so to handle the SGML to XML character entity conversion for the PoC, I
                added every single one in a text file like so:
<!-- This maps SGML character entities to their Unicode equivalents -->
<!-- Based on DocBook 4.1.2 XML entities --><!-- ISO 8879 official entity sets -->
<!ENTITY % iso-amsa PUBLIC "ISO 8879:1986//ENTITIES Added Math Symbols: Arrow Relations//EN" "xml-entities/iso-amsa.ent">
%iso-amsa;
<!ENTITY % iso-amsb PUBLIC "ISO 8879:1986//ENTITIES Added Math Symbols: Binary Operators//EN" "xml-entities/iso-amsb.ent">
%iso-amsb;
<!ENTITY % iso-amsc PUBLIC "ISO 8879:1986//ENTITIES Added Math Symbols: Delimiters//EN" "xml-entities/iso-amsc.ent">
%iso-amsc;
...
I then added a target to my Ant script that added the text file contents to the
                    DOCTYPE internal subset of the XML-syntax ATA.

Graphic Entities
Like Siemens, I didn't particularly want to deal with entities and decided to add
                    @href markup inline instead. This, again, was trivial. I used an
                XSLT stylesheet and unparsed-entity-uri() to resolve the graphic entity
                declarations to get the SYSTEM identifiers, added base URIs to them.
                The whole thing was an Ant target calling Saxon,.

ATA XML to Normalised DITA XML
I'll freely admit that the idea of converting everything to DITA originated from
                me being slightly contrarian. You want topics? I'll give you topics!
                Having said that, the DITA stylesheets we tend to use for other customers are quite
                pretty, and I wanted to take advantage of that.
The ATA to DITA conversion isn't trivial, but it also doesn't have to be perfect —
                this is for a proof of concept, not a production-setting conversion — so various ATA
                inline elements for things like part numbers and such I could simply convert to DITA
                    ph (phrase) elements. Similarly, simple
                    div wrappers were enough for block-level constructs with no obvious
                equivalent.
There were plenty of decisions to make and lots of places where things could go
                wrong, so in the interest of speedy development and easy refactoring, I decided to
                go with an XProc pipeline running XSLT stylesheets in sequence [Pipelined XSLT Transformations].
                I made sure to write XSpec [XSpec] tests for every single XSLT, again to speed up development,
                which saved me more than once[17].
My Engine Manual pipeline ended at 28 steps:
xslt/em/ATA2DITA_main-structure.xsl
xslt/em/ATA2DITA_tasks.xsl
xslt/em/ATA2DITA_front-matter.xsl
xslt/em/ATA2DITA_tfmatr.xsl
xslt/em/ATA2DITA_prclists.xsl
xslt/em/ATA2DITA_figtopic.xsl
xslt/common/ATA2DITA_effectivity.xsl
xslt/em/ATA2DITA_chgdesc.xsl
xslt/em/ATA2DITA_dates.xsl
xslt/common/ATA2DITA_lxlists.xsl
xslt/common/ATA2DITA_table.xsl
xslt/common/ATA2DITA_lists.xsl
xslt/common/ATA2DITA_block-level.xsl
xslt/common/ATA2DITA_graphics.xsl
xslt/em/ATA2DITA_delete-ind.xsl
xslt/common/ATA2DITA_inline.xsl
xslt/common/ATA2DITA_xref.xsl
xslt/common/ATA2DITA_ata-inline.xsl
xslt/em/ATA2DITA_topic-ids.xsl
xslt/common/ATA2DITA_mtoss.xsl
xslt/em/ATA2DITA_misc-amattrs.xsl
xslt/common/ATA2DITA_revmarkers.xsl
xslt/common/ATA2DITA_attrs.xsl
xslt/common/ATA2DITA_id-href-consistency.xsl
xslt/common/ATA2DITA_ref-target.xsl
xslt/common/ATA2DITA_base-attrs.xsl
xslt/common/ATA2DITA_move-data-about.xsl
xslt/common/ATA2DITA_cleanup.xsl
Note the common XSLTs listed; these were also used in converting the
                Service Bulletins in 24 steps:
xslt/sb/SB-ATA2DITA_main-structure.xsl
xslt/sb/SB-ATA2DITA_add-topics.xsl
xslt/sb/SB-ATA2DITA_add-sections.xsl
xslt/sb/SB-ATA2DITA_legal-ntc.xsl
xslt/common/ATA2DITA_effectivity.xsl
xslt/common/ATA2DITA_lxlists.xsl
xslt/common/ATA2DITA_table.xsl
xslt/common/ATA2DITA_lists.xsl
xslt/common/ATA2DITA_block-level.xsl
xslt/common/ATA2DITA_graphics.xsl
xslt/common/ATA2DITA_inline.xsl
xslt/common/ATA2DITA_xref.xsl
xslt/common/ATA2DITA_ata-inline.xsl
xslt/sb/SB-ATA2DITA_sb-inline.xsl
xslt/sb/SB-ATA2DITA_topic-ids.xsl
xslt/common/ATA2DITA_mtoss.xsl
xslt/sb/SB-ATA2DITA_misc-sbattrs.xsl
xslt/common/ATA2DITA_revmarkers.xsl
xslt/common/ATA2DITA_attrs.xsl
xslt/common/ATA2DITA_id-href-consistency.xsl
xslt/common/ATA2DITA_ref-target.xsl
xslt/common/ATA2DITA_base-attrs.xsl
xslt/common/ATA2DITA_move-data-about.xsl
xslt/common/ATA2DITA_cleanup.xsl
The EM pipeline took a few days to write; the SB pipeline was finished in one day.
                Pipelines pay off.
ATA Topics?
The ATA EM DTD is seemingly well equipped for a topic-based approach, with
                    pageblocks stating where topics should be. This, I guess, is what the Siemens
                    sales team recognised and successfully sold to the customer. The entire
                    structure above the pageblocks is a systems-oriented book skeleton as defined by
                    the ATA iSpec specs [ATA iSpec 100].
Figure 6: ATA Chapters
[image: ]


