[image: Balisage logo]Balisage: The Markup Conference

CSS Within: An application of the principle of locality of reference
 to CSS and XSLT
Liam Quin
Delightful Computing

Balisage: The Markup Conference 2021
August 2 - 6, 2021

Copyright © Liam Quin 2021

How to cite this paper
Quin, Liam. "CSS Within: An application of the principle of locality of reference
 to CSS and XSLT." Presented at: Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021. In Proceedings of Balisage: The Markup Conference 2021.
 Balisage Series on Markup Technologies vol. 26 (2021). https://doi.org/10.4242/BalisageVol26.Quin01.

Abstract
An important principle of writing, and of programming in
 particular, is that one should be able to understand any
 particular passage without having to look elsewhere. Of course,
 there may be concepts that one needs, but in literature having
 to consult a dictionary several times in every sentence is
 tedious; in software engineering, having to read function
 definitions before understanding the code that calls them can be
 dangerous.
This paper describes experiments with CSS Within (a method of
 embedding CSS style rules into XSLT transformations) and
 discusses how the proximity of the rules to the corresponding
 element generation affects maintenance.

Balisage: The Markup Conference

 CSS Within: An application of the principle of locality of reference
 to CSS and XSLT

 Table of Contents

 	Title Page

 	 Introduction

 	Locality of Reference in Software
 	Literate Programming

 	Embedded Documentation

 	Docstrings

 	Sad and Dismal Failures

 	CSS Within
 	CSS Four Ways

 	CSS Within in More Detail
 	Writing Out CSS Styles

 	Alternate Designs

 	Future Work

 	CSS Within In Practice; An Unwarranted Conclusion

 	Appendix A. Implementing “CSS Within” With XSLT

 	Appendix B. A Slightly Longer Example

 	About the Author

 CSS Within: An application of the principle of locality of reference
 to CSS and XSLT

 Introduction
In computer hardware architecture, the principle of Locality of
 Reference (attributed to Peter Denning) is that the processor tends
 to access the same memory locations, and others nearby, repeatedly
 over any given period of time. In an article revisiting the
 discovery of this principle, Peter Denning wrote [Denning
 2006],
The locality principle flows from human cognitive and
 coordinative behavior. The mind focuses on a small part of the
 sensory field and can work most quickly on the objects of its
 attention. People gather the most useful objects close around
 them to minimize the time and work of using them. These
 behaviors are transferred into the computational systems we
 design.
The locality principle will be useful wherever there is an
 advantage in reducing the apparent distance from a process to
 the objects it accesses

This paper explores an application of the principle of Locality of
 Reference to computer programs and scripts, and in particular to
 XSLT templates and functions. It discusses some ways this principle
 has been applied with various degrees of success in software
 engineering; the paper then describes one particular application,
 that of generating both HTML and corresponding CSS in parallel using
 XSLT. After describing experience with this parallel generation the
 author will be in a position to describe why they consider it to be
 a success.

