[image: Balisage logo]Balisage: The Markup Conference

Serializing the Locator Format of the United States Government Publishing Office as
        XML
Joel Kalvesmaki

Balisage: The Markup Conference 2023
July 31 - August 4, 2023

Copyright Joel Kalvesmaki, released under a Creative Commons Attribution 4.0 International License

How to cite this paper
Kalvesmaki, Joel. "Serializing the Locator Format of the United States Government Publishing Office as
        XML." Presented at: Balisage: The Markup Conference 2023, Washington, DC, July 31 - August 4, 2023.  In Proceedings of Balisage: The Markup Conference 2023. 
        Balisage Series on Markup Technologies vol. 28 (2023). https://doi.org/10.4242/BalisageVol28.Kalvesmaki01.

Abstract
The United States Government Publishing Office makes significant use of so-called
                    locators, a specialized file format for commercial
                typography. In this article, I explain the origins of the locator format, discuss
                its architecture, and explore some of the challenges inherent in understanding and
                converting the format. I present Slax, Serializing Locators as XML, an expression of
                the locator format in XML and an application that makes the conversion. In telling
                the story of the locator format, which is poorly documented, I show that the
                specifications developed slowly over time as user expectations changed, and in
                tandem with improvements to its primary processor, MicroComp. Slax also provides an
                excellent example of where XSLT is an ideal technology for document conversion, and
                where it is not, and provides a model for the symbiotic use of declarative and
                imperative programming models.



Balisage: The Markup Conference


      Serializing the Locator Format of the United States Government Publishing Office as
         XML
      

      
         Table of Contents

         
            	Title Page

            	Introduction

            	The Background of the Locator Format

            	The MicroComp Locator Format
                  	Specifications and Formats

                  	Grids

                  	Fonts and Hyphenation

               

            

            	Challenges in Converting Locators

            	Serializing Locators as XML (Slax)

            	The Slax Format

            	Conclusion and Further Work

            	About the Author

         

      
   Serializing the Locator Format of the United States Government Publishing Office as
        XML

Introduction
The Government Publishing Office (GPO), which serves the legislative, executive, and
            judicial branches of the United States Federal Government, makes significant use of
            so-called locators, a specialized format for commercial typography.
            At present, the format is actively used on a daily basis to typeset the
                Congressional Record, the Federal
            Register, and other significant publications.
At Balisage 2020, Andries and Wood presented an approach to converting locator files
            to structured XML. ([andries_and_wood]) Their article focuses upon the U.S.
            Code and its up-conversion to the semantically rich United States Legislative Markup
            (USLM) format, and it provides an overview of a complete workflow.
In this paper, I present a generalized process that serializes the locator format as
            XML. Unlike Andries and Wood's application, which focused on the U.S. Code, this process
            deals with all known locator publications. And whereas Andries and Wood's approach
            utilized Java to deal with the conversion process, mine adopts a mix of two
            technologies: XSLT to manage the sprawling data resources and a C# application to
            replicate the byte handling of MicroComp, GPO's flagship desktop composition
            application.
My paper offers two significant contributions. First, in telling the story of
            locators, I argue that the format, which is poorly documented, developed slowly and
            silently over time as user expectations changed, and as MicroComp evolved in the 1990s.
            MicroComp, in fact, became a de facto black-box specification for a
            format that was never fixed. Second, the serialization of locators into XML provides an
            excellent example of places where XSLT is an ideal technology for document conversion,
            and places where it is not, and offers a model for the symbiotic use of declarative and
            imperative programming models.[1]


The Background of the Locator Format
The Government Printing Office (now Government Publishing Office, GPO) was created by
            an Act of Congress in 1860 to centralize and stabilize a relatively chaotic printing
            system. It is one of the oldest agencies of the Federal Government, and has had storied
            moments. GPO seconded its staff to support the defense of Washington, DC during the
            Civil War, and was responsible for printing the Emancipation Proclamation.
GPO has been known for innovation and early adoption of new technology in printing.
            Necessity was a driving force, given the volume of government output and the costs of
            labor and materials. Starting in 1963, GPO used electronic printing methods, beginning
            with a video unit and two Linofilm keyboards created by the Mergenthaler Linotype
            Corporation. GPO's first electronically produced publication, from March that year, set
            in 8/9 Bodoni Book, was “believed to be the first anywhere to use a pre-existing
            tabulating card file to produce typographical quality output.” ([uspo_1963])
Over the next several years, GPO took a small staff of programmers, added to their
            ranks compositors taught to program, and collaborated with IBM and Mergenthaler to
            create a digital typographic system for the IBM 1401. ([boyle]) Teletype
            system (TTS) code was converted to binary-coded decimal (BCD), and divided into blocks,
            each block being assigned an identification code. That prefatory code was critical to
            locating a particular block of text, so it was called a
            locator.
In 1967, the Linotron 1010, a new photocomposition machine developed specially by
            Mergenthaler and CBS Laboratories, was introduced to GPO production. ([gpo_1967]) The mechanical process involved directing the rays of a mercury
            arc lamp through a grid of 256 characters on the cathodes of a vacuum tube. An external
            logic signal controlling an electrostatic wire grid selection matrix ensured that only
            one of the 256 fragments of the beam—the chosen character—passed to an electron
                multiplier. ([mlc_1966]) The Linotron magazine could hold up to four
            grids for a total of 1,024 characters. The photocomposition system was operated by a
            Master Typography Program (MTP), a federated suite of small, independent programs
            written for the IBM 360/50 and other IBM peripherals. ([cavanaugh])
            Customers would give GPO magnetic tape that had text or data, structured by a limited
            set of characters and reference codes. These codes identified text block categories, but
            not typographic styles. For example, a first-level header might have been marked with
            code 11, but the typographical specifications for block style 11 were defined separately
            in files curated by staff of GPO's Electronic Photocomposition Unit. This approach meant
            that the same structured text could, without alteration, be slotted into different
            publications, and not require redesign or new markup. That approach is still used today:
            the locator code for many legislative bills is copied without change into the
                Congressional Record.
Typographical specifications rested in two different GPO libraries. The parameter
            library (later called a format library) dictated page layouts, paragraph dimension, and
            the behavior of lines. A second grid library coordinated input with the Linotron grid
            magazine by supplying offset lookup tables, character width values, and so forth. These
            and other tape libraries were updated by GPO staff via cards. ([jcp_1970], 
            90, 93–106) Thus, the Linotron system of the 1960s—a landmark in printing
            history—indelibly influenced the terminology (“locators,” “formats,” “grids,”
            “parameters”) and the architecture of GPO's electronic publication program.
The Linotron system was adequate for simple text-centric publications where digitized
            data already existed, but not for more complex ones with graphics, tables, multiple
            columns, and spanning heads, and not for publications where text had not yet been
            digitized. These publications were still handled by the costly hot metal process. GPO
            was eager to bring its entire line of publications into an electronic workflow, but as
            it considered options beyond the Linotron, it soon realized that no outside contractor
            would be able to write the software needed to publish complex documents. So in the 1970s
            GPO decided that it would develop its own typesetting software in-house. To build the
            staff of its Electronic Photocomposition Division, GPO recruited craftsmen from Linotype
            and Monotype.
GPO also sought to purchase different kinds of typesetting hardware. In 1974 GPO
            acquired a system that combined optical character recognition (OCR) with text editing.
            Designed by Compuscan and Atex, the system combined a model 170 scanner with a PDP 11/35
            computer and two video display terminals (VDT). Its output was compatible with the
            Linotron. ([cavanaugh]) Two years later GPO procured VideoComp 500
            machines for the Atex systems. The MTP software, which had been designed specially for
            the Linotron, was now revised for the PDP 11/35 mainframe hooked to the VideoComp 500.
            Printing jobs were gradually transferred from the Linotron to the VideoComp systems.
New Atex systems were procured in 1978, the same year that GPO established its Graphic
            Systems Development Division (GSDD), which was tasked with creating and supporting
            typography software that was now distinctively its own. At the heart of the application
            network was the Automated Composition System (AComp), the core composition
                algorithm. ([gpo_1978]) GSDD developed new features for AComp. In 1979
            it introduced functionality for tables, which it called subformats. ([gpo_1979]) The following year it introduced features to allow tables and
            graphics to span columns, or to let tables flow across column or page breaks. ([gpo_1980])
In the 1980s, GPO enhanced the existing VideoComp systems, but also looked ahead.
            Experience had shown that a locator-based approach to typography was conceptually sound
            and remained independent of any particular system. The format had matured to the point
            where it could handle all its publications, so GSDD prepared to make AComp and its other
            programs more widely available. In 1984, GSDD management announced that an unnamed
            typsetting program had entered production on the local network. ([rollert]) 
            The shift to electronic publishing was complete, and in February 1985 GPO officially
            closed down its hot metal operations. But software development continued. The aging Atex
            system was scheduled to be replaced by a VAX 6210, requiring patches and new builds, and
            there was a pressing need to repurpose the codebase to enable typesetting on the
            microcomputer. In 1989, GSDD released for IBM-compatible systems an application it
            called MicroComp, a name that paid homage to the older VideoComp systems (for both,
            “Comp” was short for “composition”). ([gpo_1989]) By 1991 more than thirty
            offices in Congress were using MicroComp. ([gpo_1991])
Very quickly, MicroComp became the mainstay for typesetting at GPO, Congress, and
            other parts of the Federal Government. Informally, the terms
                locators and MicroComp became
            interchangeable. Many aspects of MicroComp were advanced for the time. Despite the
            256-character limit imposed by the byte, MicroComp gave users access to thousands of
            characters in dozens of styles. It allowed users control over a wide variety of
            formatting and typographic features, some highly sophisticated. Paragraph types could be
            programmed with conditional leaders. Columns could be feathered (leading applied so that
            lines would vertically fill a column). It was extremely fast, typesetting many pages per
            second. AComp managed to do this in a mere eighty thousand lines of code, written
            largely in C++, albeit with C-style, non-object architecture.
Despite these forward-looking accomplishments, MicroComp remained entrenched in 1960s
            hardware and concepts. Like its predecessors, MicroComp was a federated suite of
            programs that worked across a variety of computers and peripherals. The photomechanical
            grids of the Linotron 1010 had been replaced by digital, conceptual ones that remained
            agnostic of any meaning behind specific characters. MicroComp continued to rely upon the
            convention of locators (which now no longer located anything) and other terse codes
            already familiar to its Federal customers. It retained jargon, lingo, and engineering
            solutions rooted in 1960s paradigms.
MicroComp underwent upgrades and changes in the 1990s, although enhancements were
            documented poorly, if at all. Most significantly, it began to support SGML input, in
            tandem with conversion of the Federal Register and the
                Code of Federal Regulations. Gradual changes to byte handling
            were introduced. Some new format features were silently introduced. Format and grid
            libraries continued to evolve. Nevertheless, MicroComp continued to look backward as it
            progressed. GSDD's solution to integrating SGML with MicroComp was to have AComp first
            convert the input to an internal locator byte stream, and then typeset that stream, as
            if the user had simply used locators, not SGML. Browsing the incremental changes in
            MicroComp up to the turn of the millennium, one gets an eerie feeling that Unicode is
            distant and irrelevant, and that PostScript type 1 fonts represent the apex of font
            technology.
In the early 2000s, a moratorium was placed on any but the most urgent changes to
            MicroComp, while GPO leadership deliberated whether to pursue incremental development of
            the existing software, or to completely rearchitect it. The latter path was chosen. In
            2009 a bid went out for vendors to supply a composition system replacement. As of
            September 2023, Congress is preparing to retire MicroComp, as it gradually switches its
            legislative workflow to XPub, GPO's next-generation, all-XML composition system. Much
            could be said about that transition. But events of the last twenty years are stories for
            another day.