The pageblock isn't even defined in the ATA numbering system, however. Here's
                    an example of the Task Oriented Support System Numbering:
Figure 7: Task Oriented Support System Numbering
[image: ]


The pageblock wrappers in the DTD are a remnant of a page-oriented
                    documentation; they are inserted into binders on a level suitable for grouping
                    functional tasks. A complex product may have any number of tasks and subtasks
                    inside a subject, with each task being grouped inside pageblocks to fit
                    functional code (see above), but you can also use it to group any variant of the
                    tasks.
Figure 8: Task Structure
[image: ]


What a task actually looks like is very much up to the author and the context,
                    so the topic breakdown is not as clear-cut as the initial sales pitch would have
                    us believe. It would seem that a more suitable topic breakdown is just as
                    dynamic as in DITA.
Notice how the content model mixes subtasks and block-level elements, and how
                    it allows the latter to occur after a subtask — this is not
                    a section hierarchy per se. Thankfully, the only block-level elements to occur
                    between subtasks in the PoC SGML are graphic elements:
<subtask>...</subtask>
<subtask>...</subtask>
<graphic>...</graphic>
<subtask>...</subtask>
...
The graphic element is a wrapper for one or more links to the
                    actual images and again very much page-oriented; ATA EM graphics tend to
                    illustrate an entire task or subtask, the idea being to insert the graphics
                    separately in a binder, before or after the task or subtask. For this
                    conversion, I decided to label graphic elements as topics,
                    alongside tasks and subtasks.
My idea was to first convert to a kind of normalised DITA, a
                    format where everything is in a single file, like this:
<bookmap
    spl="07482"
    model="PRODUCT">

    <title>Engine Manual</title>
    
    <bookmeta role="generated">
        ...
    </bookmeta>
    
    <frontmatter role="mfmatr">
        <topicref
            href="#trlist">
            <topic>
                ...
            </topic>
        </topicref>
    </frontmatter>
    
    <chapter
        props="chapnbr(05)"
        navtitle="LIFE LIMITS">
        <topicmeta role="chapter">
            <navtitle role="title">LIFE LIMITS</navtitle>
        </topicmeta>
        