Locality of Reference in Software
An early problem in software, and one that continues to be a
 problem today, is the task of ensuring that documentation for a
 library is up to date with respect to the code. If you are using a
 library of programming functions (for example, the EXPath File
 module in XPath and XSLT), you rely on the documentation to tell you
 what arguments you must supply to each function, to list the error
 conditions, and to explain what the function returns. If the
 documentation says, file:open takes a
 filename as its argument and returns a sequence of lines as
 individual strings but in fact it takes a URI
 Reference (informally, a URL) and returns a single, possibly empty,
 string, your program may seem to be working correctly until you have
 a Microsoft Windows filename with \ in it, or until you supply an
 input file containing more than one line of text. The problem, then,
 is this: How can such discrepancies between code and documentation
 arise? And how can they be avoided?
In the early days of computing, program libraries were documented
 in printed books; the first of these was produced in 1951 in
 Cambridge Wilkes, Wheeler, Gill, 1951. This first book,
 like many after it, was typewritten, not prepared by computer. Later
 on, the Unix programmer’s manual was, unusually for the time,
 prepared on the same system it described: a PDP-11 computer running
 Unix. By the time the Seventh Edition of the manual was produced, it
 was a mixture of technical reports andman
 pages, with each library function having its own manual
 page, produced from a separate file using the
 troff typesetting software.
Producing the documentation for a library separately from the code
 implementing the library meant there was a duplication of
 information: the function signatures, listing the function names,
 parameters, and return types, were kept both in the software itself
 and in the external documentation. This created the possibility that
 the documentation and code could differ.
Literate Programming
In the 1970s and early 1980s the mathematician and computer
 scientist Donald Knuth saw this problem and designed a system
 in which the program and its documentation, both internal and
 external, could be interwoven. In effect
 the programmer was expected to write a text-book or extended
 essay about a problem being addressed by software, and to
 incorporate the text of the program into that work.
It may be useful to bear in mind that a great many people
 (although not all) have gone into computer science having barely
 ever written an essay, and certainly not enjoying the process.
 The author of this paper had to write exactly one essay as a
 computer science undergraduate, and it was for an elective
 course outside the computer science department. Turning the
 problem of writing a code library and some documentation into
 the task of writing a book is not universally seen as a
 simplification, nor as an inviting change, by such programmers.
 Perhaps this is part of why Dr. Knuth’s literate programming has
 not caught on en masse.
In the case that the requirements for a program seem stable,
 however, and the program will change only slowly over a long
 time (decades, perhaps), Knuth’s literate programming is an
 unparalleled tour de
 force.
A more serious problem with literate programming is that the
 methodology assumes a software life-cycle in which programs are
 designed and then remain largely static: they do not undergo
 significant reorganization. After all, if writing an essay is
 unappealing, rewriting the essay must be
 even less appealing. Since the program is interleaved with the
 documentation, refactoring means reworking the documentation
 even before the software design has become stable again. But any
 barrier to refactoring, however small, may lead to programs
 being rewritten from scratch, with new sets of bugs, rather than
 being reorganized.

Embedded Documentation
While Knuth was building complex cathedrals, others were
 kneeling in animal-hides and worshipping at hedge-altars. The
 author of this paper devised a system in the 1980s for personal
 use in the C programming language in which each function was
 preceded by a fragment of SGML describing it, itself contained
 in a comment so that the library would compile:
Figure 1
/* <Function>
 * <Name>NXU_fReadLine
 * <Class>Utilities/Files
 * <Purpose>
 * <P>Reads the next input line from the given file into a static buffer.
 * The buffer is allocated with malloc and resized dynamically, but
 * is owned by NXU_fReadLine and should not be free'd or overwritten.</P>
 * <P>The NXU_StealReadLineBuffer function can be used to obtain the
 * buffer; NXU_fReadLine will allocate a new one the next time it
 * is called.</P>
 * <P>The given Flags are treated as for
 * NXU_fReadFile, which currently calls this routine directly.
 * Note that, as for NXU_fReadFile, blank lines are skipped if the
 * corresponding flag is given. In this case, NXU_fReadLine will never
 * return a pointer to a blank line, but will continue reading lines
 * from the file until a non-blank one is found.</P>
 * <Returns>
 * A pointer to the line, in Line, and also the number of bytes in
 * the line; -1 is returned on EOF, in which case the Line pointer should
 * not be used.
 * </Function>
 */
API int
LQU_fReadLine(f, Linep, Flags)
 FILE *f;
 char **Linep;
 int Flags;
{
. . .
}

The approach of embedding the documentation in the program
 seems a much better fit with the relationship between a
 programmer and extended written prose than the reverse,
 embedding the program in the documentation. More importantly,
 where literate programming seemingly throws up barriers to
 refactoring and reorganizing code, embedded documentation does
 not. It is no surprise that similar systems are now widespread,
 from systems like doxygen for C or C++ to
 javadoc for Java.
Note that the early documentation method shown here mentions
 other functions by name, but there was no automated check that
 they had not been renamed.
Consider a programmer who, at some late hour, discovers the
 source of a bug. They make a correction to the code; they
 recompile, they run tests; they smile; they go to sleep. But in
 examining the code they did not need to look outside the
 function body they were repairing. As a result, it’s easy for
 necessary changes to the documentation to be overlooked. This is
 sure to be a factor why in JavaDoc, doxygen and other
 documentation systems (as well as the SGML-based system shown
 above) the documentation does often stray from the code.
 However, this style of documentation considerably reduces the
 problems of entirely separate program documentation, such as
 Unix manual page, that might go for decades and many major
 software revisions of the program described, without being
 updated.

