
Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Bit Stream Technology as a Foundation
for XML Parsing Performance

Rob Cameron, Ken Herdy and Ehsan Amiri

School of Computing Science
Simon Fraser University

International Characters, Inc.

August 10, 2009

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Outline

1 Introduction

2 Catalog of XML Bit Streams

3 Parallel Parsing with Bitstream Addition

4 Efficient XML in Java with Array Set Models

5 Compiler Technology

6 Conclusion

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

XML on Commodity Processors

XML appliances and chips have important enterprise
applications.

But what about the bulk of the world’s XML processing?

Our expectation: commodity Intel/AMD/Power PC chips will
continue to dominate.

Our work: systematic exploitation of SIMD capabilities of
these chips for XML processing.

Our innovation: parallel bit stream technology.

A method to process 128 bytes at a time using 128-bit SIMD
registers.

Results: exceptionally promising.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

XML on Commodity Processors

XML appliances and chips have important enterprise
applications.

But what about the bulk of the world’s XML processing?

Our expectation: commodity Intel/AMD/Power PC chips will
continue to dominate.

Our work: systematic exploitation of SIMD capabilities of
these chips for XML processing.

Our innovation: parallel bit stream technology.

A method to process 128 bytes at a time using 128-bit SIMD
registers.

Results: exceptionally promising.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

XML on Commodity Processors

XML appliances and chips have important enterprise
applications.

But what about the bulk of the world’s XML processing?

Our expectation: commodity Intel/AMD/Power PC chips will
continue to dominate.

Our work: systematic exploitation of SIMD capabilities of
these chips for XML processing.

Our innovation: parallel bit stream technology.

A method to process 128 bytes at a time using 128-bit SIMD
registers.

Results: exceptionally promising.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

XML on Commodity Processors

XML appliances and chips have important enterprise
applications.

But what about the bulk of the world’s XML processing?

Our expectation: commodity Intel/AMD/Power PC chips will
continue to dominate.

Our work: systematic exploitation of SIMD capabilities of
these chips for XML processing.

Our innovation: parallel bit stream technology.

A method to process 128 bytes at a time using 128-bit SIMD
registers.

Results: exceptionally promising.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

XML on Commodity Processors

XML appliances and chips have important enterprise
applications.

But what about the bulk of the world’s XML processing?

Our expectation: commodity Intel/AMD/Power PC chips will
continue to dominate.

Our work: systematic exploitation of SIMD capabilities of
these chips for XML processing.

Our innovation: parallel bit stream technology.

A method to process 128 bytes at a time using 128-bit SIMD
registers.

Results: exceptionally promising.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

XML on Commodity Processors

XML appliances and chips have important enterprise
applications.

But what about the bulk of the world’s XML processing?

Our expectation: commodity Intel/AMD/Power PC chips will
continue to dominate.

Our work: systematic exploitation of SIMD capabilities of
these chips for XML processing.

Our innovation: parallel bit stream technology.

A method to process 128 bytes at a time using 128-bit SIMD
registers.

Results: exceptionally promising.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

XML on Commodity Processors

XML appliances and chips have important enterprise
applications.

But what about the bulk of the world’s XML processing?

Our expectation: commodity Intel/AMD/Power PC chips will
continue to dominate.

Our work: systematic exploitation of SIMD capabilities of
these chips for XML processing.

Our innovation: parallel bit stream technology.

A method to process 128 bytes at a time using 128-bit SIMD
registers.

Results: exceptionally promising.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

A Transform Representation of Text

Given a byte-oriented character stream T .

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

A Transform Representation of Text

Given a byte-oriented character stream T .

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

A Transform Representation of Text

Given a byte-oriented character stream T .

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

A Transform Representation of Text

Given a byte-oriented character stream T .

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

A Transform Representation of Text

Given a byte-oriented character stream T .

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

A Transform Representation of Text

Given a byte-oriented character stream T .

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

A Transform Representation of Text

Given a byte-oriented character stream T .

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

A Transform Representation of Text

Given a byte-oriented character stream T .

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

A Transform Representation of Text

Given a byte-oriented character stream T .