        <topicref 
            props="chapnbr(05) sectnbr(00)"
            navtitle="TIME LIMITS/MAINTENANCE CHECKS - GENERAL">
            <topicmeta role="section">
                ...
            </topicmeta>
            
            <topicref
                props="chapnbr(05) sectnbr(00) subjnbr(00)"
                navtitle="AIRWORTHINESS LIMITATIONS AND ENGINE SCHEDULING AND INSPECTION INFORMATION">
                <topicmeta role="subject">
                    ...
                </topicmeta>
                
                <topicref
                    props="chapnbr(05) sectnbr(00) subjnbr(00)"
                    navtitle="AIRWORTHINESS LIMITATIONS AND ENGINE SCHEDULING AND INSPECTION INFORMATION"
                    pgblknbr="00">
                    <topicmeta role="pgblk">
                        <navtitle role="title">AIRWORTHINESS LIMITATIONS AND ENGINE SCHEDULING AND INSPECTION INFORMATION</navtitle>
                        <critdates>
                            <revised date="20161031"/>
                        </critdates>
                        <metadata>
                            <data-about role="effect">
                                <data name="title">effect</data>
                                <data name="effrg">ALL</data>
                                <data name="efftext">ALL</data>
                            </data-about>
                        </metadata>
                    </topicmeta>
                    
                    
                    <topicref
                        props="chapnbr(05) sectnbr(00) subjnbr(00) func(870) seq(801) confltr(NA) varnbr(0)"
                        navtitle="Airworthiness Limitations General Description and Operation"
                        pgblknbr="00">
                        <topicmeta>
                            <navtitle role="title">Airworthiness Limitations General Description and Operation</navtitle>
                        </topicmeta>
                        
                        <topicref 
                            href="#tk05-00-00-870-801-001">
                            <topic>
                                <title>General.</title>
                                ...
                            </topic>
                        </topicref>
                        <topicref
                            role="generated"
                            href="#tk05-00-00-870-801-002">
                            <topic>
                                <title>Engine Parts Life Limits.</title>
                                ...
                            </topic>
                        </topicref>
                        
                        <topicref
                            href="#tk05-00-00-870-801-003">
                            <topic>
                                <title>Control System.</title>
                                ...
                            </topic>
                        </topicref>
                    </topicref>
                </topicref>
            </topicref>
        </topicref>
    </chapter>
</bookmap>
There are no DITA topics anywhere before the pageblock level[18], just nested topicref elements to define the chapter,
                    section, and subject ATA structure. The content in an ATA Engine Manual is
                    written from pageblock level and down.
ATA has a number of attributes to identify the system breakdown as specified
                    in both the iSpec 100 and the iSpec 2200. As seen above, I chose to convert
                    those to a DITA-style list of @props tokens:
props="chapnbr(05) sectnbr(00) subjnbr(00) func(870) seq(801) confltr(NA) varnbr(0)"
For those of you not into DITA, this is a DITA notation listing properties and
                    their values: chapnbr="05", sectnbr="00", etc. Here,
                    it is a useful mechanism to preserve the ATA attributes and their values[19].
Pageblocks were too big to be DITA topics, so my first few XSLT pipeline steps
                    examined the contents of tasks inside them. An ATA task without a subtask became
                    a topic, like so:
<topicref navtitle="pageblock">
    <topicref navtitle="task" href="task.dita">
        <topic id="task">...</topic>
    </topicref>
</topicref>
If the task was split into subtasks, I'd use the subtasks as topics instead,
                    wrapping ATA graphics on subtask level in topics, too:
<topicref navtitle="pageblock">
    <topicref navtitle="task">
        <topicref navtitle="subtask1" href="subtask1.dita">
            <topic id="subtask1">...</topic>
        </topicref>
        <topicref navtitle="graphic1" href="graphic1.dita">
            <topic id="graphic1">
                <title/>
                <body>
                    <fig>...</fig>
                </body>
            </topic>
        </topicref>
        <topicref navtitle="subtask2" href="subtask2.dita">
            <topic id="subtask2">...</topic>
        </topicref>
    </topicref>
</topicref>
Mostly, if the ATA SGML task had subtasks, there would be no content beyond
                    titles on task level. In the few cases there were, I'd simply add a topic on
                    task level:
<topicref navtitle="task" href="task-level.dita">
    <topic id="task-level">...</topic>
    <topicref navtitle="subtask1" href="subtask1.dita">
        <topic id="subtask1">...</topic>
    </topicref>
    ...
ATA front matters received a similar treatment. In addition to various
                    metadata, they tend to contain lists of applicable service bulletins and
                    temporary revisions, both of which are essentially lists well suited to be
                    topics.