Docstrings
The maintainers of the Python language were able to build on
 the work of others; both on systems such as
 doxygen or javadoc
 and on a much simpler system in some versions of the
 emacs editor. In this latter system, if
 the first item in a function body was a literal string it was
 taken to be a short (one-line) description of the purpose of the
 function.
Python uses a similar method with its
 docstrings: a single string placed
 after the start of the function serves as minimal
 documentation:
def schema_validate(xml, xsd):
 """Perform W3C XML Schema validation"""
 print("Validation failed: duplicate element found.")
Notice how the documentation, although much less complete in
 this example, appears after the start of
 the function. Since anyone working on a function is very likely
 to need to look at the function signature and parameter names,
 they are going to be reminded to update the documentation. It is
 this reminder that gives a clear example of the principle of
 locality of reference: because the documentation is in view of
 the programmer changing the code, it is easy to keep up to date.
 Such a simple change turns out to make a large difference in
 practice Unsub, 2021.
It should be noted that Python docstrings can be many lines
 long and for a class are expected to document all public
 methods.

Sad and Dismal Failures
Project failures have been attributed to programmers assuming they
 understood what a function did when it had perhaps a misleading
 name. This should, perhaps, be no surprise, if people become
 programmers because they dislike menial repetitive tasks and want
 the computers to do them instead.
If the principle of locality of reference says that we tend to
 look nearby for things we need, it follows that we should write code
 that can be understood as much as possible without having to look
 elsewhere. A well-known source of software defect comes from calling
 a function incorrectly, for example with an argument expressed in
 feet instead of metres. Another example includes languages such as
 Pascal and C++ in which function parameters can be passed implicitly
 by reference, so that f(x) can result in a change to
 the value of a local variable x even where
 x is not a pointer or reference.
Early programs had to use short identifiers because of memory
 limitations. C programs, for example, could use variables of any
 reasonable length but only the first six characters were significant
 for global symbols shared between files. This is why Unix used
 creat() and mknod() (the loader
 prepends an underscore to globals, using all six characters). This
 gave rise to a culture of using short variable names and function
 names. The author of this paper was astonished to encounter, in the
 1980s, a program with function names such as
 addToTableOfContents(item, pageNumber) but then saw
 the advantage: you could read code that called
 addToTableOfContents without having to look at its
 definition to guess what it did. The mixed case function name would
 be treated as AddToT on systems that still had the
 six-character limit, a prefix slightly more likely to be unique than
 add_to.
This property of being able to read a fragment of a program and
 understand it without needing to read the definitions of all the
 functions that it calls is another example of the principle of
 locality of reference. That is, where the previous examples have
 featured parallel information such as documentation that must be
 updated at the same time as code, this example features names that
 we must understand, ideally without having to leave the
 neighbourhood.