The MicroComp Locator Format
Specifications and Formats
The most comprehensive, detailed account of the locator system was published in the
                early 1980s in a book with the arcane title Publishing from a Full Text
                    Data Base (2nd edition, 1983, herein
                    PFTDB). ([gsdd_1983]) 
                PFTDB is the closest approximation to a formal specification
                for the locator format, because it documents the intentions of the designers of the
                locator format. But it is imperfect. Some of the jargon is impenetrable. Some of
                    PTFDB's features were dropped or changed by MicroComp and,
                of course, PTFDB excludes features that MicroComp introduced.
                My description below draws from PFTDB and related documents
                used by GPO Prepress staff for their daily work.[2] I have also relied upon experiments with current compiled MicroComp
                executables, and upon selective study of the source code.
A typical locator file might look like this (control characters have been converted to
                Unicode control pictures):

␇S0634
␇I66F
␇I81SENATE RESOLUTION 77_DESIGNATING FEBRUARY 16, 2023, AS ``NATIONAL ELIZABETH PERATROVICH DAY'' 
␇I11Mr. ␇T4SULLIVAN␇T1 (for himself and Ms. ␇T4Murkowski␇T1) submitted the following resolution; 
which was considered and agreed to:
␇I74S. Res. 77
␇I27Whereas Elizabeth Wanamaker Peratrovich, Tlingit, was a member of the Lukaa␇g840␇T5C␇K.aÿAE1di 
clan in the Raven moiety with the Tlingit name of ␇g840␇T5B␇Kaa␇g840␇T5C␇Kgal.aat (referred to in 
this preamble as ``Elizabeth'') who fought for social equality, civil liberties, and respect for 
Alaska Native and Native American communities;
The code should not seem utterly strange. Quite a lot should be recognizable as
                text. The rest is markup of one sort or another. A number of markup characters begin
                with ␇, which is technically called the precedence code. More colloquially it is
                called the bell code, because it is commonly (but not always) handled by codepoint 7
                (now U+0007, ALERT). The character that follows the precedence code specifies a
                particular action that should be taken, and it may be followed by other characters
                that supply parameters for that action. The most common code is ␇I followed by two
                digits. These are locators proper, tagging blocks of text by type.
Although the text looks like it might be ASCII or an ASCII-based codepage,
                appearances are deceptive. The locator format is actually codepage agnostic, or, to
                be more precise, the encoding is format dependent. Each MicroComp format allows a
                designer to reassign any of the 256 input bytes as desired to any permitted text or
                control character. More on that later.
The above ten lines were typset by MicroComp as follows:
Figure 1: Corrected typeset version of Congressional Record, February 16, 2023, p. S464
                    cols. 2–3, https://www.govinfo.gov/app/details/CREC-2023-02-16
[image: ]


More than two thousand MicroComp formats have been developed over the years, for
                various publications. Each publication is assigned one or more format numbers, and
                the typographic specifications are tailored to the publication in question. The
                format files that MicroComp uses are binary, and they are created by compiling a
                source ASCII file, created and edited by GPO staff. Line 1 in the example above
                invokes format number 0634. Here are some samples from the source ASCII file for
                0634 (the full file is 439 lines):

/FORMAT NO./ /0634/ .PCF
/GRID TABLE/ /738/ /072/ /739/ /780/
/PAGE/
/00/ /003/ number of text columns
/01/ /177/ column width (including gutter)
/02/ /716/ column length--odd page column 1
/03/ /716/ column length--odd page column 2
/04/ /716/ column length--odd page column 3
/11/ /019/ column sink--odd page column 1
/12/ /019/ column sink--odd page column 2
/13/ /019/ column sink--odd page column 3
/20/ /716/ column length--even page column 1
/21/ /716/ column length--even page column 2
/22/ /716/ column length--even page column 3
/29/ /019/ column sink--even page column 1
/30/ /019/ column sink--even page column 2
/31/ /019/ column sink--even page column 3
/38/ /716/ column length--first page column 1
/39/ /716/ column length--first page column 2
/40/ /716/ column length--first page column 3
/47/ /019/ column sink--first page column 1
/48/ /019/ column sink--first page column 2
/49/ /019/ column sink--first page column 3
/56/ /.../ x-origin of the head in storage area 1
/57/ /.../ y-origin of the head in storage area 1
/76/ /001/ bottom leading for running (continued) heads
/77/ /010/ Footnote sep lding in pts--10-4-77
/78/ /002/ Footnote sep max carding allowed in pts--10-1-77
/79/ /001/ kill last page square-off
/80/ /1/   Rotation of the job and frame number and folio
/81/ /1/   Rotation of the page

. . . . . . .

/LOC 1/                                             FRSLN NEXT
LOC  PTSZ LDING  LNLG  TPLD  BTLD  Y1LN PRIND SCIND PRIOR PRIOR
/10/ /008/ /009/ /168/ /009/ /000/ /008/ /000/ /000/ /3/ /2/
/11/ /008/ /009/ /168/ /009/ /000/ /008/ /008/ /000/ /3/ /2/
/12/ /008/ /009/ /168/ /009/ /000/ /008/ /000/ /016/ /1/ /1/
/13/ /008/ /009/ /168/ /009/ /000/ /008/ /000/ /024/ /1/ /1/

. . . . . . . 

LOC   MINSP MAXSP RHOD  RHDE STORHD SETSZ GPLD PARLD
/10/ /006/ /009/ /.../ /.../ /.../ /.../ /010/ /009/
/11/ /006/ /009/ /.../ /.../ /.../ /.../ /012/ /009/
/12/ /006/ /009/ /.../ /.../ /.../ /.../ /012/ /009/
/13/ /006/ /009/ /.../ /.../ /.../ /.../ /012/ /008/

. . . . . . .