Topic Breakdown
The final breakdown of the normalised DITA into maps and topics is done with a
                single XSLT 3.0 stylesheet, run after the pipeline has completed and its results
                have been written to disk. Basically, the XSLT iterates through the XML, acting on
                every topicref containing an @href (that is, a
                    topicref that actually references a topic rather than only being
                used for indicating the structure through nesting.
For the most part, this is a trivial exercise.
Note
You may ask why I didn't split the ATA XML into smaller parts first. The main
                    reason is how the XProc XSLT pipeline works and how the output of each XSLT is
                    serialised, which allows me to run the XSLTs in sequence, taking the output of
                    one XSLT as the input to the next. Essentially, every output in the pipeline is
                    on the step's secondary port, which is also what you'd use to grab
                        result-document output in the XSLT.


DITA to HTML
The DITA to HTML conversion is an Ant script that runs a series of XSLT 1.0[20]stylesheets using msxsl.exe[21], and is added to Teamcenter as a zip package. I run it as a
                    subant script, which essentially means that it inherits its input
                properties from my script and runs just like any other Ant target would, in the way
                and order I define. We changed very little in it, beyond tweaking the CSS to better
                match the customer's brand.
I have to say, once I had written the XSLT 3.0 and the pipeline, I was tempted to
                add an XSLT 2.0 stylesheet somewhere, just so I could claim to have used all three
                XSLT versions in a single project.


Was It A Good Idea?
What did I learn? Was it a good idea to push the ATA SGML into TC, break it down to
            DITA-sized topics, and then spit it out again for editing and publishing?
Honestly? No.
So please don't.
Breaking Down, Decomposing, Splitting
Teamcenter and many others like it can break down (split, decompose, pick your
                catchphrase) XML documents into smaller chunks and manage them in a database.
                They'll add code to handle those chunks, and they will either support a standard
                like DITA or S1000D rather than inventing something of their own, or they'll just
                market their product as do-all, end-all, and say they can do it with
                anything.
They can't.
Topic-based authoring, again, is all the rage in technical publishing, mostly
                because it's a good idea. It fits. But not every standard was developed with this in
                mind. ATA, mostly, wasn't. It lacks the standardisation of content into common
                denominators, similar to what DITA or S1000D both do, which is why many aerospace
                manufacturers are now using them instead of ATA (while still keeping ATA's
                brilliant, system-oriented breakdown of functions rather than
                    topics.
Let me offer you a simple example: The SGML Engine Manual document includes a
                number of ID/IDREF pairs. This, in a single SGML file, is
                fine. But as soon as you break down the Engine Manual document into topics, you risk
                invalidating every topic with an IDREF pointing at an ID
                that happens to be in a different topic. An Engine Manual is basically a book; it's
                designed to be a single, large unit. You may not have to read it from cover to
                cover, but its whole organisation is that of a book. And not every book-type
                    dependency is something that a parser can catch.
Unless you're prepared to move away from your book-based content paradigm in
                action as well as (sales pitch-induced) spirit, don't.