CSS Within
This section introduces a method of using CSS that is informed by
 the principle of locality. One use of XSLT is to transform a
 document represented in XML into two groups of files: one group, in
 HTML, intended as inputs to a Web browser or to a formatter to make
 PDF; the other group, consisting of images, CSS and JavaScript, to
 be referenced by the HTML files in the first group.
A problem arises that is analogous to that of software
 documentation: the CSS and JavaScript must be kept up to date with
 any changes in the HTML structure, and changes to the HTML structure
 may necessitate in turn changes to the CSS.
It might seem that this should be trivial to manage, but a CSS
 file as short as only six or seven thousand lines is already larger
 than the Version Six Unix kernel source. Worse, the cascading
 nature of CSS means that multiple CSS rules might apply to any given
 element, and might appear anywhere in the CSS stylesheet.
CSS Within is an attempt to apply the principle of locality of
 reference to the problem of keeping CSS and HTML and XST all
 synchronized.
CSS Four Ways
When the author of this paper was first faced with the problem
 of generating a static HTML Web site with CSS styling, they
 simply made an external CSS file. Unfortunately as the XSLT was
 modified independently of the CSS, the CSS gradually grew longer
 and is no longer feasible to maintain at all.
The next approach was to generate a CSS file from within a
 single XSLT make-css template. This at least meant
 that when editing a template, the corresponding CSS selector
 could often be found quickly. It was an improvement but not a
 solution, though ,as it was easy to forget to update one or
 another. Removing an element constructor in CSS might or might
 not remove the need for a particular group of CSS style rules –
 and those rules might or might not be near one another in the
 CSS, again violating our locality of reference principle.
The second approach was to use non-XSLT elements. It turns
 out, as many readers will already know, that you can include
 elements from non-XSL namespaces at the top level in XSLT
 stylesheets. So it was possible to have, for example, a
 css:styles element just before each template.
 In practice there were some difficulties with doing this. The
 first was remembering to look before the start of the template.
 Another difficulty (shared with other approaches already
 mentioned) was that curly braces in text nodes have become
 special in XSLT 3: if the expand-text attribute is set to
 yes on the stylesheet element, then you
 need to turn it off again for each such CSS element so the curly
 braces do not introduce embedded XPath expressions. A third
 difficulty was that tie granularity did not
 match the problem: CSS styles are applied to individual elements
 in their context, but an XSLT template might generate many
 different elements.
Applying the principle that we need to have everything
 relevant to hand, then, CSS Within was born. Consider the
 following fragment taken from inside a template in a production
 XSLT stylesheet:
<xsl:template name="make-breadcrumb-links">
 <div class="index" role="navigation">
 <css:rule match="div.index">
 padding: 1rem;
 margin: 0;
 max-width: 20rem;
 </css:rule>
 <ul class="breadcrumb">
 <css:rule match="ul.breadcrumb">
 list-style: none; /* turn off the bullets */
 </css:rule>
 . . .

</xsl:template>
In the listing, the direct element constructor creating the
 HTML div element is immediately followed by
 a CSS fragment to match it. There could be multiple CSS rule
 elements as needed. The generated CSS would look like
 this:
div.index {
 padding: 1rem;
 margin: 0;
 max-width: 20rem;
}
ul.breadcrumb {
 list-style: none; /* turn off the bullets */
}
In the example, the HTML div element and the HTML
 ul element each have their own separate styles,
 directly associated with them. This has resolved or at least
 greatly reduced the problem of granularity. Since the CSS is now
 embedded within the direct element constructor, rather than
 separated from it and outside the template, this has also
 resolved the difficulty of the person maintaining the XSLT
 having two places to update in parallel. Finally, moving the
 selector into an attribute means that curly braces are not
 needed, and now the CSS syntax can happily co-exist with XSLT
 3.
This approach needs more support than simply putting the CSS
 before the template. The css:rule elements
 are considered by an XSLT processor to be “direct element
 constructors”, so they and their contents appear in the output.
 To deal with this, the author has used two different approaches.
 The first, shown in the appendix to this paper, is to use the
 XPath fn:transform() function to apply a
 stylesheet and then remove extraneous CSS elements before
 creating the final output.
It may seem that the CSS could be bundled up and written to
 the CSS file, perhaps with an XSLT 3 accumulator, as the input
 is processed, but in fact what is needed is
 all of the CSS elements, including ones
 not triggered by templates, for example for server-generated
 dynamic content or for static HTML pages sharing the same CSS
 stylesheet. Therefore, the XSLT separately processes the XSLT
 stylesheet as XML, gathers the css:rule elements,
 and writes the stylesheet.
The author has also written very simple a Java extension class
 for Saxon so that the CSS elements do not generate any content;
 this is available (both source and compiled) on the gitlab page
 for CSS Within.
Putting the CSS inside XSLT element constructors in templates
 has the effect of interleaving the XSLT
 source and the CSS source. Evaluating the XSLT entails
 separating out the two streams. The CSS is removed when the XSLT
 stylesheet is compiled (either by XSLT pre-processing of the
 stylesheet itself, or using a Java implementation to do this).
 Since the CSS is no longer present when the XSLT is evaluated,
 property values cannot refer directly to XSLT variables; a
 mechanism to include dynamically-generated content in the CSS
 sylesheet is described in the next section.