    F  L G T L T R  L  L L M H H S S S X F  S  S L C LOC
    O  D R F N S U  D  D D C D I E P N - T  E  C I N POR
    T  T N N T F L  C  R T L T E H C P S N  P  T N C TION
    P  P O O P D I  H  B F N P A D L G T O  C  F N S
                 D     L       R         T  H    B
LOC              X     K       Y         E       R
/10 .. . 1 1 J . . ... . . . . . . W . . . ... . . . .../
/11 .. . 1 1 J . . ... . . . . . . W . . . ... . . . .../
/12 .. . 1 1 J . . ... . . . . . . W . . . ... . . . .../
/13 .. . 1 1 J . . ... . . . . . . W . . . ... . . . .../

. . . . . . .

/CHRTBL UNSHIFT/
   Displacement Table                      Displacement Table
                        Input Grid                        Input Grid
   Char                 Code  Pos.            Char        Code  Pos.
bypass qc               /004/ /000/
bypass qm               /005/ /000/        open bracket   /091/ /091/
small bullet ␁          /001/ /001/                       /.../ /092/
small cap ampersand     /224/ /002/        close bracket  /093/ /093/
plus-minus              /027/ /003/        minus          /094/ /094/
lc mu   sss0            /160/ /005/        open quote     /096/ /096/
twist                   /006/ /006/        a              /097/ /097/
lc phi  sss1            /161/ /007/        b              /098/ /098/
lc delta sss7           /167/ /008/        c              /099/ /099/
                        /.../ /009/        d              /100/ /100/

. . . . . . .

ampersand &             /038/ /038/        SPECIAL CHARACTERS
apostrophe '            /039/ /039/
open paren (            /040/ /040/        The output code for all functions
close paren )           /041/ /041/        in the character table can be
asterisk *              /042/ /042/        anything between 192 and 240.
plus +                  /043/ /043/        There should be no outputs in the
comma ,                 /044/ /044/        character table between 128 to 191.
                        /.../ /045/
.                       /046/ /046/        hyphen         /045/ /192/
                        /.../ /047/        shill          /047/ /193/
0                       /048/ /048/        em dash        /095/ /194/
1                       /049/ /049/        word space     /032/ /195/

. . . . . .

/HEADS/
/ALL/
/C111012000522000000␇G3␇T2CONGRESSIONAL RECORD␇P/
/@/
/CONSTANT/
/CC/ /_Continued␇P/
/XXXXXXXXXXXXXXXXXXX/
Relevant data is wrapped by pairs of slashes. Nearly everything else is ignored, so
                can be treated as comments. Fields are identified by position within the source
                document and by localized groups.
Every format file has four sections. The first deals with global type and page
                settings. The second handles typographic rules for up to ninety-nine locators. This
                section is lengthy because it allows numerous block/paragraph properties to be
                defined, so it is broken up into three subsections. The portion above shows parts of
                the three subsections relevant to locators 10 through 13. The third major section of
                the format source file is a character displacement table, and the last handles
                miscellanea such as running heads.
For the purposes of this paper, the third section is critical, because it facilitates
                byte remapping, and therefore defines the codepage. In the example above, the
                hyphen, decimal 45, is targeted to be converted to 192. Incoming codepoint 160,
                treated as a μ, is to be shifted to byte 5. Incoming 95 (the lowbar, _) is to be
                shifted to byte 196, the em dash (see the locator sample plus figure 1 for an
                example). Any input codepoint can be redirected to another value, as long as the
                resulting codepoint is either from 0 to 127 inclusive (the character block), or 177
                to 255 inclusive (the function code block). (The comment in the example above,
                indicating that the permitted range is 192 through 240, reflects an earlier, more
                restrictive scope. Function codes were added over time, some for internal use,
                others for users.) Yes, the null byte is allowed, and can be either an input byte or
                a target one.
As mentioned above, the precedence code is normally described as codepoint 7,
                because that is what creators and users of locator files typically type and see. But
                that is not completely accurate. The real precedence code, after byte displacement,
                is actually 200. That shift, as well as the choice of codepoint 7, is arbitrary, and
                not universal. In about five percent of GPO's two thousand formats some other
                character is defined as the precedence code, and codepoint 7 is used for other
                purposes. The ability to shift bytes howsoever one wishes makes the locator format
                highly enabling, and highly unpredictable. In a study of the more than two thousand
                formats, I have found some strange, surprising mappings. It is even possible to
                write a format specification that completely rescrambles all the letters and digits
                (fortunately, none of the existing standard formats do so).
When MicroComp's typographic core, AComp, receives an input byte stream, its first
                order of business is to perform the appropriate character displacement described
                just above. But before it can do that, it must perform another perfunctory initial
                character displacement to eradicate noise from word processors. PFTDB 
                presumes the input to be a pure locator byte stream, and not the result
                of any customer, off-the-shelf software. But with MicroComp (introduced after the
                publication of PFTDB ), users began to use XYWrite and
                WordPerfect to create locator files, and GSDD staff had to deal with input that
                included reserved codepoints. For example, XYWrite used codepoints 174 and 175 to
                wrap excluded material. Word processors might include tabs, codepoint 9. That proved
                to be something of a nuisance, because in most MicroComp formats codepoint 9 becomes
                the en dash, a very common character. For such cases, MicroComp was written so as to
                strip away known XYWrite and WordPerfect reserved codepoints. If a user needed to
                directly access those codepoints, they were given a workaround: codepoint 255
                followed by a two-digit hexadecimal number. During this initial process, AComp would
                convert those three-byte codes to the single, specified byte. Thus, even today, one
                uses ÿ09 to get an en dash in MicroComp, because to encode it as a tab would
                guarantee that it would be stripped out before processing begins.

Grids
After AComp has performed those two passes of byte displacement, it has a new byte
                stream consisting of either characters (codepoints 0 through 127) or functions
                (codepoints 177 and above). For now we ignore the function codepoints and look more
                closely at the character codepoints.
AComp's next point of business is to connect a character to a font glyph, and
                gather any associated properties. That connection is made through a grid
                specification. Every format defines four default grids (grids 1 through 4). In the
                format example above, the four grids are 738, 072, 739, and 780. All formats have
                tacit access to a standard set of four more grids that feature commonly needed
                specialized characters (relative grids 5 through 8, targeting absolute grid numbers
                805 through 808).
A grid file, which is just as important as the format file already discussed, is
                also a binary artefact generated by compiling an ASCII source file. Keeping with our
                example, here are excerpts from the ASCII source file for format 0634's grid 1 (=
                absolute grid number 738):

;JUNE 24, 1996
;                                            Column                          
;Ionic/Century Schoolbook                     1 Typeface                     
;                                             2 Displacement                 
;MICROGRD.738                                 3 Output Code                  
;                                             4 Font Number                  
;T1 Ionic Roman C&lc (052)                    5 Synthetic font               
;T2 Century Schoolbook Bold C&lc (038)        6 Postscript widths            
;T3 Ionic Ital C&lc (054)                     7 Hyphenation Code             
;T4 Ionic Roman C&sc (052)                    8 Entity Tag & Description     
;T5 Ionic Roman C&sc (052) (full figs)
;
1 000 000 000 00 00000 000 00000000 ; [T1 Ionic Roman C&lc]
1 001 183 086 00 00556 000 sbull    ; ␁ Small bullet
1 002 038 052 01 00833 000 scamp    ; ␂ Small cap &
1 003 177 009 00 00549 000 plusmn   ; ␃ Plus-minus
1 004 101 009 00 00439 000 epsiv | egr ; ␄ lc greek epsilon
1 005 109 009 00 00576 000 mu | micro | mgr ; ␅ lc greek mu

. . . . . .

1 097 097 052 00 00615 097          ; a Lowercase a
1 098 098 052 00 00615 098          ; b Lowercase b
1 099 099 052 00 00563 099          ; c Lowercase c

. . . . . .