SGML in the 21st Century
Mind, that necessary moving away of the book-oriented paradigm I was discussing is
                just that, a paradigm shift; no SGML is involved, just XML. XML is mature because
                everything it's implemented in is. There is no need for an SGML declaration to save
                memory by limiting attribute content, and there is a wealth of related standards and
                tools to support whatever you need to do. We're only discussing how you're
                    authoring your content.
SGML predates all that. It came about when disk space was at a premium and a
                project to implement it would start with a six-month prestudy and another six months
                to start developing the necessary tool support. There was no SGML document model, no
                SGML transformation language, no wealth of ready-to-rock tools to choose from. There
                still isn't, because all that was developed later, for XML.
The tools today all focus on XML, not SGML. The very few that claim to support
                SGML (for example, I know of three production-quality SGML editors still around) no
                longer do any SGML-related development. If there's a bug not related to SGML, you're
                out of luck.
So if a product claims to support SGML, it's either a leftover or hybris, or both.
                In many cases, such as with Teamcenter, the SGML support now involves a conversion
                to XML and back, and any processing is done in XML. So it's what everyone should do.
                SGML, as much as it hurts to admit it, is dead. 
The aerospace industry may still be using ATA iSpec 2200, but it is my firm belief
                that the hidden costs of staying in SGML by far outweigh a proper XML migration
                project. Even moving to XML yourself and converting to SGML and back for those of
                your partners that insist on staying in SGML will be cheaper because it will be more
                controllable. See section “Postscript”.
My silly little SGML to DITA publishing pipeline added an extra XML conversion —
                TC handles everything in XML internally, remember, so when it export SGML to my
                pipeline, it's been to XML and back already — which is just bizarre because it
                exposed all kinds of errors and bugs and issues stemming from that internal XML
                conversion. 
So, SGML in the 21st century? Nah.


End Notes
Allow me to end with a few top tips and conclusions.
	Don't promise your product has SGML support unless you've tested and know it
                    to be true.

	Graphic entities are dead. Why anyone would use them is beyond me. However,
                    having said that, it's not hard to process them if you're leaving them
                    behind.

	While the ATA iSpec 2200 DTDs are very much page-oriented, redefining them in
                    topic-oriented fashion — not necessarily DITA, mind — makes sense because I
                    think it's a good idea for any technical documentation. The basic idea of TC's
                    structure view is sound, even though their approach can be a tad
                    simplistic.

	I love SGML for its many weird features[22] and because it was my introduction into markup, but the XML
                    infrastructure — the many sister standards beginning with X, the
                    tool support, the fact that people actually know about it — is awesome. You
                    don't know how much you miss them until you try to do without.

	Plus, I'd just like to say that I'd still like James Clark to sign the SP
                    package for me. It's a great package.


Postscript
After the first draft of this paper was submitted, I was finally able to convince
                the involved parties to move ahead with an ATA-like XML approach
                instead. I wrote XML versions of the ATA DTDs[23], tweaked the ATA SGML to DITA conversion pipeline to ignore the DITA
                bits and add a few steps to generate valid XML instances from the source SGML, and
                wrote a quick oXygen Author framework for the ATA-like XML.
I also wrote a pipeline that converted the XML back to ATA SGML for those cases
                when the end customer is required to deliver SGML to its partners and customers;
                this pipeline, just as the SGML to XML one, relies heavily on doing the prep work
                using a sequence of XSLT 3.0 stylesheets[24], and then runs the tweaked XML through SP to generate valid SGML.
As I write this, the PoC is finally scheduled to start within the next week or
                two.