CSS Within in More Detail
This paper does not attempt a complete definition of CSS
 Within, but illustrates enough of it for the purpose of
 discussing the application of the principle of locality of
 reference to software maintenance. The full documentation is
 available on the gitlab page for CSS Within.
	css:rule
	This element has a match
 attribute, and generates a single CSS rule. The
 content should be CSS properties.
It’s also possible to reuse fragments of CSS with
 a ref attribute to point to a
 css:rule element with a
 corresponding name attribute.
 This helps to address the problem of not knowing
 whether it is safe to remove a definition: if the
 same CSS rule is used in multiple places, this can
 be indicated with a css:rule element
 pointing back to (for example) the first
 instance.
A stream attribute allows for
 generation of multiple CSS outputs; one might have
 values of print, screen, and #all.
<!ELEMENT css:rule (#PCDATA)*>
<!ATTLIST css:rule
 match CDATA #IMPLIED
 stream CDATA #IMPLIED
 name ID #IMPLIED
 ref ID #IMPLIED
>

	css:media
	This element models CSS media queries (specific in
 the W3C CSS Conditional Text module). It contains
 any mix of css:rule and
 css:media elements.
<!ELEMENT css:media (css:rule|css:media)*>
<!ATTLIST media-query
 when#CDATA #IMPLIED
 stream CDATA #IMPLIED
>
For example, the following input:
<div class="navbar">
 <css:rule match="div.navbar">
 font-size: 80%;
 </css:rule>
 <css:media when="max-width: 600px">
 <css:rule match="div.navbar a">
 display: inline-block;
 min-height: 48px;
 min-width: 48px;
 </css:rule>
 </css:media>
 <xsl:apply-templates />
</div>
produces the following CSS result:
div.navbar {
 font-size: 80%;
}
@media (max-width: 600px) {
 div.navbar a {
 display: inline-block;
 min-height: 48px;
 min-width: 48px;
 }
}
The effect of the media query is that if the
 viewport (the screen or page) is less than six
 hundred pixels wide, a elements inside
 the navigation bar are rendered with minimum height
 and width of 48 pixels; since a CSS pixel is defined
 to be one ninety-sixth of an inch, 48 pixels is half
 an inch, plenty large enough for a mobile phone or
 tablet user to hit with a thumb.

There are also constructs for at-rules, a CSS header and
 footer, and ways to get at the generated stylesheet.
In all cases the curly braces are generated automatically, and
 the CSS rules can be placed near the code generating the
 elements to which they will apply, or, as in the media query
 example, in the parent element's XSLT template.
Writing Out CSS Styles
Regardless of how many times any particular XSLT
 template was used in a transformation, the CSS stylesheet
 contains each css:rule element exactly once.
 The rules appear in the order in which they occur in the
 stylesheet.
If you need to put rules in a different order, you can put
 them between templates or in a template not otherwise used,
 and give them names; then refer to them with name/ref pairs
 from empty css:rule elements where they are
 needed, to remind your later self, and others, where they
 apply.
The stylesheet is constructed as a string; it is possible
 to call fn:replace() on it from within XSLT
 before writing it out. In addition, you can make a header
 that defines CSS custom properties (CSS variables) and refer
 to them in the stylesheet.
The implementation of CSS Within currently on gitlab uses
 fn:transform() to run a modified version of
 the stylesheet with the CSS rules removed, or removes any
 errant CSS instructions from the output; it then uses a
 namespaced XSLT mode to gather up the CSS rules and write
 them out. Some cleverness, described in an appendix to this
 paper, would be needed to do this in the case that there are
 multiple stylesheet compilation units (possibly including
 external precompiled packages) that might be selected at
 runtime.

Alternate Designs
It's very tempting to want to make the CSS properties be
 XML attributes instead of text content. There are some
 problems with this, however.
	The attributes must be processed without
 evaluating the stylesheet. XSLT developers are
 accustomed to thinking of attributes as first-class
 objects, passing them around, generating them in
 functions, using dynamic attribute sets, using
 attribute value templates to interpolate runtime
 values, and more. None of these techniques work when
 the XSLT stylesheet is treated as a passive XML
 document containing CSS fragments.

	It often happens that a CSS property must be
 repeated in the same rule with different values:
 different user agents (browsers) will use whichever
 value they consider valid and reject the others. You
 cannot have two XML attributes with the same name,
 so this rules out using the obvious
 attribute-name/value approach.

	Some CSS property values do contain curly braces,
 but there's no equivalent to expand-text =
 "no" for attribute values, so you are
 back to difficulties with curly braces, compounded
 by the fact that you can't use a runtime
 variable.

	Although the forgoing reasons are surmountable
 with varying degrees of inconvenience, a far greater
 problem is the distance between XSLT and CSS
 cognitive modes for the human reader. It's much
 easier to read a CSS example in CSS syntax and
 compare it to online examples, or to copy and paste
 to and from a Web browser element inspector. The way
 CSS is written is part of the way people think about
 CSS, so it's important to support keeping it that
 way.
In particular, the CSS cascade works very
 differently from XSLT template priorities. In XSLT,
 an entire template is selected by the processor
 based on priorities. In CSS individual rule/value
 pairs are selected, and in some cases merged, based
 on a mixture of ordering in the input file and how
 specific the selectors on the CSS rule surrounding
 them are. It’s easy to forget this and to imagine
 that an entire rule (between open and close curly
 braces) is to be selected; getting this wrong can
 lead to white text on a white background, or other
 styling errors.

None the less, the author is considering using an
 attribute-based approach to font references, so some
 experimentation is happening and CSS Within may evolve
 towards supporting a richer markup for individual CSS
 property-value pairs in the future, as well as for at-rules
 such as @font-face or @page which
 at the moment must be supplied separately, for example in a
 header included when the CSS is written.

Future Work
CSS Within continues to evolve through experience and
 contemplation. A current experiment makes the match
 attribute optional on css:rule elements,:
 instead, the immediately enclosing direct element
 constructor is examined. This makes it easier to rename
 elements or classes, and easier to copy style blocks. The
 example from earlier in this paper, showing the use of a
 media query, might become:
<div class="navbar">
 <css:rule >
 font-size: 80%;
 </css:rule>
 <css:media when="max-width: 600px">
 <css:rule match="div.navbar a">
 display: inline-block;
 min-height: 48px;
 mon-width: 48px;
 </css:rule>
 </css:media>
 <xsl:apply-templates />
</div>
Only the second line of the example is changed; in
 practice, however, this change would likely simplify almost
 all css:rule elements. The question to be
 determined is whether the change increases or reduces
 maintainability.
More support for CSS at-rules is planned, for example for
 fonts or keyframes; experiments using an attribute on a
 css:rule element to point to an at-rule for
 a @font-face have not been promising so far, as
 the added complexity gave minimal benefit. However, hooking
 into infrastructure to test that font files are in place may
 give added motivation. In addition, automatically generating
 the latest version of the “bullet-proof Web font” syntax
 from something simpler would be a benefit. The following
 listing gives an example of a CSS font
 definition:
@font-face {
 font-family: "IM Fell English PRO";
 font-slant: normal;
 font-weight: regular;
 src: url('fonts/imfellenglishpro.eot');
 src: url('fonts/imfellenglishpro.eot?#iefix') format('embedded-opentype'),
 url('fonts/imfellenglishpro.woff2') format('woff2'),
 url('fonts/imfellenglishpro.woff') format('woff'),
 url('fonts/imfellenglishpro.ttf') format('truetype');
 /* SCG fonts via CSS are deprecated now, see
 * https://www.zachleat.com/web/retire-bulletproof-syntax/
 * url('fonts/imfellenglishpro.svg#imfellenglishpro') format('svg');
 */
}

Notice especially the tricks such as
 ?#iefix used if Internet Explorer support
 is desired, along with the need to repeat the first
 src property-value pair. Complexities such
 as this, along with the occasional need for actual syntax
 errors to support incorrect implementations, makes a
 markup-based representation especially complex. Simple
 attribute-value pairs do not work because of the repetition.
 However, simply surrounding the rule with element and using
 name/ref for validation may be useful in
 itself:
<cs:font-face name="imfelleiglishpro">
 font-family: "IM Fell English PRO";
 font-slant: normal;
 font-weight: regular;
 src: url('fonts/imfellenglishpro.eot');
 src: url('fonts/imfellenglishpro.eot?#iefix') format('embedded-opentype'),
 url('fonts/imfellenglishpro.woff2') format('woff2'),
 url('fonts/imfellenglishpro.woff') format('woff'),
 url('fonts/imfellenglishpro.ttf') format('truetype');
 /* SCG fonts via CSS are deprecated now, see
 * https://www.zachleat.com/web/retire-bulletproof-syntax/
 * url('fonts/imfellenglishpro.svg#imfellenglishpro') format('svg');
 */
</css:font-face>

With this simple change,
 the font-face CSS rule could be included only if needed,
 and a warning generated on an attempt to use a font-face by
 reference that was not defined.
For Web use it’s important to include font definitions as
 early in a stylesheet as possible, so that the browser can
 start the process of loading the font. CSS is generated by
 the CSS Within XSLT stylesheet in the order it occurs in
 the input XSLT you are using, so you can have an
 otherwise-unmatched template at the start of your
 stylesheet, or an xsl:variable definition,
 containing rules to go at the start.
There is also ongoing work with extension elements. The
 Java class for Saxon that makes css:rule and
 css:media return an empty sequence at
 runtime could also help to write out stylesheets, but the
 author ran into a combination of time constraints and
 unclear documentation, so this is not yet an active part of
 the CSS Within distribution.
CSS Within can also be used with systems such as the SASS
 preprocessor, although some of the SASS benefits, such as
 nesting, are irrelevant since CSS Within uses the natural
 nesting of direct element constructors.

CSS Within In Practice; An Unwarranted Conclusion
It took the author an hour or two to convert one standalone CSS
 file of some 6,500 lines to CSS fragments within an XSLT stylesheet.
 However, the time has paid for itself in unexpected ways. Not only
 are the styles now always up to date, but the act of
 finding the particular style rule has
 become trivial, which has saved far more time than
 anticipated.
It is difficult to contemplate going back to keeping CSS in a
 separate file. The necessity of handling extension elements, or of
 post-processing the XSLT result, is unfortunate. Preprocessing the
 XSLT to remove CSS elements before evaluation sounds tempting, but
 in XSLT 3 stylesheet filenames for inclusion could be supplied as
 parameters and package selection can depend on system properties or
 even environment variables, so this is not in general
 possible.
Some months after implementing CSS Within, the author had occasion
 to return to the original project. They found that they were easily
 able to modify and refactor the stylesheet as needed, updating the
 styles. Previously, returning to the project after some time has
 always proved difficult.
Moving a dependent resource into the centre of the code, instead
 of cluttering the code, provides an overall clarity and increase in
 efficiency. Furthermore, there is a reduced
 impediment to refactoring compared to an external stylesheet,
 because the effects of making changes are more readily
 apparent.
In fairness, one should contrast the possibility,
 literate-programming style, of embedding XSLT inside CSS
 stylesheets. However, not only would this discourage refactoring, as
 already suggested, but it would bring back the difficulties of curly
 braces, and would add the same impediment to updating: that it would
 be easiest to modify a template without looking at the corresponding
 CSS. With CSS Within it is easier to look at both CSS and XSLT than
 to look at only one, because the CSS is within the XSLT at the point
 where it is needed, and yet kept subsidiary. Making it easier to do
 the right thing than the wrong thing leads to an overall improvement
 in code as well as in quality of life.
The Principle of Locality of Reference is useful in leading us to
 ways of writing code that is more readable, more reliable, and much
 easier to maintain.