5 121 089 052 01 00833 121          ; y Small cap Y
5 122 090 052 01 00729 122          ; z Small cap Z
5 123 189 086 00 00551 003 lparb    ; { Black open paren
5 124 161 006 00 00333 000 iexcl    ; | Upside down bang
5 125 190 086 00 00551 002 rparb    ; } Black close paren
5 126 191 006 00 00611 000 iquest   ; ÿ7E Upside down question
5 127 162 009 00 00247 000 prime | min | foot | quot ; ␡� Single prime
GGGGGGGGGGGGGGGGGGGGGG
␚
The grid file is equivalent to the grid tape library that controlled the Linotron
                1010 grid magazine. But where the Linotron grid magazine allowed four different sets
                of 256 characters each, the MicroComp grid supports five different sets of 128
                characters each. A MicroComp grid is navigated by a pair of integers: a typeface
                option (1 through 5) and a codepoint (0 through 127).[3] The typeface-codepoint pair calls up a particular row, which has six
                pieces of information (identified in the example as nos. 3–8): (3) a glyph number,
                (4) a font number, (5) a special code that indicates what kind of special
                typesetting modifications should be applied, (6) a number specifying the relative
                width of that font's glyph, (7) a hyphenation code, and (8) entity names that are
                aliases for the codepoint (for conversion from SGML). The modifications (number 5)
                can be quite significant: small caps, superior (superscript), double superior,
                inferior (subscript), double inferior, cancel (strikethrough), underscore,
                condensed, extra condensed, extended, or some combination thereof.
GPO has defined more than 180 grid files. Commonly, a single grid file targets one
                or two faces, and one or more fonts from each face. In lines 7–11 in our example
                above, the comment indicates that the second typeface option (labeled T2) targets
                Century Schoolbook Bold. The other four options support the Ionic face. Two work
                with caps and lowercase: one roman and one italic. Another two typeface options
                target roman Ionic as caps and small caps, one with text figures (old-style
                numerals) and the other with full or lining figures.
But just because a given grid typeface option is declared to target a particular
                font and font modification, it always mixes glyphs from other fonts, to provide
                access to characters not in the target font, and to fill up the entire set of 128
                slots. In the grid extract above, typeface 1 codepoint 1, the small bullet, points
                not to Ionic (font number 52) but BGsddV01 (font 86), an in-house custom font.
                Typeface 1 codepoint 4, Greek epsilon, targets font 9, Symbol.
When processing a given byte of text, how does AComp determine which grid and
                typeface option to use? As noted above, every format has eight predefined grids, and
                the format defines a default grid and typeface number for each locator. As AComp
                walks through the byte stream, it changes the default grid and typeface as it moves
                from one locator to the next. Some special precedence codes can change the current
                grid and typeface numbers in the middle of a locator. ␇G1 through ␇G8 changes the
                relative grid number, and ␇gNNN changes to absolute grid number NNN. ␇T1 through ␇T5
                changes to a particular typeface in the grid. ␇K cancels the special grid-typeface
                call and returns AComp to the current locator's default grid and typeface number.
                The sample locator text above provides examples of all these codes.
So when AComp processes a text byte, it uses the immediate context to determine
                which grid and typeface should be consulted. It notes the target font number and
                glyph number. It stores the relative width of the character and any special
                modifications, and uses that information to determine how to space words, and where
                to place line breaks. (For better or worse, AComp performs no kerning.) And in one
                final act of displacement, it shifts the current byte to the target glyph byte,
                which is what will be written to the output PostScript file.

Fonts and Hyphenation
Unlike the older Linotron and VideoComp systems, which created output directly,
                the MicroComp system's primary goal is to produce a sequence of one or more
                PostScript files, one per printed page. Once that is finished, its job is done. It
                is up to subsequent applications to handle the PostScript files as desired, whether
                by passing them to a printer that has the fonts preinstalled, or by distilling the
                files into a PDF, or something else.
The font library, however, poses its own challenges. The current library consists
                of approximately 150 Type 1 PostScript fonts. Many of these fonts are in the
                standard PostScript encoding (“standard” is a bit of a misnomer: some assignments in
                that encoding table are rather eclectic). But many of them are non-standard, e.g.,
                fonts with the Cyrillic alphabet, the Greek alphabet, woodcut ornaments, box
                drawing, wingdings, and symbols. Some fonts are in-house creations. GPO commonly
                fulfills requests from customers to design new glyphs, so that unusual characters
                are available at a keystroke (see Figure 1). GPO's piecemeal
                typography has included Chinese ideographs, IPA symbols, mathematical equations, and
                even the signature of sitting Presidents.
From the perspective of AComp's operations, the semantics of the target glyphs are
                irrelevant. The only exception pertains to hyphenation, which is significant in
                Federal publications. In legal documents such as legislative bills, line numeration,
                and therefore line breaks, must be stable and deterministic. A word break dictionary
                is shared across all MicroComp systems, and no user word break dictionary is
                permitted. Any update to the word break dictionary requires MicroComp to be released
                in a new major version. A user can force hyphenation in a word, but only by changing
                the input locator file, a safeguard against tampering.


Challenges in Converting Locators
There is a significant need to provide a conversion service that universally converts
            locators to some modern format, be it XML, JSON, HTML, or something else. The model
            offered by Andries and Wood is both original and significant, but represents only the
            start, and is focused upon the U.S. Code. Around eighty government publications have
            been published with MicroComp, and they need similar attention. If locator files have
            been accumulating over the last fifty years, across many branches of government, it is
            in the interest of archivists and historians to be able to convert them. Equally
            important to the past is the future. A conversion service should be able to handle cases
            when (not if) changes are made to GPO's format and grid specifications for publications
            that still use locators.
My summary of the history of MicroComp, and my description of how it processes locator
            files, show that there are several challenges inherent in the effort to convert locator
            files universally. In this discussion I presume an interest in XML (not JSON or another
            format) as the target format.
The locator format is not a context-free language. Quite the contrary, it is
            heavily contextual. A given locator file cannot be interpreted without access to all the
            formats that are invoked, and to all the grids, even those that are not referenced by
            the formats, because the creator of a locator file can on a whim draw from any of the
            180 grids. When thinking about converting a locator file, one must deliberate over how
            much of that context needs to be placed within the target file.
The text itself poses problems. XML requires Unicode. Translating locator
            characters to Unicode can pose a significant challenge. Many font glyphs require
            interpretation. Sometimes, inspection of a particular glyph leaves mysteries about the
            intent of the font designer. For many glyphs, no Unicode value exists, or no Unicode
            value ever will exist. Some glyphs are composites, and require resolution to multiple
            Unicode characters. And even after determining a Unicode value, it is reasonable to
            suspect that a character may have been introduced capriciously, used for multiple
            functions, or simply misused. I have seen evidence of this in actual congressional
            legislation, where the German eszett, ß, was used as a Greek beta, or an obscure line
            drawing character was used instead of a hyphen or en dash.
Internally, locator files do not declare a version number, and they assume that
            users know and have access to the format and grid files. But format files and grid files
            have changed little by little over the years. Some of the fonts have as well. The great
            majority of these changes have been made silently, without any versioning system, so
            that it is impossible to retrieve a previous version. For any given locator file, one
            would be hard-pressed to reproduce the original typeset artefact, because one would have
            to configure MicroComp so that it matched exactly the version in use at the time.
Some of the locator conventions are not well documented. They do not feature in
                PFTDB, and they are not explained in user manuals. This
            phenomenon is seen in some of the ASCII source files for the formats, where new
            key-pairs suddenly appear in some of the formats, and are not explained. Only by
            experimentation with MicroComp can one discover exactly what certain features were
            designed to do. That can be true for some documented phenomena, as well. A feature may
            be explained in PFTDB quite sparingly, or in impenetrable jargon,
            and only tests with MicroComp can bring to light what is meant. Sometimes those
            experiments exhibit unexpected behavior that may or may not have been part of the
            intended design. Such Easter eggs also highlight MicroComp's error handling. A number of
            types of syntax errors are forgiven, and some permitted syntactic constructions can
            throw an error. The error messages returned by MicroComp are commonly inaccurate,
            misplaced, or uninformative.
The peculiar dependency of the format upon its processor highlights another challenge
            for conversion, that of replicating MicroComp's byte displacement rules. Locators were
            designed under an imperative programming paradigm. All AComp operations are applied byte
            by byte. It is common for AComp, at a given byte, to look behind or look ahead before
            applying a rule. Determining what those rules are requires experimentation with
            MicroComp and review of the source code, which has very little documentation. Variable
            names are cryptic. Conditional jumps out of iterative routines to completely different
            modules are frequent and unexplained. To describe AComp as spaghetti code would be
            generous. The code has been difficult to maintain across the years, evidenced by
            developers' comments, e.g., “these instructions make no sense to me,” “recursive
            nonsense,” “don't know why did this . . . that goddamned unified agenda is the
            reason.”
Some parts of the specifications appear to be ignored by MicroComp, or commented out.
            Other parts of the specifications have unclear functionality. In many such situations, I
            have been unable to find archived locator files with the specific coding, to test and
            verify the intended function against actual past publications.

Serializing Locators as XML (Slax)
A conversion process for locators could target any one of a number of formats. USLM
            XML, the target of Andries and Wood's effort, is only one of many possible destinations.
            Users of GPO's official document repository GovInfo.gov exhibit a strong preference to
            access and read documents in HTML. Archivists or other practitioners may wish to develop
            pipelines into Akoma Ntoso, a generalized XML format for legal documents. Parliamentary
            proceedings in other countries have been of interest to historians and linguists, and it
            is likely that many U.S. documents would be ideal for a pipeline into TEI XML. And we
            should not forget the possibility that some government publications would be ideal
            candidates for JATS XML.
Perhaps most important, GPO's next-generation composition service, XPub, uses XML
            Publishing Professional (XPP) for its core composition engine. The input model GPO has
            designed for XPP (which can handle a variety of input formats) consists of relatively
            flat XML files punctuated by processing instructions. In those XML files, typesetting
            concerns are at the forefront. Ostensibly, in the future, XPub may wish to incorporate,
            or migrate to, another typographic engine (say InDesign) that supports
            typographic-centered XML for input or output.
Every target format is lossy to one degree or another. Certainly, it is possible to
            take, say, USLM, and pack it with new attributes or elements to try to stanch the loss.
            But that would result in a kludge, and wind up making USLM something it wasn't designed
            to be.
Rather than try to force locators into an existing format, I asked myself what GSDD
            designers in the 1970s would have done if had they been given the opportunity to
            serialize the format as XML. The term “serialize” here is important, because it signals
            a change in perspective. My goal was not so much to convert locators to XML, but to
                express them as XML. Securing an XML
            expression of locators puts us in an excellent place. Locators serialized as XML could
            be easily reverted to the original format, if one liked. And it could become a pivot
            format, facilitating straight-forward conversion to any other format.
The concept developed into a name, Slax, meaning Serializing Locators as XML. Slax is
            the name for both the XML format and the application that does the conversion.
But what to do about the many challenges (see previous section)?
Some of those challenges, such as misuse or creative use of glyphs, are intractable,
            and not peculiar to locators themselves. They would be put to the side.
The sprawling format-grid-font context, it seemed to me, could be handled optimally by
            an XSLT-based workflow. The ASCII source files for formats and grids are structured
            data. One might be tempted, given our current technology, to apply Invisible XML to
            them. Personally, I wouldn't want to try. XSLT proved to be an excellent choice for
            parsing the 2,000+ formats and 180+ grids. Certainly other languages could have been
            used. But I found XSLT's <xsl:analyze-string> to be a powerful tool, and
            its praises need to be sung more loudly. The construct allows the user to losslessly
            segment a string into principal parts, and to help developers clearly visualize how the
            input string wil be segmented, and to quickly identify the relationship between both
            matches and non-matches and their role within the result tree. I have found that the
            task of losslessly consuming unparsed text to build a complex tree is much more
            manageable with <xsl:analyze-string> than it is in other programming
            language counterparts. The XSLT code is generally easier to read and maintain.
The grids were relatively easy to convert through this process. An XSLT application of
            about 200 lines was able to convert all the grids to something like this:

<?xml version="1.0" encoding="UTF-8"?>
<!--This data was generated by the stylesheet at 
file:/D:/XPUB_UTILITIES/Slax/SlaxBuilders/grid%20source%20to%20xml.xsl 
on 2022-09-20T21:59:09.01525-04:00.-->
<grid n="738">
   <type>microcomp</type>
   <!--JUNE 24, 1996-->
   <!--                                            Column                          -->
   <!--Ionic/Century Schoolbook                     1 Typeface                     -->
   <!--                                             2 Displacement                 -->
   <!--MICROGRD.738                                 3 Output Code                  -->
   <!--                                             4 Font Number                  -->
   <!--T1 Ionic Roman C&lc (052)                    5 Synthetic font               -->
   <!--T2 Century Schoolbook Bold C&lc (038)        6 Postscript widths            -->
   <!--T3 Ionic Ital C&lc (054)                     7 Hyphenation Code             -->
   <!--T4 Ionic Roman C&sc (052)                    8 Entity Tag & Description     -->
   <!--T5 Ionic Roman C&sc (052) (full figs)-->
   <!---->
   <typeface n="1">
      <glyph cp="0">
         <output-code>0</output-code>
         <font-number>0</font-number>
         <synthetic-font>0</synthetic-font>
         <postscript-width>00000</postscript-width>
         <hyphenation-code>0</hyphenation-code>
         <entity>
            <code>00000000</code>
         </entity>
         <!-- [T1 Ionic Roman C&lc]-->
      </glyph>
      <glyph cp="1">
         <output-code>183</output-code>
         <font-number>86</font-number>
         <synthetic-font>0</synthetic-font>
         <postscript-width>00556</postscript-width>
         <hyphenation-code>0</hyphenation-code>
         <entity>
            <code>sbull</code>
         </entity>
         <!-- ␁ Small bullet-->
      </glyph>
. . . . . .
The formats were more challenging, but a multiple-pass approach within a single XSLT
            file (about 1,200 lines of code) was sufficient. Here a sample from format 0634:

<?xml version="1.0" encoding="UTF-8"?>
<!--This data was generated by Format source to XML version 2.00, at file:/D:/XPUB_UTILITIES/Slax/SlaxBuilders/format%20source%20to%20xml.xsl on 2022-11-16T23:20:49.32532-05:00.-->
<format n="0634" converted="2022-11-16T23:20:49.32532-05:00">
   <type>microcomp</type>
   <grids>
      <grid>738</grid>
      <grid>072</grid>
      <grid>739</grid>
      <grid>780</grid>
   </grids>
   <group key="PAGE">
      <column-count>3</column-count>
      <column-width>177</column-width>
      <column-length folio="odd" n="1">716</column-length>
      <column-length folio="odd" n="2">716</column-length>
      <column-length folio="odd" n="3">716</column-length>
. . . . . . 
   <group key="LOC">
      <locator n="10">
         <point-size>8</point-size>
         <leading>9</leading>
         <line-length>168</line-length>
         <leading type="top">9</leading>
         <leading type="bottom">0</leading>
         <column-sink>8</column-sink>
         <indentation type="first">0</indentation>
         <indentation type="next">0</indentation>
         <carding-priority type="first">3</carding-priority>
         <carding-priority type="next">2</carding-priority>
         <word-space-minimum>6</word-space-minimum>
         <word-space-maximum>9</word-space-maximum>
         <leading type="group">10</leading>
         <leading type="paragraph">9</leading>
         <grid>1</grid>
         <typeface>1</typeface>
         <line-type>J</line-type>
         <split-column>W</split-column>
      </locator>
. . . . . .
   <group key="CHRTBL UNSHIFT">
      <character-map>
         <char>
            <label>bypass qc</label>
            <input cp-dec="4" cp-hex="4"/>
            <output cp-dec="0" cp-hex="0"/>
         </char>
         <char>
            <label>bypass qm</label>
            <input cp-dec="5" cp-hex="5"/>
            <output cp-dec="0" cp-hex="0"/>
         </char>
         <char>
            <label>precedence</label>
            <input cp-dec="7" cp-hex="7"/>
            <output cp-dec="200" cp-hex="C8"/>
         </char>
. . . . . . .
   <group key="HEADS"/>
   <group key="ALL">
      <head type="C111012000522000000␇G3␇T2CONGRESSIONAL">
         <value n="1">RECORD␇P</value>
      </head>
   </group>
   <group key="@"/>
   <group key="CONSTANT">
      <constant>_Continued␇P</constant>
   </group>
   <group key="XXXXXXXXXXXXXXXXXXX"/>
</format>
In places, the XML files are much more legible than their ASCII source counterparts.
            Element and attribute names provide much better documentation than the abbreviated,
            cryptic headers. And in the course of building a library of format and grid XML files,
            it was easy to ferret out numerous typographical errors, some of which affected
            MicroComp output.
For both the formats and grids, relatively succinct XSLT applications were able to
            generate, very quickly, lossless XML serializations. XSLT's
                <xsl:analyze-string> allowed me to capture and retain non-data
            fields as comments, so that it was possible to reverse the process and rebuild the
            source ASCII files nearly byte for byte (except where an occasional stray null byte was
            in the source file). With these XSLT applications in hand, whenever formats and grids
            were updated, the Slax resources could be as well.
The fonts posed a distinct challenge. There, I had to get my hands dirty. I studied
            the entire library, and focused on the idiosyncratic fonts. I did my best to provide a
            sensible mapping to the Unicode standard. Where such mapping was impossible,
            undesirable, or arbitrary, I left notes. Because most fonts had the standard PostScript
            encoding, I focused only on mapping the exceptions, which I did in a simple XML file, of
            course.
It seemed to me that at the very minimum, a user of a Slax XML file should not have to
            perform any more byte displacements. But to get there—to arrive at the proper Unicode
            values—one must take a complicated journey, through a given format, through a given
            grid, through a given typeface, to a particular font glyph, and finally to its Unicode
            meaning. In building the pipeline to retrieve that information, I felt that about one
            third of the grid material had been mined and placed directly in the Slax XML file. If
            the grid files could be altogether dispensed with, users of the Slax format would
            benefit. Hence the output indicates, for every locator, or for any special characters,
            the remaining relevant information from the grid file: the target font name and family,
            and any special modifications that should be applied.[4]

The format files, however, were a different story. They have such an abundance of
            information (points, leading, line length, justification, indentation, margins, relative
            padding, complementary formats, etc.) that to put any of that within a typical Slax file
            would result in a bloated, illegible, and repetitive format. It would be better, I
            thought, to give Slax file users access to the library of format files, serialized as
            XML, so that they can query typesetting specifications of interest as needed.
I now had a set of XSLT tools that could place the vast mechanism of formats, grids,
            and fonts at service for the XML stack, and could be responsive to any changes to that
            context. That left me with one final challenge: how to orchestrate the conversion
            process, i.e., how to start with an actual locator file, trawl those XML resources, and
            return an XML file with the intended Unicode text.
I quickly ruled out XML technologies for this task. The conversion process would need
            to handle control bytes (prohibited in XML 1.0) and null bytes (prohibited in both XML
            1.0 and 1.1). A proper handling of the character displacement process would require
            bytewise operations with look-ahead and look-behind features. My previous experiments
            with byte- and bit-wise functions, such as implementing the MD5 hash algorithm in XSLT,
            suggested that an XSLT or XQuery locator processor would not be performative.[5]
Andries and Wood opted for a Java-based declarative approach. I felt that I would have
            most success along a different route. The locator format was designed with a particular
            outlook, and was deeply enmeshed with AComp. I thought that the possibility of error and
            omissions would be minimized if I developed a system that mimicked AComp's native
            process.
My solution was to write the Slax application in C#. It was designed as a class
                LocatorAnalyzer, whose primary method Load() processed an
            arbitrary locator byte stream along a streamlined version of what I detected AComp was
            doing, or was meant to do. Load() walks the byte stream along the same
            stages AComp does. At many of those stages, AComp consults formats and grids as compiled
            binaries. Slax needed to do the equivalent, quickly looking up character displacement
            maps, and related operations.
Because the formats, grids, and fonts were now available as XML, I developed another
            XSLT application that built the tuples, records, and other low-level data structures
            required for the C# code. In an early experiment with this model, the XSLT application
            took the C# source code as unparsed text, located specially marked sections designed for
            fields, and populated them with the raw data serialized in C# syntax. This was an
            effective but impractical solution. The very long C# code that resulted rendered Visual
            Studio unresponsive. The technique also meant that any updates to the formats, grids, or
            fonts would require recompiling the application, and submitting it repeatedly for
            security audits.
The more tractable approach was to write the data to stand-off text files, optimized
            for rapid ingestion as tuples, hashsets, dictionaries, and other data types. This
            approach was clean, and meant that any future updates to the grids and formats would not
            require recompiling the core executable. The automated XSLT-based process of grouping
            and distilling the thousands of format, grid, and font files into small datasets proved
            to be somewhat time-consuming, taking about ten minutes. But such updates are expected
            to be infrequent, so the excess time is at present negligible, and represents work that
            the C# application does not have to perform.
Overall, both XSLT and C# performed their share of challenging work. XSLT parses and
            manages the resources, and prepares the C# source code with the data it needs. The C#
            code approaches byte handling in an object-oriented environment with very fast low-level
            operations. The result is that Slax is highly performative. A typical locator file is
            converted in a tenth of a second. A one megabyte file takes less than a second. Slax is
            one of GPO's fastest applications.

The Slax Format
The best way to illustrate the design of Slax XML is by example, using the locator
            file presented at the beginning of this
            article:

<slax ver="0.09" xmlns="http://gpo.gov/slax">
   <format n="634">
      <locator n="66" font-no="86" font-mod-no="0" font-name="BGsddV01" font-mod-name="none">
         <c font-no="0" font-name="Gpospec5">
            <svg-path for-cp="102"
               d="M7870 228h2l-4 -3l-6 -6h2l-7 -3c-4 -4 -8 -6 -8 -6c-1 1 2 2 8 6c2 1 3 2 5 3l-1 1l-36 
               -27l-2700 -98l-1159 -49l-3937 154l-1 30c-28 7 2 30 21 31l3946 195l1208 -68l2665 -134c10 
               -9 8 -19 2 -26z"
            />
         </c>
      </locator>
      <locator n="81" font-no="52" font-mod-no="0" font-name="MIonic" font-mod-name="none">SENATE
         RESOLUTION 77—DESIGNATING FEBRUARY 16, 2023, AS “NATIONAL ELIZABETH PERATROVICH DAY” </locator>
      <locator n="11" font-no="52" font-mod-no="0" font-name="MIonic" font-mod-name="none">Mr. <span
            typeface="4" font-mod-no="1" font-mod-name="small-caps"><c font-mod-no="0"
               font-mod-name="none">SULLIVAN</c></span><span typeface="1"> (for himself and Ms.
            </span><span typeface="4" font-mod-no="1" font-mod-name="small-caps"><c font-mod-no="0"
               font-mod-name="none">M</c>URKOWSKI</span><span typeface="1">) submitted the following
            resolution; which was considered and agreed to: </span></locator>
      <locator n="74" font-no="52" font-mod-no="1" font-name="MIonic" font-mod-name="small-caps"><c
            font-mod-no="0" font-mod-name="none">S</c><c font-mod-no="0" font-mod-name="none">.</c>
         <c font-mod-no="0" font-mod-name="none">R</c>ES<c font-mod-no="0" font-mod-name="none"
            >.</c>
         <c font-mod-no="0" font-mod-name="none">7</c><c font-mod-no="0" font-mod-name="none">7</c>
      </locator>
      <locator n="27" font-no="52" font-mod-no="0" font-name="MIonic" font-mod-name="none">Whereas
         Elizabeth Wanamaker Peratrovich, Tlingit, was a member of the Lukaa<span font-no="0"
            font-name="Gpospec5">x̱</span>.ádi clan in the Raven moiety with the Tlingit name of
            <span font-no="0" font-name="Gpospec5">Ḵ</span>aa<span font-no="0" font-name="Gpospec5"
            >x̱</span>gal.aat (referred to in this preamble as “Elizabeth”) who fought for social
         equality, civil liberties, and respect for Alaska Native and Native American communities;
      </locator>


The root element is <slax>, and it takes a sequence of
                <format>s. Each format takes a sequence of block elements such as
                <locator> and <table> (on which see below). Each
                <locator> takes mixed content of text and inline
                <span>s. Individual characters might be marked by
                <c>s, which are always wrapped by <span>s.
Line 1 of the input code, ␇S0634, creates the first
                <format>. And line 2, ␇I66F, creates the first
                <locator> for locator 66. Information about the default font and
            font modification is captured in attributes twice, once with the relevant code and a
            second time with a human-readable version. A future version of Slax may handle such
            repetition differently.
Note, the F of locator file line 2 is not the letter F, but rather a
            character from one of GPO's specialized fonts. This represents the elongated decorative
            lozenge seen in figure 1. After all byte displacement has taken place, F does not target
            a Unicode character but a graphic, so it is replaced with an <svg-path>,
            whose attribute d holds a SVG representation of the font Gpospec5's glyph
            102.
The standard way in locators to express double quotation marks is through two separate
            glyphs, as either two backticks, ``, or two straight apostrophes,
                ''. Slax converts these to typographic quotation marks, because that is
            what the user intends, even though MicroComp would have typeset these as pairs of single
            quotation marks.
In line 4, we have the following code: ␇I11Mr. ␇T4SULLIVAN␇T1 (for himself and
                Ms. ␇T4Murkowski␇T1). That line invokes locator 11, whose default is typeface
            1, which has no special font modifications. But when typeface 4 is specially invoked
            (twice) it calls upon small caps as a modifier for the lowercase letters. Each word
            governed by ␇T4 includes uppercase letters, which are not subject to the
            small caps modification. Hence, the Slax representation results in some structures where
            font modification is toggled on and off. Note that Slax output has URKOWSKI
            in all caps. That reflects the actual byte displacement process defined by MicroComp's
            grid, which calls for the codepoints to be changed from lowercase to uppercase, and also
            instructs MicroComp to reduce their size. The glyph width information in the grid
            specifications is used to specify the width of the letters rendered as small caps, so
            that they are smaller than the letters not so rendered.
The locator sample I have used throughout this paper has a relatively simple
            structure, and the bell codes are used only to navigate formats, grids, and typefaces.
            The locator format has other bell codes, for other components, and to describe them
            would make this article overly long. However, at least something should be said about
            tables, because of their complexity.[6] Here is a sample table in the locator format and its typeset form:


␇c5,L2,i1,s50,12,12,12,12  
␇I95Comparison of Base Charge and Rates  
␇h1  
␇h1FY 2020 
␇h1FY 2021 
␇h1Amount change 
␇h1Percent change
␇j
␇I01Base Charge ($)
␇D$66,419,402
␇D$65,443,462
␇D-$975,940
␇D-1.5
␇I01Composite Rate (mills/kWh)
␇D18.08
␇D18.10
␇D0.02
␇D0.1
␇I01Energy Rate (mills/kWh)
␇D9.04
␇D9.05
␇D0.01
␇D0.1
␇I01Capacity Rate ($/kW-Mo)
␇D1.75
␇D1.69
␇D-0.06
␇D-3.4
␇e

        
Figure 2: Typeset version of Federal Register, 85 no. 169, August 31, 2020, p. 53810,
                https://www.govinfo.gov/app/details/FR-2020-08-31
[image: ]


A table in locators is commonly called a subformat, because the traditional format
            specifications continue to be used, but different settings are invoked. A table's start
            and end are signaled by ␇c and ␇e, respectively, with the
            division between head and body signaled by ␇j. The first line has a complex line of code
            declaring the parameters for the table and the specifications for each column. There are
            other features, not illustrated above, that make tables one of the most daunting parts
            of the locator format. Rather than point out every feature of the table, I provide here
            the Slax representation:


<table cols="5" rules="cross down" standard-stub-indent="1" font-no="5" font-mod-no="0"
   font-name="Helvetica" font-mod-name="none">
   <tgroup>
      <colspec colnum="1" colname="c1" min-width="50" width-unit="point" type="stub"/>
      <colspec colnum="2" colname="c2" min-width="12" width-unit="figure" type="figure"/>
      <colspec colnum="3" colname="c3" min-width="12" width-unit="figure" type="figure"/>
      <colspec colnum="4" colname="c4" min-width="12" width-unit="figure" type="figure"/>
      <colspec colnum="5" colname="c-last" min-width="12" width-unit="figure" type="figure"/>
      <title loc-no="95" continues="true">Comparison of Base Charge and Rates </title>
      <thead>
         <head level="1" column="1"> </head>
         <head level="1" column="2">FY 2020 </head>
         <head level="1" column="3">FY 2021 </head>
         <head level="1" column="4">Amount change </head>
         <head level="1" column="5">Percent change</head>
      </thead>
      <tbody>
         <row>
            <entry loc-no="1" leadered="true" base-indentation-in-ems="0">Base Charge
               ($)</entry>
            <entry>$66,419,402</entry>
            <entry>$65,443,462</entry>
            <entry>-$975,940</entry>
            <entry>-1.5</entry>
         </row>
         <row>
            <entry loc-no="1" leadered="true" base-indentation-in-ems="0">Composite Rate
               (mills/kWh)</entry>
            <entry>18.08</entry>
            <entry>18.10</entry>
            <entry>0.02</entry>
            <entry>0.1</entry>
         </row>
         <row>
            <entry loc-no="1" leadered="true" base-indentation-in-ems="0">Energy Rate
               (mills/kWh)</entry>
            <entry>9.04</entry>
            <entry>9.05</entry>
            <entry>0.01</entry>
            <entry>0.1</entry>
         </row>
         <row>
            <entry loc-no="1" leadered="true" base-indentation-in-ems="0">Capacity Rate
               ($/kW-Mo)</entry>
            <entry>1.75</entry>
            <entry>1.69</entry>
            <entry>-0.06</entry>
            <entry>-3.4</entry>
         </row>
      </tbody>
   </tgroup>
</table>

        
Although the Slax version is more verbose than the locator version, it is also more
            informative, and a significant step in the direction of making the tables HTML- or
            CALS-compliant. The locator version indirectly or implicitly points to settings that are
            expressed explictly in the Slax version. For example, the first line in the locator file
            is used to populate various attributes for <table> and
                <colspec>.  Within the table body, ␇I01 in the locator
            file invokes subformat specifications about whether a cell is leadered or not, or what
            level of indentation it should receive, expressed in the <entry>
            attributes.
For both tables and running text, when Slax serializes locators, it may encounter
            syntax errors. If they are not fatal, the location of the error, and its specific
            message, are recorded. When the Slax XML file is written, each erroneous location is
            anchored by a comment whose content is an integer one greater than the previous anchor's
            value. At the end of the file all errors are listed. A Slax Schematron schema associates
            each error with the particular place in the file, so that users in Oxygen or other XML
            editors can quickly find errors. Schematron, of course, is not the main Slax schema,
            which is written in RELAX-NG, so if the locator serialization process results in
            syntactic absurdities (some of which MicroComp might overlook), users have two registers
            of validation.
The Slax XML samples above are representative. Slax has been applied to tens of
            thousands of locator files, and more often than not what emerges is a relatively flat
            tree. The occasional <format> adds some depth to what is otherwise
            normally an undifferentiated long sequence of <locator>s, whose
            attributes give no sign of semantic function. Within the <locator>
            blocks are inline elements that deal with character- or phrase-based exceptions to the
            block rules.
In looking at Slax XML I am reminded of Microsoft Word docx files, OpenOffice odt
            files, and early word processor formats, which share a similar typology. I think of them
            not as trees but as hedgerows. The hierarchy is rarely deep, even though the printed
            result might give the illusion of depth. Behind the scenes, the files consist of very
            lengthy sequences of text blocks, kept all on the same level, like hedgerows along a
            road.
The exception to that general trend pertains to tables and lists. In the locator
            format, tables never nest. So when a table is encountered, its depth always has a
            maximum limit. Here the locator format is shallower than its word processor
            counterparts, which normally allow tables and other structures to nest recursively. In
            the case of lists, the locator format makes no attempt to preserve the hierarchical
            structure, but simply assigns each list item, regardless of its semantic depth, to one
            of a series of <locator>s. Whether the user creates deep, beautiful
            lists, or illogical or inconsistent ones, it is all the same flat structure. The locator
            format stays out of the business of monitoring the proper use of hierarchical
            structures.

Conclusion and Further Work
Slax is still under development. Securing an adequate test suite is difficult. Many of
            the dark corners of AComp remain to be explored. Although much work has been done
            testing the serialization, only some effort has been put into the next stage, namely,
            using Slax XML as a pivot format for conversions to USLM, HTML, and XML for typesetting
            with XPP. More work needs to be done to allow users to supply their own custom format
            and grid specifications. That is critical for any attempts to reconstruct previous
            versions of formats and grids, in order to accurately convert legacy locator
            files.
Desiderata aside, Slax shows enormous promise. It demonstrates the power of XSLT for
            lossless parsing of complex documents. It models an optimal balance between declarative
            and imperative programming. And it results in a tool and an XML format I wish I could
            gift to my predecessors.

Bibliography
[andries_and_wood] Andries, Patrick, and Lauren Wood. “Converting
            Typesetting Codes to Structured XML.” Presented at Balisage: The Markup Conference 2020,
            Washington, DC, July 27–31, 2020. In Proceedings of Balisage: The
                Markup Conference 2020. Balisage Series on Markup Technologies, vol. 25
            (2020). doi:https://doi.org/10.4242/BalisageVol25.Wood01.
[boyle] Boyle, John J. “Electronic Composing System Applications.” In
                Electronic Composition in Printing: Proceedings of a
                Symposium, edited by Richard W. Lee and Roy W. Worral, pp. 90–93.
            National Bureau of Standards Special Publication 295. Washington, DC: National Bureau of
            Standards, 1968. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication295.pdf.
[cavanaugh] Cavanaugh, John F. “Text Handling at the United States
            Government Printing Office.” Technical Communication
            25, no. 3 (1978): 12–15.
[gpo_1967] Government Printing Office. “Annual Report of the Public
            Printer.” GPO, 1967. https://www.govinfo.gov/content/pkg/GOVPUB-GP-f1e8461d646b2f25f3c9487e7d1a8619/pdf/GOVPUB-GP-f1e8461d646b2f25f3c9487e7d1a8619.pdf.
[gpo_1978] Government Printing Office. “Annual Report of the Public Printer.” GPO, 1978. https://www.govinfo.gov/content/pkg/GOVPUB-GP-3677bb1bb9a1aadf7e794f482d785082/pdf/GOVPUB-GP-3677bb1bb9a1aadf7e794f482d785082.pdf.
[gpo_1979] Government Printing Office. “Annual Report of the Public Printer.” GPO, 1979. https://www.govinfo.gov/content/pkg/GOVPUB-GP-32dc4c28ea4b47eb69076a03bc3330d4/pdf/GOVPUB-GP-32dc4c28ea4b47eb69076a03bc3330d4.pdf.
[gpo_1980] Government Printing Office. “Annual Report of the Public Printer.” GPO, 1980. https://www.govinfo.gov/content/pkg/GOVPUB-GP-ddfb1d6276c5911c3e64db0a406ebdcc/pdf/GOVPUB-GP-ddfb1d6276c5911c3e64db0a406ebdcc.pdf.
[gpo_1989] Government Printing Office. “Annual Report of the Public Printer.” GPO, 1989. https://www.govinfo.gov/content/pkg/GOVPUB-GP-9b5c6bc8466be4c144860e27da375e58/pdf/GOVPUB-GP-9b5c6bc8466be4c144860e27da375e58.pdf.
[gpo_1991] Government Printing Office. “Annual Report of the Public Printer.” GPO, 1991. https://www.govinfo.gov/content/pkg/GOVPUB-GP-2c3e69ce51feee11c9b9b677cb2ab61c/pdf/GOVPUB-GP-2c3e69ce51feee11c9b9b677cb2ab61c.pdf.
[gsdd_1983] Graphic Systems Development Division. Publishing from a Full Text Data Base. 2nd ed. Government Printing
            Office, 1983.
[hincherick] Hincherick, William. “Automated Composition: The Development and Utilization of
            a Unique System for the U.S. Government Printing Office.” Government Publications Review 12, no. 3 (May 1, 1985): 215–25. doi:https://doi.org/10.1016/0277-9390(85)90024-X.
[jcp_1970] Joint Committee on Printing. A Review
                of the Costs of Electronic Composition. Washington, DC: Government
            Printing Office, 1970. https://books.googleusercontent.com/books/content?req=AKW5QaeWNgnmTS8iokrWgPMpUCmH7iL_b6O-2hWqseh2KFS7vx4VG9LKehbSXls1GDhp53niauWamLgtWxHpI3nAXm_aOQAQtF9NaeuaCAKa0LiK0kCSiOhgWEEMHAR7-jQajQmiHaYs1FlZHklblXrVAMdou8z7vXlzgt9d-kX05Ns9ZQteUpgX6FOQL2hMgLG0Rd2AXFTom1wWKdSHno4GY_mlZln097bCA3Tv67-CjaF3atlrrxVbx6-tkB4zBPLua2KVKPOn3qt75Sl3WHSmnLOJRpvx_w.
[mlc_1966] Mergenthaler Linotype Corporation. Linotron 1010, 2013. https://vimeo.com/75532295.
[rollert] Rollert, Donald. “Memo,” March 24, 1984. Production
            Engineering Department, Government Printing Office.
[uspo_1963] United States Patent Office. Roster of
                Attorneys Registered to Practice Before the U.S. Patent Office.
            Washington, DC: Government Printing Office, 1963. https://books.googleusercontent.com/books/content?req=AKW5Qad1E04U2swX7_CxXQayhBIFoxd-VodKezL9dQjpDkTbqlBUEfvliUEK5P5gdu15OoemBK57eNCGrGeZJ4G8b974MgGUmiEA6daCblZZYRDeEHr7dW4yjr21dZecUcit00FzOs_TczdKV565Dv7M9AqgfGSIMwq4mPTTXr2LWXeU4lJtdqaDNi3wP3INIe1_zM9KJTCkr7BQQRC_En0XXXz4i_4P0c8lqytWu2n8rGrtd7TVOS2os_Z8ZTgv9uqsw4buoEMsw5AMy1S_uaxFyj4vLgvYWw.
[stevens_and_little] Stevens, Mary Elizabeth, and John L. Little. Automatic
                Typographic-Quality Typesetting Techniques: A State-of-the-Art Review.
            National Bureau of Standards Monograph 99. Washington, DC: National Bureau of Standards,
            1967. https://www.govinfo.gov/content/pkg/GOVPUB-C13-49f6b3c3ddbcc96d84cc5b060de5ae76/pdf/GOVPUB-C13-49f6b3c3ddbcc96d84cc5b060de5ae76.pdf.
Worsnop, R. L. (1968). “Computers in Publishing.” Editorial Research Reports 2 (1968). http://library.cqpress.com/cqresearcher/cqresrre1968071000.



[1] I sincerely thank Peter W. Binns and Mark Harcourt for reading a draft of this
                    communication, and providing excellent suggestions.
[2] Various documents, including PFTDB, can be accessed
              at the Request for Proposal site archived from 2009, https://web.archive.org/web/20091008230407/gpo.gov/vendors/composition.htm.
[3] In standard typography, typeface refers to a unified
                        ensemble of type design, e.g., Ionic, which is represented by one or more
                            fonts, e.g., Ionic roman, Ionic italic. Locator
                        documentation, however, uses typeface in an
                        idiosyncratic way, to refer to one of the five parts of a grid file, i.e., a
                        set of 128 characters. In this article when I use
                            typeface, it is in the locators sense; when I mean
                        the standard typographic term, I use simply face.
                        Thanks to Peter Binns for prompting me to be clear on terminology.
[4] A grid also lists the relative width of each glyph, and the hyphenation code,
                    but most users of Slax would have little if any use for that information. If
                    someone really wanted to know about the PostScript font glyphs, they could
                    access the grid specifications in XML, or the actual font tables, as separate
                    resources.
[5] My MD5 hash algorithm is part of the Text Alignment Network XSLT function
                    library, and is documented here: https://textalign.net/release/TAN-2021/guidelines/xhtml/ch13s02.xhtml#function-md5.
[6] I thank Mark Harcourt for prompting me to include this discussion. I wrote the
                    Slax conversion for locator tables independently of similar work performed by
                    Priscilla Walmsley and Martin Smith. I have benefitted from the output of their
                    conversion routines for testing Slax output. That we reached similar conclusions
                    on how the tables should be interpreted is gratifying.

Balisage: The Markup Conference

Serializing the Locator Format of the United States Government Publishing Office as
        XML
Joel Kalvesmaki
Joel Kalvesmaki is a software developer for the United States Government
                    Publishing Office, founder and director of the Text Alignment Network, and a
                    scholar specializing in early Christianity.



Balisage: The Markup Conference

content/images/Kalvesmaki01-002.png
53810 Federal Register/Vol. 85, No. 169/ Monday, August 31, 2020/ Notices

basis through September 30, 20221 The
rate-setting methodology for BCP
calculates an annual base charge rather
than a unit rate for Hoover Dam
hydropower. The base charge recovers
an annual revenue requirement that
includes Western Area Power
Administration (WAPA) and Bureau of
Reclamation (Reclamation) projected
costs of investment repayment, interest,

operations and maintenance (O&M),
replacements, payments to States, and
‘Hoover Dam visitor services. Non-power
revenue projections such as water sales,
Hoover Dam visitor center revenue,
ancillary services, and late fees help
offset these projected costs. Customers
are billed a percentage of the base
charge in proportion to their Hoover
power allocation. Rates are calculated

for comparative purposes but are not
used to determine the charges for

service.

Rate Schedule BCP-F10 and the BCP
Electric Service Contract require WAPA

to determine the annual base !

harge and

rates for the next FY before October 1
of each year. The FY 2020 BCP base
charge and rates expire on September

30,2020.

COMPARISON OF BASE CHARGE AND RATES

‘Amount Percent
FY 2020 FY 2021 Amount Forcent
Base Charge ($) $66,419,402 |  $65443462 |  —$075,040 15
‘Composite Rate (milskWh) 18.08 18.10 002 o1
Energy Rate (milSkWh) 904 905 001 ot
‘Gapacty Rate (SKW-Mo) 175 169 o008 a4

A 53 million increase in prior year

[t s S

and rates and initiated the 90-day public

R A e e e

lecrease in Hoover Dam visitor center






content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies





content/images/Kalvesmaki01-001.png
—

SENATE RESOLUTION 77—DESIG-
NATING FEBRUARY 16, 2023, AS
“NATIONAL ELIZABETH
PERATROVICH DAY™

Mr. SULLIVAN (for himself and Ms.
MURKOWSKI) submitted the following
resolution; which was considered and
agreed to:

S. RES. TT

Whereas Elizabeth Wanamaker
Peratrovich, Tlingit, was a member of the
Lukaax.adi clan in the Raven moiety with
the Tlingit name of Kaaxgal.aat (referred to
in this preamble as ‘‘Elizabeth’) who fought
for social equality, civil liberties, and re-
spect for Alaska Native and Native American
communities;