Bibliography
[DITA Version 1.3] OASIS Darwin Information
                Typing Architecture (DITA) TC, Darwin Information Typing Architecture
                (DITA) Version 1.3 Part 3: All-Inclusive Edition, 
            http://docs.oasis-open.org/dita/dita/v1.3/os/part3-all-inclusive/dita-v1.3-os-part3-all-inclusive.html
[S1000D] S1000D, International
                specification for technical publications using a common source database,
                https://s1000d.org/
[ATA] Airlines for America (formerly
            ATA), https://www.airlines.org/#
[ATA iSpec 2200] ATA iSpec
                2200, https://publications.airlines.org/CommerceProductDetail.aspx?Product=274
[ATA iSpec 100] ATA iSpec 100,
                https://publications.airlines.org/CommerceProductDetail.aspx?Product=33
[Teamcenter on Wikipedia] Teamcenter,
                https://en.wikipedia.org/wiki/Teamcenter
[Siemens Teamcenter] Siemens
                Teamcenter, https://www.plm.automation.siemens.com/global/en/products/teamcenter/
[RapidAuthor] Cortona3D RapidAuthor,
                https://www.cortona3d.com/en/rapidauthor
[OpenJade] OpenJade Distribution
                Page, also maintains OpenSP, http://openjade.sourceforge.net/
[SP 1.3.4] James Clark, SP, An SGML System
                Conforming to International Standard ISO 8879 - Standard Generalized Markup
                Language, http://www.jclark.com/sp/
[Pipelined XSLT Transformations] Nordström, Ari. “Pipelined XSLT Transformations.” Presented at Balisage: The Markup
            Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The
            Markup Conference 2020. Balisage Series on Markup Technologies, vol. 25 (2020). doi:https://doi.org/10.4242/BalisageVol25.Nordstrom01
[XSpec] XSpec Home, https://github.com/expath/xspec/wiki
[Marking up and marking down] Walsh, Norman.
                “Marking up and marking down.” Presented at Balisage: The Markup
            Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The
            Markup Conference 2016. Balisage Series on Markup Technologies, vol. 17 (2016). doi:https://doi.org/10.4242/BalisageVol17.Walsh01
[SGML in the Age of XML] Harvey, Betty. “SGML in the Age of XML.” Presented at Balisage: The Markup Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The
            Markup Conference 2016. Balisage Series on Markup Technologies, vol. 17 (2016). doi:https://doi.org/10.4242/BalisageVol17.Harvey01



[1] The S1000D example documentation kit describes a bicycle.
[2] ATA is producing XML-based standards, too, these days. SGML has a way of
                    sticking around, though.
[3] I studied some basic engineering before venturing into physics.
[4] But in no way is it a guarantee for properly sized topics; the author can
                        always include too much.
[5] No, it's not about XML attributes at all, which is quite confusing for a
                        markup person to begin with. Think of the term attribute as
                        equivalent with a property. 
[6] Unfortunately mostly without the expressive power of XPath.
[7] Pun intended.
[8] Basically, applicability, what the content applies to.
[9] ATA iSpec 100 chapters and sections, that is.
[10] Nothing to do with attributes or XML, remember; these are topic breakdown
                        rules for Teamcenter.
[11] Essentially, there are only two or three production-quality editors
                        capable of editing SGML available today. The customer was moving away from
                        one, so our choices were limited. Not that XMetaL is a bad editor; it's
                        not.
[12] The full editor rather than RapidAuthor was necessary, because of the
                            limitations posed by SGML.
[13] No small feat since I don't do JavaScript. The time-honoured
                                Copying and Pasting from Stack Overflow
                            development method was my friend.
[14] One of the things you might use to publish your SGML with, back in the
                    day.
[15] While Teamcenter represents SGML as XML internally, they've not provided a way
                    to access that XML.
[16] I did consider XProc 3.0 for all of the above, but the only available
                        XProc 3.0 processor as I write this, Morgana XProc III, couldn't run OpenSP
                        in my tests.
[17] XSpec, in case you haven't looked into it, is a way to unit test your XSLT
                        (or XQuery or Schematron) by defining the source and the expected output of
                        a structure. It's brilliant.
[18] Apart from the front matters, of course.
[19] And if I had implemented DITA directly, I would have considered
                            specialising the DTDs to include these attributes.
[20] I told you; we already had this one, and you take what you get.
[21] Microsoft's XSLT processor; I thought I had seen the last of it 15 years
                        ago, but there you go.
[22] See, for example, Norm Walsh's wonderful Balisage paper from 2016
                                [Marking up and marking down].
[23] There are many papers out there about this sort of thing; I can highly
                        recommend Betty Harvey's 2016 Balisage paper [SGML in the Age of XML].
[24] Mostly to generate an SGML DOCTYPE declaration that contains
                            ENTITY and NOTATION declarations, but also to
                        convert processing instructions in the XML to SGML inclusion
                        elements.