Appendix A. Implementing “CSS Within” With XSLT
There are three parts to the implementation:
	Checking the CSS elements are used correctly, with for
 example no css:media elements inside
 css:rule elements;

	Handling the unwanted constructed CSS nodes when the
 stylesheet is executed;

	Generating the CSS stylesheet.

In the current implementations, the first item, that of
 validation, is handled by XSLT that also removes unwanted nodes.
The second item, that of removing the unwanted nodes, as achieved
 as follows: either with a Java extension element that returns the
 empty sequence on compilation, so that the nodes are not generated,
 or using fn:transform()to call XSLT and then
 post-processing the result with an identity transform that removes
 all elements in the CSS Within namespace. It is also possible to
 pre-process the stylesheet to remove the CSS direct element
 constructors (and their contents) and then use fn:transform() on the
 result. However, this does not take external packages into
 account.
Generating the stylesheet is done currently by processing the
 stylesheet with XSLT; the author also had extensions written in Java
 to provide a css:get-stream() function so that
 the stylesheets could be written from the XSLT stylesheet but this
 did not work with separate compilation of packages, nor with
 multiple stylesheet files. A newer approach was started: this would
 augment a css:gather element in each file or
 compilation unit with the generated text of the style sheet, so that
 it can be placed in a template that uses xsl:next-match
 to process all of the stylesheet files at runtime.
An XSLT variable can be define to hold a CSS header containing an
 encoding declaration, initial comments, @font-face,
 @page and other at-rules, and this can easily be
 prepended to the CSS file when it is created from XSLT. Such a
 header can also define custom properties (CSS variables) which can
 then be referenced from property values in css:rule
 elements. This considerably reduces any need to construct XSS
 property values at runtime inside actual templates, which is just as
 well since the CSS is gathered before the stylesheets are even
 execute!.

Appendix B. A Slightly Longer Example
The following is a complete template from a production
 stylesheet.
<xsl:template name="make-navbar">
 <xsl:param name="relative-path-to-letters" select="string('../')" />
 <xsl:param name="node" select="$doc" as="document-node()" />
 <p class="navbar">
 <css:rule match="p.navbar">
 font-size: 80%;
 text-align: center;
 margin-top: 0.5em;
 margin-bottom: 0.5em;
 border-top: 1px dotted;
 border-bottom: 1px dotted;
 </css:rule>
 <xsl:for-each select="distinct-values($node/dictionary/letter/@lc)">
 <xsl:text> </xsl:text>

 <css:rule match="p.navbar a">
 text-decoration: none;
 </css:rule>
 <!--* for touch devices: *-->
 <css:media when="max-width: 600px">
 <css:rule match="p.navbar a">
 display: inline-block;
 min-height: 48px;
 min-width: 48px;
 </css:rule>
 </css:media>
 <xsl:value-of select="upper-case(.)"/>

 <xsl:text> </xsl:text>
 </xsl:for-each>
 </p>
</xsl:template>

Bibliography
[Denning, 2005] Denning,
 Peter J., The Locality Principle, in
 Communications of the ACM, Vol 48, No. 7, July 2005. doi:https://doi.org/10.1145/1070838.1070856.
[Unsub, 2021] Unsubstantiated assertion provided without evidence.
[Wilkes, Wheeler, Gill, 1951] Wilkes, N., Wheeler, D., Gill, S.,
 Report on the Preparation of Programmes
 for the EDSAC and the Use of the Library of
 Subroutines, University Mathematical Laboratory,
 Cambridge, 1951.

Balisage: The Markup Conference

CSS Within: An application of the principle of locality of reference
 to CSS and XSLT
Liam Quin
Delightful Computing

Liam Quin runs an information design and XML consulting company, Delightful Computing, and previously was XML Activity Lead at the World Wide Web Consortium; before that he was involved in the creation of XML itself and in SGML, most notably at SoftQuad Inc. in Toronto. His backgrounds are in digital typography and computer science.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

