[image: Balisage logo]Balisage: The Markup Conference

The Dream of a CMS
Ari Nordström

Balisage: The Markup Conference 2023
July 31 - August 4, 2023

Copyright © 2023 Ari Nordström

How to cite this paper
Nordström, Ari. "The Dream of a CMS." Presented at: Balisage: The Markup Conference 2023, Washington, DC, July 31 - August 4, 2023. In Proceedings of Balisage: The Markup Conference 2023.
 Balisage Series on Markup Technologies vol. 28 (2023). https://doi.org/10.4242/BalisageVol28.Nordstrom01.

Abstract
An XML-first content management system — XML technologies handling XML content in
 an XML database — has been the author's dream for the last decade and a half, ever
 since he first found a way to break free from the shackles of non-XML technologies
 limiting what he could do.
A portal for an automotive client provided both an interesting, and XML-centric,
 case study using quite a few X technologies, but just as importantly
 a way forward to finally implementing that system.

Balisage: The Markup Conference

 The Dream of a CMS

 Table of Contents

 	Title Page

 	For Want of a Proper CMS
 	XML First

 	A Question and a Devious Plan

 	The Portal
 	Content

 	Browsing and Filtering

 	Publishing

 	What's in a CMS? Asking for a Friend.

 	Do-It-Yourself Document Management
 	Authoring

 	Document Management
 	Versions and Workflow

 	In Closing
 	But What About...?

 	The First Live Version

 	About the Author

 The Dream of a CMS

For Want of a Proper CMS
This paper started life around fifteen years ago, when I was spending my professional
 life designing a document management system based on a then-popular XML editor and a SQL
 database. The system had a document management layer with full integration between the
 editor and the database, exact versioning and traceability, translation handling, and,
 of course, XSL for publishing.
It had all kinds of bells and whistles — and yet, adding any kind of new processing
 capabilities, be it editor functionality or additional publishing targets, was a
 nightmare because the system was based on technologies and languages far removed from
 XML. As a markup person, I relied on programmers specialising on .net for even the
 slightest change.
XML First
That all changed with XProc 1.0. As long as I had something in the DMS calling an
 XProc engine and a pipeline of my choice, adding a new publishing format or an
 import function was a matter of writing the stylesheets and an associated pipeline.
 It was brilliant!
And it was to get even better — not only was I able to write an XProc pipeline for
 the processing but I could also generate a matching user interface in XForms using
 XProc! [Using XML to Implement XML]
Some time later, I helped design another content management and (web-based)
 publishing system to produce regulatory checklists for farmers seeking national and
 EU funding, this time using oXygen and eXist-db [XML Solutions for Swedish Farmers: A Case Study].
 Importantly, beyond a few web technologies and design choices outside of my control,
 it was all implemented using XML technologies — XProc, XSL, XLink, XQuery, and a few
 other things beginning with X — so rather than having to deal with
 binary blobs in a SQL database, I could query and process the XML directly.
My next step was to test the waters by combining the aforementioned XProc and
 XForms publishing approach with eXist-db [ProXist]. It was a bit
 clunky but it worked; I was able to output a UI, published by an XProc pipeline and
 associated framework, based on the type of output pipeline I had.
I still missed version management and full traceability — what I had in that SQL
 server-based system — but implemented in an XML database using XML technologies. I
 came up with VML [Multilevel Versioning],
 an XML vocabulary for version management, and an outline suggesting how to implement
 it in eXist-db.

A Question and a Devious Plan
The XML first content management approach stayed with me. I would
 occasionally suggest solutions along those lines for my clients while keeping busy
 with migration pipelines, publishing stylesheets, and DITA customisations, but
 surprisingly no-one wanted to sponsor my XML-first system. I did write another
 eXist-db and XForms project, a registration app for Balisage's sister conference,
 Markup UK [Eating Your Own Dog Food],
 but that was about as close I got.
But then, in 2022, a client asked me how I would go about implementing a portal
 for publishing DITA and S1000D content. The portal would publish the service
 documentation of a car manufacturer about to launch their very first model, but also
 fit into my client's larger strategy of providing an entire service lifecycle
 management chain, from 3D CAD data to service and end user documentation, parts
 catalogues, and so on.
I proposed a system where the XML content is stored in an XML database as-is,
 without pre-converting anything, filtered and queried as-is, and finally published
 to HTML on the fly. I had a devious plan.

The Portal
The portal happened in a specific context, namely in the publishing of web-based
 documentation within automotive and aerospace industries — user guides, workshop
 manuals, bulletins, parts catalogues, etc, much of which is accompanied by 3D graphics
 and animations produced directly from the product CAD data — using XML vocabularies such
 as DITA and S1000D.
It's just a portal, though; the content is authored elsewhere, in an unrelated system
 that doesn't know about the portal's existence. Similarly, the portal does not care
 where the content comes from.
Content
DITA [DITA Specification] and
 S1000D [S1000D Specifications],
 while very different on markup level, have similar approaches to content: firstly,
 there are the topics, that is, the reusable blocks of information where the actual
 content lives, and secondly, there are the publications or structure descriptions
 (maps in DITA, publication modules in S1000D) that
 combine the topics into actual documents with chapter and section hierarchies.[1]
The portal had to be able to display both — individual topics would be enough for,
 say, a disassembly task or a function description for a single component, while the
 structures would be needed to browse through the full publications.
A structure view helps illustrate the overall document structure
 and functions as a table of contents, but it also helps highlight the reuse of
 common components — for example, see the arrows pointing to Warning 2
 in Figure 1.
Figure 1: Reusing Topics
[image:]

Both vocabularies employ what is known as conditional
 processing (some vocabularies, including DITA, call it profiling),
 basically declaring applicabilities (which is really S1000D
 terminology) for the content: this topic applies to products A and B,
 this applies to regions APAC and EU, and so on. By profiling
 content from individual paragraphs to entire topics, reusing becomes easier; a
 single topic can be reused in multiple contexts, spanning multiple products, product
 variants, audiences, and so on.
The filtering is, of course, also useful when searching for content, but also for
 publishing on the fly; an end user can select the exact model and variant to only
 include relevant information when publishing to HTML.

Browsing and Filtering
In the portal, we store the source content as-is, and that content needs to drive
 everything. For example, we only list the topic types and profile values actually in
 use in the database, not everything that is possible. The UI should always reflect
 the actual content.
While XML databases use XML as their primary format, we still want to generate
 basic resource lists only once, when initialising, rather than every time those
 resources are queried.[2] This makes most operations far quicker, especially with a large enough
 database.
The initialise operation generates several lists, all in XML format:
	A list of profiling attributes and values in use.

	Elements in use.

	Resources considered to be part of the portal content.

The resource list is especially interesting. It is currently limited to
 content and structure XML only, so while there are
 plenty of other files, XML and binary both, they are not used directly by the main
 UI. For each listed XML, we add a basic information such as a database URI and a
 title (extracted from the file contents), but also profiling and topic/resource type
 information. The result is a (very long) list of file elements:
<file xmlns:exist="http://exist.sourceforge.net/NS/exist" uid="d97e1" depth="-1" selected=""
 type="topic" uri="/db/test/content/dita-examples/01/my_first_portal_topic.dita"
 name="my_first_portal_topic.dita" created="2023-04-09T19:29:19.867+02:00"
 last-modified="2023-04-09T19:29:19.867+02:00" id="my_first_portal_topic"
 dita-content-type="content" product="A" audience="C D E"
 root-profiles="product(A) audience(C D E)" outputclass="" excluded="false">
 <title xmlns:ditac="http://cadituk.com/xquery/ditac">My First Portal Topic</title>
</file>
<file xmlns:exist="http://exist.sourceforge.net/NS/exist" uid="d98e1" depth="-1" selected=""
 type="topic" uri="/db/test/content/dita-examples/01/second_portal_topic.dita"
 name="second_portal_topic.dita" created="2023-04-09T19:29:19.9+02:00"
 last-modified="2023-04-09T19:29:19.9+02:00" id="my_second_portal_topic"
 dita-content-type="content" product="A B" audience="D E"
 root-profiles="product(A B) audience(D E)" outputclass="" excluded="false">
 <title xmlns:ditac="http://cadituk.com/xquery/ditac">Second Portal Topic</title>
</file>
The file list is read by an XForm and presented as a file browser with various
 controls:
Figure 2: File List
[image:]

For structures (maps) we add nested file elements
 representing linked resources. Here's a DITA map structure:
<file xmlns:exist="http://exist.sourceforge.net/NS/exist" uid="d89e1" depth="-1" selected=""
 type="map" uri="/db/test/content/dita-examples/02/section_d.ditamap"
 name="section_d.ditamap" created="2023-04-09T19:29:19.791+02:00"
 last-modified="2023-04-09T19:29:19.791+02:00" id="map_bb1_hd1_3vb"
 dita-content-type="structure" outputclass="" excluded="false" expanded="false">
 <title xmlns:ditac="http://cadituk.com/xquery/ditac">Section D</title>
 <file uid="d90e1" depth="0" selected="" type="topic"
 uri="/db/test/content/dita-examples/02/topic_8.dita" name="topic_8.dita"
 created="2023-04-09T19:29:19.519+02:00" last-modified="2023-04-09T19:29:19.519+02:00"
 id="topic_8" dita-content-type="content" outputclass="CLS2" excluded="false">
 <title xmlns:ditac="http://cadituk.com/xquery/ditac">Topic 8</title>
 </file>
</file>
The View button starts a publishing process that converts the
 selected topic to HTML and opens it in a separate tab. For DITA maps, that button
 becomes a Browse button and presents the structure as a tree,
 with expandable subtrees and, of course, viewable topics:
Figure 3: Map View
[image:]

The UI is generated from the file list XML using an initial XQuery script that
 calls some XSLT, allowing us to not only localise the UI (all UI labels and text are
 stored in language- and country-specific XML files) but also configure how the UI is
 presented, using a configuration XML file to define what features are being used.
 For example, one setting allow us to select one or more resources for later
 processing or filtering:
Figure 4: Select/Unselect Buttons
[image:]

Additional controls allow us to filter the file list by applying profiling
 information:
Figure 5: Profiling Controls
[image:]

When applying filters, we simply add the currently selected values to the file
 list XML:
<profiles>
 <product>
 <value>B</value>
 </product>
 <platform/>
 <audience/>
</profiles>
This is used by the XForm controls, of course, but also for publishing. When a
 topic is published (see section “Publishing”), the profiles element is converted to a
 DITAVAL filter [TBA ref] and sent to the publishing process as a parameter.
Most of the file browsing and filtering features are implemented with XForm
 controls that either act on the file list XML directly or call XQuery
 functions.
A configuration XML file controls most aspects of the UI, including styling,
 scripts, and so on, so changing the appearance of the UI is a matter of tweaking the
 CSS stylesheet(s) and updating the UI configuration:
Figure 6: Alternative UI Layout
[image:]

Finally, note that the file list XML acts as an XForms instance, so in addition to
 the resource metadata, we frequently set attribute values for XForms-related
 processing. For example, in the nested file elements shown above, there
 is an @expanded attribute to expand and collapse the tree
 representation. Other processing includes the resource type and the DITA
 outputclass, both of which are useful when filtering and publishing.

Publishing
The first portal version ended up being a DITA implementation because that's what
 the customer, an automotive manufacturer, is using. DITA isn't without its
 advantages; most aspects of DITA, from authoring to publishing, are well supported
 today, meaning that we wouldn't have to write publishing stylesheets from scratch.
 Rather than using the DITA Open Toolkit, a first choice for many implementers, we
 chose XMLMind's DITAC framework [XMLmind DITA Converter] because it was far better suited to being integrated with
 eXist-db.
Standard DITA functionality, from profiling using DITAVAL filters to conref links,
 is provided by DITAC out-of-the-box, which is a huge help: DITAC includes default
 stylesheets for HTML, PDF, and a few other formats. This means that a DITAC
 stylesheet to output a specific layout, known as a plugin, is really
 just an extension and therefore much faster to write.
The portal DITAC implementation brings the functionality to eXist-db and deals
 mostly with database URIs and packaging, but also JavaScript code to handle 3D[3]:
Figure 7: 3D in an Illustrated Parts Catalogue
[image:]

Most aspects of the portal are XML technologies that the author feels quite
 comfortable with; this is not one of them.

What's in a CMS? Asking for a Friend.
What's in a CMS, really? What does it take? And mind, while I am a proponent of
 open-source software[4], this exercise is not about that; rather, it's about yours truly arriving at
 a point where document (content) management can be had without a year-long project[5] or an expensive third-party system offered by consulting firms who really
 want to make money from additional services and support[6], or both. Some people build boats or cars from scratch just because they
 can, even though money can buy both. Me, I want to build a document (content) management
 system and then take it for a spin.
So, again, what does it take?
	Storage. Being a pointy brackets person[7], I'm partial to XML databases, and there are several alternatives
 out there.

	Authoring. There are plenty of alternatives, from open-source editors to
 commercial products with everything supported out-of-the-box.

	Publishing. Again, plenty of alternatives. XSLT and FO are no-brainers if you
 want to write the stylesheets yourself.

	Management. This is the heart of the matter, really, isn't it? It's about
 listing whatever resources you store and author and publish, about searching and
 filtering their contents, and about keeping track of them.

Do-It-Yourself Document Management
The alert reader will have noticed where this is going, of course. The portal is
 half-way to a CMS:	Storage? Yes, we already store the content in an XML database so all kinds
 of things become possible.

	Authoring? No, we don't have that per se but read
 on.

	Publishing? Check.

	Management? Yes, we have some of it. Read on.

Authoring
Adding authoring is easy, and easiest by far is to connect oXygen XML Editor to
eXist-db[8], with the connector available out-of-the-box. Other editors require more
 work. If all you want is an integration to the (XML) database without versioning,
 then we're done.
Note
Obviously, if you're integrating Emacs, you'll have more
 to do.

Actually, even with versioning, I'd argue we're only ever going to edit the latest
 version of any document. If you check out an earlier one, you still don't actually
 edit that version, you create a fork and edit that instead.[9]
In a proper version management with check-out and check-in, your editor
 integration will require additions to do that.[10] I'd argue that the check-out function is a matter of locking the file
 and reasonably easy to achieve. There are probably also a number of convenience
 functions, but for a bare-bones authoring environment, this should be enough.
A reviewer rightly pointed out that the editor is frequently a stumbling block for
 non-markup people. While I do agree, addressing that particular problem must come
 later. oXygen, for example, makes an excellent effort towards user-friendliness for
 many types of authors[11], with or without an associated CMS, and so I would argue that a
 well-designed CMS (which this one aims to be) can only help.

Document Management
And we arrive at the heart of the matter. You'll note that we already have
 browsing and filtering capabilities; I'd argue that the portal's browsing UI isn't
 needed for basic editing when using oXygen (see section “Authoring”) since we'll
 always edit the latest version and the whole versioning business is handled in the
 CMS.
Other editors might have to either implement proper in-editor integration — which
 to me sounds a fairly difficult thing to do — or add a UI trigger to open a selected
 resource in the XForm, much like the buttons shown in Figure 4. That
 function, of course, would be a little something written in XQuery, perhaps made
 slightly more complex with check-out/check-in functionality.
The check-out/check-in functionality requires a suitable flag, of course, but it's
 is easy enough to add one to the file list XML as an attribute (with the flag
 controlled by XQuery functions behind the scenes):
<file checkout="true">...</file>
Other flags (and associated XQuery functions) are easily implemented, of
 course.
Versions and Workflow
This is not a paper on versions or workflow (which, by the way, are
 not the same or even close), but I do believe that the
 portal's basic approach to file listing and browsing is well suited to being
 expanded for the purpose.
I've long advocated an approach that centers on identifying resources using
 URNs (Uniform Resource Names). That URN identifies a resource on multiple
 levels, a base identifier followed by a point in time and a rendition, something
 like this:
urn:x-example:thing:123456:<version>:<xmllang>
If all you want is to identify an abstract notion of that resource, without a
 point in time (version) or a specific rendition (language and locale), you are
 left with a base identifier:
urn:x-example:thing:123456
Again, this is a base identifier, identifying the
 resource in its purest and most abstract form. My paper on versioning [Multilevel Versioning] explains how it
 all works and suggests how to handle versioning and workflows, so what is left
 here is to connect that with the portal's file list XML:
<file urn="urn:x-example:thing:123456">...</file>
This means that the base resource is identified by @urn but
 that's it; any decisions on what version that should be used is left to other
 business logic. Of course, given the nature of the file list XML, we might
 reasonably expect it to use the latest version (and perhaps whatever language
 and locale we're displaying at the moment). Alternatively, we might just provide
 a specific value when publishing[12]:
<file urn="urn:x-example:thing:123456" version="15">...</file>
We can also use this approach to generate a list of versions of a single
 resource:
<file urn="urn:x-example:thing:123456" version="15">...</file>
<file urn="urn:x-example:thing:123456" version="14">...</file>
<file urn="urn:x-example:thing:123456" version="13">...</file>
...
Or include translations to show what versions have them:
<file urn="urn:x-example:thing:123456" version="15">...</file>
<file urn="urn:x-example:thing:123456" version="14">...</file>
<file urn="urn:x-example:thing:123456" version="14" xml:lang="sv-SE">...</file>
<file urn="urn:x-example:thing:123456" version="14" xml:lang="fi-FI">...</file>
<file urn="urn:x-example:thing:123456" version="13">...</file>
...
Notably, though, the file list XML is in no way a master list. It's for
 presentational and editing purposes only, and the actual master is a VML XML
 instance, with XQuery code keeping track of the two using the base URNs as
 keys.

In Closing
There is some way to go still, but I do think that an XML-first CMS based on the
 portal and some other bits and pieces is a distinct possibility. Some of it may happen
 well before Balisage[13], but I doubt I'll have full-blown versioning before the end of this
 year.
But What About...?
While I've thought about the subject for years[14], this paper simply cannot reflect everything. Also, I could be missing
 something obvious. The latter I can't do much about, but here's to addressing at
 least some of the outstanding questions:
	Yes, the portal does handle localised content. Think of it as profiling —
 we're filtering on @xml:lang identifying 4-position
 language/country codes.

	Version management is a really big subject and impossible to fully address
 here. You'll need to read the paper[15] I wrote on the subject [Multilevel Versioning]. It's
 certainly not definitive but I will be more than happy to argue my
 points.

	Workflow management in a CMS, similarly, is not possible to address
 here.

	Binary (non-XML) files are manageable in the same way as the XML files.
 The reason the portal limits the file list to XML is simply that we don't
 currently support doing anything with the non-XML files beyond what we do
 now, namely to display them if linked to from the XML.
This is easy enough to change because there is currently a function to
 specifically remove non-XML (and a few XML files, too, because not all XML
 is content) files from the file list. We'll need to decide what to do with
 them first.

	The first implementation is somewhat DITA-centric, yes. Later versions
 will generalise much of the code to handle other vocabularies (S1000D and
 ATA XML to start with, but I'd assume DocBook will also follow).
As for schema languages, S1000D is on top of the list so we'll have at
 least one XML Schema implementation. The current DITA implementation uses
 DTDs, although Relax NG can be added with very minor updates.

The First Live Version
The portal went live before Christmas 2022 in what the author does regard as an
 unqualified success. The database contains 100+ GB of data, much of it 3D content
 but also thousands of XML resources, and the performance is surprisingly good. The
 XForms UI, in particular, works amazingly well.

Bibliography
[Using XML to Implement XML] Using XML to
 implement XML [online, fetched on 10 April 2023]. https://www.balisage.net/Proceedings/vol8/html/Nordstrom01/BalisageVol8-Nordstrom01.html. doi:https://doi.org/10.4242/BalisageVol8.Nordstrom01
[ProXist] ProXist - XProc Processes in
 eXist [online, fetched on 10 April 2023]. http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
[Multilevel Versioning] Multilevel
 Versioning [online, fetched on 10 April 2023]. https://www.balisage.net/Proceedings/vol13/html/Nordstrom01/BalisageVol13-Nordstrom01.html. doi:https://doi.org/10.4242/BalisageVol13.Nordstrom01
[XML Solutions for Swedish Farmers: A Case Study]
 XML Solutions for Swedish Farmers: A Case Study [online, fetched on 10
 April 2023]. https://www.balisage.net/Proceedings/vol15/html/Nordstrom01/BalisageVol15-Nordstrom01.html. doi:https://doi.org/10.4242/BalisageVol15.Nordstrom01
[Eating Your Own Dog Food] Eating Your Own Dog
 Food [online, fetched on 10 April 2023]. https://www.balisage.net/Proceedings/vol23/html/Nordstrom01/BalisageVol23-Nordstrom01.html. doi:https://doi.org/10.4242/BalisageVol23.Nordstrom01
[DITA Specification] Darwin Information
 Typing Architecture (DITA) Version 1.3 Part 3: All-Inclusive Edition
 [online, fetched on 11 April 2023]. http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html
[S1000D Specifications] S1000D
 Specifications [online, fetched on 11 April 2023]. https://users.s1000d.org/Default.aspx
[XMLmind DITA Converter] XMLmind DITA
 Converter [online, fetched on 10 April 2023]. https://www.xmlmind.com/ditac/

[1] Neither DITA topics nor S1000D data modules
 have a section hierarchy. They describe a single, well, topic.
[2] And update those lists when content is added or removed.
[3] The heavy lifting for the 3D is handled by a proprietary library provided
 by a software vendor, Cortona 3D.
[4] I am writing this on a Linux laptop, after all.
[5] Back in the SGML days, two; the first year you'd design something that didn't
 work, the second you'd do it all over again but better.
[6] This is not in any way to condemn that approach; the author does it for a
 living.
[7] And because I had a bad experience with a SQL database.
[8] Which is what I did to author the rather simplistic DITA examples for this
 paper.
[9] Happy to discuss.
[10] I once worked on a DMS project without explicit check-ins and check-outs.
 They called it optimistic check-out, and essentially they
 relied on being able to manage conflicts when two authors were editing the
 same file at the same time.
[11] I've been involved in a number of projects where the aim was to make
 structured authoring available and easy for non-markup authors. We've come a
 very long way.
[12] Or opening a specific version in an editor.
[13] This is written in April.
[14] Apologies for the presumptuous phrasing; I have, but it does sound
 cocky.
[15] Actually I've written several, for Balisage and elsewhere.

Balisage: The Markup Conference

The Dream of a CMS
Ari Nordström
Ari is an independent markup geek based in Göteborg, Sweden. He has provided
 angled brackets to many organisations and companies across a number of borders
 over the years, some of which deliver the rule of law, help dairy farmers make a
 living, and assist in servicing commercial aircraft. And others are just for
 fun.
Ari is the proud owner and head projectionist of Western Sweden's last
 functioning 35/70mm cinema, situated in his garage, which should explain why he
 once wrote a paper on automating commercial cinemas using XML.

Balisage: The Markup Conference

content/images/Nordstrom01-001.png
Root doc

Chapter 1

Chapter 2

Warning 1

Section 1

[

Section 2

Warning 2

Warning 3

Figure

content/images/Nordstrom01-006.png
(1] 4 Page of 3 [] [] Displaying 11 to 20 of 26
av £ 4 av ID
Section D map map_bb1_hd1_3vb
Use Topic 1 twice map
Search String X . . . X .
My First Portal Topic topic my_first_portal_topic
Second Portal Topic topic my_second_portal_topic
Book Type
o Third Portal Topic topic my_third_portal_topic
Document Type Topic 1 CLs1 topic topic_1
A Topic 10 CLS3 topic topic_10
Topic 11 topic topic11
Show Filtered
Topic 2 CLs1 topic topic_2
Profiling Attribute
) Topic 3 CLs2 topic topic_3
Show Available Profiles

content/images/Nordstrom01-007.png
wt

AUTOMOTIVE
Item Part No. Description | Qty

GRA-1A09-016930 Alternator

Fg1
L)

20 GRA-0000-002600 = Bolt 1
Search String M10x75
30 GRA-0000-002770 = Screw 1
M10x125

Book Type

lllustrated Parts Catalogue v

(e —
Document Type

Show Filtered

Profiling Attribute

Show Available Profiles

W RCR~R0) E]

content/images/Nordstrom01-002.png
|<<l<| Page 2

of 3 | > l >> | Displaying 11 to 20 of 26

Browse
Browse

View

View

View

View

View

View

View

View

AV

Section D

AV

Use Topic 1 twice

My First Portal Topic

Second Portal Topic

Third Portal Topic

Topic 1
Topic 10
Topic 11
Topic 2

Topic 3

CLs1

CLS3

CLs1

CLS2

AV

map
map
topic
topic
topic
topic
topic
topic
topic

topic

ID

map_bbl_hd1_3vb

my_first_portal_topic
my_second_portal_topic
my_third_portal_topic
topic_1

topic_10

topicll

topic_2

topic_3

content/images/Nordstrom01-003.png
<< File List | Chapter 1

View

View

View

View

View

Section A

| Topic 1

| Topic 2

Section B

View

I

- | Section C

| Topic 4
| Topic 5

| Topic 6

| Topic 3

+

Section C

CLs1

CLs1

CLS3

CLS2

CLS3

CLS2

map
topic
topic
map
map
topic
topic
topic
topic

map

map_ozr_kd1_3vb
topic_1

topic_2
map_mbw_jd1_3vb
map_p33_3d1_3vb
topic_4

topic_5

topic_6

topic_3

map_p33_3d1_3vb

product(A) audience(expert)

product(A B)

product(A) audience(novice)

content/images/Nordstrom01-004.png
|<< l<| Page

gl

Browse
Browse

View

+ l - View
+ l - View
ZE View
+ l - View
ZE View
ZE View
ZE View

AV
Section D
Use Topic 1 twice
My First Portal Topic
Second Portal Topic
Third Portal Topic
Topic 1
Tepie 10
Topic 11
Topic 2

Topic 3

of 3 | > l >> | Displaying 11 to 20 of 26

AV AV ID

map map_bbl_hd1_3vb
map
topic my_first_portal_topic
topic my_second portal topic
topic my_third portal topic

CLS1 topic topic_1

CLS3 topie topie—10
topic topic1l

CLS1 topic topic_2

CLS2 topic topic_3

content/images/Nordstrom01-005.png
<< | < Page |1 of 3 |> l>> | Displaying 1 to 10 of 26

Search | | Reset

AV AV AV ID

Second Portal Topic topic my_second_portal_topic

Search String

D Value Topic 5 topic topic_5

Element
v

Book Type Book 1 bookmap bookmap_ldt_ycl 3vb
A My First Projector Bookmap bookmap bookmap-1

Document Type Chapter 1 map map_yp5_ld1_3vb
Y Chapter 2 map map_wzd_ld1_3vb

Show Filtered Relpath to Topic 11 map

Profiling Attribute

product v

Available Profiles
A
B
product
B
| Show Available Profiles

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