Balisage: The Markup Conference

Topic-based SGML? Really?
Ari Nordström
Ari is an independent markup geek based in Göteborg, Sweden. He has provided
                    angled brackets to many organisations and companies across a number of borders
                    over the years, some of which deliver the rule of law, help dairy farmers make a
                    living, and assist in servicing commercial aircraft. And others are just for
                    fun.
Ari is the proud owner and head projectionist of Western Sweden's last
                    functioning 35/70mm cinema, situated in his garage, which should explain why he
                    once wrote a paper on automating commercial cinemas using XML.



Balisage: The Markup Conference

content/images/Nordstrom01-001.png
Topic






content/images/Nordstrom01-006.png
Chap.

Subject

Subject

00 | Air Vehicle General 51 Standard Practices — Structures

04 | Airworthiness Limitations 52 | Doors

05 Time Limits/Maintenance Checks 53 | Fuselage

06 Dimensions and Areas 54 | Nacelles and Pylons

07 Lifting, Shoring, Recovering and 55 Stabilizers

Transporting

08 |Levelling and Weighing 56 indows and Canopies

09  |Handling and Taxiing 57 ings

10 |Parking and Moorin; 60 Standard Practices — Propeller or Rotor

11 |Placards and Markings 61 Propellers and Propulsors

12 |Servicing 62 ain Rotors

14 | Air Vehicle Loading and Offloading 63 ain Rotor Drives

15 |Aircrew Information 64 [Tail Rotor

16 |Change of Role 65 _[Tail Rotor Drive

18 | Vibration and Noise Analysis and 66 [Folding Blades and Pylon

Attenuation

20 |Standard Practices — Airframe Systems 67 _Rotors Flight Control

21 __|Environmental Control 70 Standard Practices — Engine

22 |Auto Flight 71 Power Plant

23 |Communications 72 [Engine

24 |Electrical Power 72 [Engine turbine/turboprop — Ducted
fan/Unducted fan

25 |Equipment and Furnishings 72 Engine Reciprocatin,

26 |Fire Protection 73 _[Engine Fuel and Control

27 |Flight Controls 74 [Ignition

28  |Fuel 75 Air

29  |Hydraulic Power 76 _[Engine Controls

30 |Ice and Rain Protection 77 _Engine Indicating

31 |Indicating and Recording Systems 78 [Exhaust

32 |Landing Gear 79 Ol

33 |Lights 80 Starting

34 | Navigation 81 [Turbines

35 |Oxygen 82 ater Injection

36 | Pneumatic 83 |Accessory Gearboxes

37 | Vacuum 84 PPropulsion Augmentation

38 | Water and Waste 91 _Charts and Diagrams

41 | Water Ballast 93 Surveillance

43 | Tactical Communications 94 eapons Systems

45 Central Maintenance System (CMS) 95 [Crew Escape and Safety

46 | Systems Integration and Display 96 issiles, Drones and Telemetry

47 |Liquid Nitrogen 97 |Image Recording

48  |In-Flight Refuelling Tanker 98 eteorological and Atmospheric
Research

49 | Airborne Auxiliary Power






content/images/Nordstrom01-007.jpg
Funcions! Code gves the mainterance
tobe pertormed on th system

System/chapter
giventy a1a
configurtionl code
iference in methocs Rtechiaues
oftask accomplshment
Subsystemisection

st dig gven by ATA
and second i given by
Manufacturer

25-2T8-40-410-803-A01-CC1

suject co- assgned
given by Manufacurer by operator
1-To hghight
unique airne dataor

sk 801599 AND Subtask 001800

Task gives the TYP ofmaimtnance acton tobe performed
Subtask gives maintenance action required tosecomplsh. the ask





content/images/Nordstrom01-008.png
{2 tfmair]

* delete_ind ~






content/images/Nordstrom01-002.png
77 Pump Procedure - Ful

File

(=]

Edit View 3DView Selection Simulatior

<8 5 c. B

N Procedure

Document

Tools

2D Image.

Help

=

=B Pvoos0
B Pyoos30n

[@ Q@ BLT000350 (1)
@@ BLT000350 (2)
@@ BLT000350 (3)
[B @ BLT000350 (4)
@ Q@ BLT000350 (5)
[@ Q@ BLT000350 (6)
@ Q BLT000350 (7)
[B @ BLT000350 (8)
B @ PM005340 (1)
B @ PM005340 (2)
B Q@ PM005345 (1)
B Q@ PM005345 (2)
@B Q@ PPMO05350
B PMoose00

Faren..|Bien CEL D

B

RER A AR =Bt 4l

e vView.

andf

&

i

PROJECT Pump Procedure - Full - DITA
TASK Pump Disassembly Procedure
STEP 1
Point the camera to the PMDDS300
Substep 1.1
Substep 1.2
STEP 2
STEP 3
STEP 4
STEP 5
STEP 6
STEP 7
STEP 8
STEP 9
STEP 10
STEP 11
STEP 12
STEP 13

> 0[] M oM B R @,

‘Shows/hides the 2D illustration hotspots window

R s O - e e

v a BEd. =
B % B I UIS ks o - Eementisy
68 a0 Y Ll Moo
&> @@eyPump Disassembly Procedure (e
(Eliasibosy> Esteps>
1. Esp> Eend> <omd)

Esbsteps>

a. Csbste> (TEm>Remove the BLT000324 (10). Remove
the BLT000324 (9). Remove the BLT000324 (13).
Remove the BLT000324 (12). Remove the BLT000324
11). Remove the BLT000324 (14).
> subsiep)

b. (Csubstep> (CemdyRemove the PM005400.
Eiio> <ino) fsibstep) <Jsibsteps) <sten)

2. (588> EEmyRemove the DP00356 (3). Remove the
DP00356 (4).

)

Esbsteps>
3. (subsiep> move the DP00356 (3). Remove the
DP00356 (4).
8 substep) aubsteps) <tep)

3. (EsB> Eemd>Remove the PM005330 (2). <emd) {tep)
4. G

Esubsieps>
2. Clasbsien> TGS Remove the PMO0SS30 (1). Remove
the PM005510 (1).
b. Clsubslp> ClEg>Remove the SH40140 (1).
subsiep)

(Esubstep> € emd>Remove the SH40400.
aubsiep) (Jsubsieps) sizp)

5. EEkp> Eem> )

Esubsieps>
2. Clasbsien> TGS Remove the PMO0SS30 (3). Remove
the PM005510 (3).

. oo e )
ps/step / substeps / substep || <
0.0/81.7 sec

& &
)
a8
[EY

5%

substep

audience
base

dass
conaction
conkeyret
conref
conrefend
delvenyTarget
dir

ia
importance
otherprops
outputciass
platform
product
props
status
transiate
xmblang
strc

et

DITA Task v.1.9

~topic/itask.

AB3T0TIE-C2

N

cropeon @)

oo %0 @)






content/images/Nordstrom01-003.png
=8

oAy | T eemay |

[ Lotet Woring 1 Date-"Now" . NotSpefied | RootSructures |0227a4A1

Publication Line [temype] © |  vocumentie |  Topichpe |

) oezradract Topic 022744 My Test SGML Document _ SGMLDOC ROOT

T 022740/1 Topic 022740 Chapter 1 Tle SGMLDOC CHAPTER  DC_Topi

BT 022743/A1-Chapter 2 Title Topic 022743  Chapter2Title SGMLDOC CHAPTER  DC_Topi
) 022741/A;1-Subsection 1Title  Topic 022741  Subsection 1 Ttle SGMLDOC SECTION ~ DC_Topi
) 022742/ Subsection 2Title  Topic 022742 Subsection 2 Title SGMLDOCSECTION  DC_Topi






content/images/Nordstrom01-004.png
~ XML Attribute Map Table

“F Add... || % Delete
AttributeName  Function Path Field Separator Fixed Field Length  Constant Value XML Procedu
item_id Reference  /@id
DocumentTitle  Bidirectional /tile
graphicPath Processing Data /7graphic_part
graphicPathTarget Processing Data /7gpt
item_id Reference  /@href
item_id Bidirectional /Titem_id
< >






content/images/Nordstrom01-005.png
[+ subject ~






content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies