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

High Performance Text Processing

Why form parallel bit streams?

Byte-at-a-time text processing is too slow.

Example: XML scan for “<”.
Byte-at-time loop computes only 1 bit per iteration!

So let’s compute those bits in parallel!

Bitwise logic on basis streams bi →[<] stream.
Process 128 positions at a time using SSE registers.

Find next “<” with bit scan instruction (BSF).

Advance up to 63 positions at once.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

High Performance Text Processing

Why form parallel bit streams?

Byte-at-a-time text processing is too slow.

Example: XML scan for “<”.

Byte-at-time loop computes only 1 bit per iteration!

So let’s compute those bits in parallel!

Bitwise logic on basis streams bi →[<] stream.
Process 128 positions at a time using SSE registers.

Find next “<” with bit scan instruction (BSF).

Advance up to 63 positions at once.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

High Performance Text Processing

Why form parallel bit streams?

Byte-at-a-time text processing is too slow.

Example: XML scan for “<”.
Byte-at-time loop computes only 1 bit per iteration!

So let’s compute those bits in parallel!

Bitwise logic on basis streams bi →[<] stream.
Process 128 positions at a time using SSE registers.

Find next “<” with bit scan instruction (BSF).

Advance up to 63 positions at once.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

High Performance Text Processing

Why form parallel bit streams?

Byte-at-a-time text processing is too slow.

Example: XML scan for “<”.
Byte-at-time loop computes only 1 bit per iteration!

So let’s compute those bits in parallel!

Bitwise logic on basis streams bi →[<] stream.
Process 128 positions at a time using SSE registers.

Find next “<” with bit scan instruction (BSF).

Advance up to 63 positions at once.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

High Performance Text Processing

Why form parallel bit streams?

Byte-at-a-time text processing is too slow.

Example: XML scan for “<”.
Byte-at-time loop computes only 1 bit per iteration!

So let’s compute those bits in parallel!

Bitwise logic on basis streams bi →[<] stream.

Process 128 positions at a time using SSE registers.

Find next “<” with bit scan instruction (BSF).

Advance up to 63 positions at once.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

High Performance Text Processing

Why form parallel bit streams?

Byte-at-a-time text processing is too slow.

Example: XML scan for “<”.
Byte-at-time loop computes only 1 bit per iteration!

So let’s compute those bits in parallel!

Bitwise logic on basis streams bi →[<] stream.
Process 128 positions at a time using SSE registers.

Find next “<” with bit scan instruction (BSF).

Advance up to 63 positions at once.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

High Performance Text Processing

Why form parallel bit streams?

Byte-at-a-time text processing is too slow.

Example: XML scan for “<”.
Byte-at-time loop computes only 1 bit per iteration!

So let’s compute those bits in parallel!

Bitwise logic on basis streams bi →[<] stream.
Process 128 positions at a time using SSE registers.

Find next “<” with bit scan instruction (BSF).

Advance up to 63 positions at once.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

High Performance Text Processing

Why form parallel bit streams?

Byte-at-a-time text processing is too slow.

Example: XML scan for “<”.
Byte-at-time loop computes only 1 bit per iteration!

So let’s compute those bits in parallel!

Bitwise logic on basis streams bi →[<] stream.
Process 128 positions at a time using SSE registers.

Find next “<” with bit scan instruction (BSF).

Advance up to 63 positions at once.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

PPoPP ’08: UTF-8 to UTF-16 transcoding

iconv: 17.6-23.2 CPU cycles/byte.

u8u16: 0.9 - 6.8 CPU cycles/byte.

Average case speedup: about 10X.

CASCON ’08: XML statistics application

Xerces C: 32-143 CPU cycles/byte.

Expat: 14-58 CPU cycles/byte.

Parabix: 5-14 CPU cycles/byte.

10X fewer L2 data cache misses.

10X fewer branch mispredictions.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Reported Results

SVG Open ’08: GML to SVG Conversion

JAXP/SAX with Xerces-J: 220 CPU cycles/byte.

JAXP/SAX with Crimson: 230 CPU cycles/byte.

JAXP/SAX with Intel XSS: 210 CPU cycles/byte.

JAXP/XSLT with Saxon: 155 CPU cycles/byte.

JAXP/XSLT with Intel XSS: 65 CPU cycles/byte.

C++/SAX with Intel XSS: 25 CPU cycles/byte.

C++/ILAX with Parabix: 15 CPU cycles/byte.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Performance Prospects

First generation Parabix has known bottlenecks.

Sequential parsing: 25% of XML statistics application.
Symbol lookup: 50% of XML statistics application.

Improved techniques identified in both areas.

Parallel parsing with bitstream addition.
Length-sorted lookup to eliminate loops.

Bit stream parallelism may be leveraged for intrachip
parallelism on multicore processors.

Processor advances amplify the advantage of parallel bit
stream methods.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Performance Prospects

First generation Parabix has known bottlenecks.

Sequential parsing: 25% of XML statistics application.

Symbol lookup: 50% of XML statistics application.

Improved techniques identified in both areas.

Parallel parsing with bitstream addition.
Length-sorted lookup to eliminate loops.

Bit stream parallelism may be leveraged for intrachip
parallelism on multicore processors.

Processor advances amplify the advantage of parallel bit
stream methods.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Performance Prospects

First generation Parabix has known bottlenecks.

Sequential parsing: 25% of XML statistics application.
Symbol lookup: 50% of XML statistics application.

Improved techniques identified in both areas.

Parallel parsing with bitstream addition.
Length-sorted lookup to eliminate loops.

Bit stream parallelism may be leveraged for intrachip
parallelism on multicore processors.

Processor advances amplify the advantage of parallel bit
stream methods.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Performance Prospects

First generation Parabix has known bottlenecks.

Sequential parsing: 25% of XML statistics application.
Symbol lookup: 50% of XML statistics application.

Improved techniques identified in both areas.

Parallel parsing with bitstream addition.
Length-sorted lookup to eliminate loops.

Bit stream parallelism may be leveraged for intrachip
parallelism on multicore processors.

Processor advances amplify the advantage of parallel bit
stream methods.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Performance Prospects

First generation Parabix has known bottlenecks.

Sequential parsing: 25% of XML statistics application.
Symbol lookup: 50% of XML statistics application.

Improved techniques identified in both areas.

Parallel parsing with bitstream addition.

Length-sorted lookup to eliminate loops.

Bit stream parallelism may be leveraged for intrachip
parallelism on multicore processors.

Processor advances amplify the advantage of parallel bit
stream methods.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Performance Prospects

First generation Parabix has known bottlenecks.

Sequential parsing: 25% of XML statistics application.
Symbol lookup: 50% of XML statistics application.

Improved techniques identified in both areas.

Parallel parsing with bitstream addition.
Length-sorted lookup to eliminate loops.

Bit stream parallelism may be leveraged for intrachip
parallelism on multicore processors.

Processor advances amplify the advantage of parallel bit
stream methods.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Performance Prospects

First generation Parabix has known bottlenecks.

Sequential parsing: 25% of XML statistics application.
Symbol lookup: 50% of XML statistics application.

Improved techniques identified in both areas.

Parallel parsing with bitstream addition.
Length-sorted lookup to eliminate loops.

Bit stream parallelism may be leveraged for intrachip
parallelism on multicore processors.

Processor advances amplify the advantage of parallel bit
stream methods.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Performance Prospects

First generation Parabix has known bottlenecks.

Sequential parsing: 25% of XML statistics application.
Symbol lookup: 50% of XML statistics application.

Improved techniques identified in both areas.

Parallel parsing with bitstream addition.
Length-sorted lookup to eliminate loops.

Bit stream parallelism may be leveraged for intrachip
parallelism on multicore processors.

Processor advances amplify the advantage of parallel bit
stream methods.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.

Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5

Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)

GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee

Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.

Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.

Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.

Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parabix 2

Current focus of work: Parabix 2 Project.

Full catalog of parallel bitstream techniques.

Parallel parsing with bitstream addition.
Targetting for new/prospective SIMD architectures.

Intel SSE 4.1, 4.2, AMD SSE 5
Intel AVX (256-bit)
GPGPUs: e.g., Intel Larrabee
Future: pex/pdep, inductive doubling ISA [ASPLOS ’09]

Length-sorted fast symbol lookup.

Java performance: Array Set Model.
Compiler technology.

Program using high-level unbounded bitstream logic.
Compile to low-level SIMD code.
Design for multiple back-ends.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Bit Stream Types

Our catalog of XML bit streams shows how bit streams can be
used in many ways.

Basis bit streams.

Character class bit streams.

Scope streams.

Multiliteral bit streams.

Lexical item streams.

Error streams.

Deletion mask streams.

Cursor Streams.

Call-out Streams.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T
Compute the digits character class stream, D.
Initialize cursors C0 using the ’&#’ stream .
Parallel scan of numeric references with bitstream addition.
Mask off the garbage.
Call out the extracted numeric references.
Find unterminated reference errors.

T);8#&(;54301#& 3443 deed :01#&;3100#& 21
D ..1.....11111...1111.......11...1111...11
C0 ..1.........1...............1......1.....

C1 = C0 + D .10....100000...1111......100..10000...11
C2 = C1 ∧ ¬D .10....100000.............100..10000.....
R = C2 − C0 ..1.....11111..............11...1111.....

E = C2 ∧ ¬[;]1..............

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T

Compute the digits character class stream, D.
Initialize cursors C0 using the ’&#’ stream .
Parallel scan of numeric references with bitstream addition.
Mask off the garbage.
Call out the extracted numeric references.
Find unterminated reference errors.

T 12 
: deed 3443 ⡩ ()

D ..1.....11111...1111.......11...1111...11
C0 ..1.........1...............1......1.....

C1 = C0 + D .10....100000...1111......100..10000...11
C2 = C1 ∧ ¬D .10....100000.............100..10000.....
R = C2 − C0 ..1.....11111..............11...1111.....

E = C2 ∧ ¬[;]1..............

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T (little-endian)

Compute the digits character class stream, D.
Initialize cursors C0 using the ’&#’ stream .
Parallel scan of numeric references with bitstream addition.
Mask off the garbage.
Call out the extracted numeric references.
Find unterminated reference errors.

T);8#&(;54301#& 3443 deed :01#&;3100#& 21

D ..1.....11111...1111.......11...1111...11
C0 ..1.........1...............1......1.....

C1 = C0 + D .10....100000...1111......100..10000...11
C2 = C1 ∧ ¬D .10....100000.............100..10000.....
R = C2 − C0 ..1.....11111..............11...1111.....

E = C2 ∧ ¬[;]1..............

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T (little-endian)
Compute the digits character class stream, D.

Initialize cursors C0 using the ’&#’ stream .
Parallel scan of numeric references with bitstream addition.
Mask off the garbage.
Call out the extracted numeric references.
Find unterminated reference errors.

T);8#&(;54301#& 3443 deed :01#&;3100#& 21
D ..1.....11111...1111.......11...1111...11

C0 ..1.........1...............1......1.....
C1 = C0 + D .10....100000...1111......100..10000...11

C2 = C1 ∧ ¬D .10....100000.............100..10000.....
R = C2 − C0 ..1.....11111..............11...1111.....

E = C2 ∧ ¬[;]1..............

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T (little-endian)
Compute the digits character class stream, D.
Initialize cursors C0 using the ’&#’ stream .

Parallel scan of numeric references with bitstream addition.
Mask off the garbage.
Call out the extracted numeric references.
Find unterminated reference errors.

T);8#&(;54301#& 3443 deed :01#&;3100#& 21
D ..1.....11111...1111.......11...1111...11
C0 ...1.........1...............1......1....

C1 = C0 + D .10....100000...1111......100..10000...11
C2 = C1 ∧ ¬D .10....100000.............100..10000.....
R = C2 − C0 ..1.....11111..............11...1111.....

E = C2 ∧ ¬[;]1..............

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T (little-endian)
Compute the digits character class stream, D.
Initialize cursors C0 using the ’&#’ stream shifted.

Parallel scan of numeric references with bitstream addition.
Mask off the garbage.
Call out the extracted numeric references.
Find unterminated reference errors.

T);8#&(;54301#& 3443 deed :01#&;3100#& 21
D ..1.....11111...1111.......11...1111...11
C0 ..1.........1...............1......1.....

C1 = C0 + D .10....100000...1111......100..10000...11
C2 = C1 ∧ ¬D .10....100000.............100..10000.....
R = C2 − C0 ..1.....11111..............11...1111.....

E = C2 ∧ ¬[;]1..............

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T (little-endian)
Compute the digits character class stream, D.
Initialize cursors C0 using the ’&#’ stream shifted.
Parallel scan of numeric references with bitstream addition.

Mask off the garbage.
Call out the extracted numeric references.
Find unterminated reference errors.

T);8#&(;54301#& 3443 deed :01#&;3100#& 21
D ..1.....11111...1111.......11...1111...11
C0 ..1.........1...............1......1.....

C1 = C0 + D .10....100000...1111......100..10000...11

C2 = C1 ∧ ¬D .10....100000.............100..10000.....
R = C2 − C0 ..1.....11111..............11...1111.....

E = C2 ∧ ¬[;]1..............

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T (little-endian)
Compute the digits character class stream, D.
Initialize cursors C0 using the ’&#’ stream shifted.
Parallel scan of numeric references with bitstream addition.
Mask off the garbage.

Call out the extracted numeric references.
Find unterminated reference errors.

T);8#&(;54301#& 3443 deed :01#&;3100#& 21
D ..1.....11111...1111.......11...1111...11
C0 ..1.........1...............1......1.....

C1 = C0 + D .10....100000...1111......100..10000...11
C2 = C1 ∧ ¬D .10....100000.............100..10000.....

R = C2 − C0 ..1.....11111..............11...1111.....
E = C2 ∧ ¬[;]1..............

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T (little-endian)
Compute the digits character class stream, D.
Initialize cursors C0 using the ’&#’ stream shifted.
Parallel scan of numeric references with bitstream addition.
Mask off the garbage.
Call out the extracted numeric references.

Find unterminated reference errors.

T);8#&(;54301#& 3443 deed :01#&;3100#& 21
D ..1.....11111...1111.......11...1111...11
C0 ..1.........1...............1......1.....

C1 = C0 + D .10....100000...1111......100..10000...11
C2 = C1 ∧ ¬D .10....100000.............100..10000.....
R = C2 − C0 ..1.....11111..............11...1111.....

E = C2 ∧ ¬[;]1..............

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Scanning Basics

Given a text with numeric references, T (little-endian)
Compute the digits character class stream, D.
Initialize cursors C0 using the ’&#’ stream shifted.
Parallel scan of numeric references with bitstream addition.
Mask off the garbage.
Call out the extracted numeric references.
Find unterminated reference errors.

T);8#&(;54301#& 3443 deed :01#&;3100#& 21
D ..1.....11111...1111.......11...1111...11
C0 ..1.........1...............1......1.....

C1 = C0 + D .10....100000...1111......100..10000...11
C2 = C1 ∧ ¬D .10....100000.............100..10000.....
R = C2 − C0 ..1.....11111..............11...1111.....

E = C2 ∧ ¬[;]1..............
Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Parsing of XML Tags

XML Start Tag Syntax

’<’ Name (S Name S? ’=’ S?
((’"’ [^<"]* ’"’) | ("’" [^<’]* "’")))* S? ’>’

Initialize cursors with with [<] bitstream.

Apply bitstream addition techniques.

A loop sequentially handles attribute/value pairs within tags.

But all tags are processed in parallel!

Max iteration count is max # of attributes in any one tag.

Block-by-block processing: iterate to max atts for block.

Bit stream logic checks for all tag syntax errors in parallel.

Logic is fully implemented within Parabix 2 prototype.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Parsing of XML Tags

XML Start Tag Syntax

’<’ Name (S Name S? ’=’ S?
((’"’ [^<"]* ’"’) | ("’" [^<’]* "’")))* S? ’>’

Initialize cursors with with [<] bitstream.

Apply bitstream addition techniques.

A loop sequentially handles attribute/value pairs within tags.

But all tags are processed in parallel!

Max iteration count is max # of attributes in any one tag.

Block-by-block processing: iterate to max atts for block.

Bit stream logic checks for all tag syntax errors in parallel.

Logic is fully implemented within Parabix 2 prototype.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Parsing of XML Tags

XML Start Tag Syntax

’<’ Name (S Name S? ’=’ S?
((’"’ [^<"]* ’"’) | ("’" [^<’]* "’")))* S? ’>’

Initialize cursors with with [<] bitstream.

Apply bitstream addition techniques.

A loop sequentially handles attribute/value pairs within tags.

But all tags are processed in parallel!

Max iteration count is max # of attributes in any one tag.

Block-by-block processing: iterate to max atts for block.

Bit stream logic checks for all tag syntax errors in parallel.

Logic is fully implemented within Parabix 2 prototype.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Parsing of XML Tags

XML Start Tag Syntax

’<’ Name (S Name S? ’=’ S?
((’"’ [^<"]* ’"’) | ("’" [^<’]* "’")))* S? ’>’

Initialize cursors with with [<] bitstream.

Apply bitstream addition techniques.

A loop sequentially handles attribute/value pairs within tags.

But all tags are processed in parallel!

Max iteration count is max # of attributes in any one tag.

Block-by-block processing: iterate to max atts for block.

Bit stream logic checks for all tag syntax errors in parallel.

Logic is fully implemented within Parabix 2 prototype.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Parsing of XML Tags

XML Start Tag Syntax

’<’ Name (S Name S? ’=’ S?
((’"’ [^<"]* ’"’) | ("’" [^<’]* "’")))* S? ’>’

Initialize cursors with with [<] bitstream.

Apply bitstream addition techniques.

A loop sequentially handles attribute/value pairs within tags.

But all tags are processed in parallel!

Max iteration count is max # of attributes in any one tag.

Block-by-block processing: iterate to max atts for block.

Bit stream logic checks for all tag syntax errors in parallel.

Logic is fully implemented within Parabix 2 prototype.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Parsing of XML Tags

XML Start Tag Syntax

’<’ Name (S Name S? ’=’ S?
((’"’ [^<"]* ’"’) | ("’" [^<’]* "’")))* S? ’>’

Initialize cursors with with [<] bitstream.

Apply bitstream addition techniques.

A loop sequentially handles attribute/value pairs within tags.

But all tags are processed in parallel!

Max iteration count is max # of attributes in any one tag.

Block-by-block processing: iterate to max atts for block.

Bit stream logic checks for all tag syntax errors in parallel.

Logic is fully implemented within Parabix 2 prototype.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Parsing of XML Tags

XML Start Tag Syntax

’<’ Name (S Name S? ’=’ S?
((’"’ [^<"]* ’"’) | ("’" [^<’]* "’")))* S? ’>’

Initialize cursors with with [<] bitstream.

Apply bitstream addition techniques.

A loop sequentially handles attribute/value pairs within tags.

But all tags are processed in parallel!

Max iteration count is max # of attributes in any one tag.

Block-by-block processing: iterate to max atts for block.

Bit stream logic checks for all tag syntax errors in parallel.

Logic is fully implemented within Parabix 2 prototype.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Parsing of XML Tags

XML Start Tag Syntax

’<’ Name (S Name S? ’=’ S?
((’"’ [^<"]* ’"’) | ("’" [^<’]* "’")))* S? ’>’

Initialize cursors with with [<] bitstream.

Apply bitstream addition techniques.

A loop sequentially handles attribute/value pairs within tags.

But all tags are processed in parallel!

Max iteration count is max # of attributes in any one tag.

Block-by-block processing: iterate to max atts for block.

Bit stream logic checks for all tag syntax errors in parallel.

Logic is fully implemented within Parabix 2 prototype.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parallel Parsing of XML Tags

XML Start Tag Syntax

’<’ Name (S Name S? ’=’ S?
((’"’ [^<"]* ’"’) | ("’" [^<’]* "’")))* S? ’>’

Initialize cursors with with [<] bitstream.

Apply bitstream addition techniques.

A loop sequentially handles attribute/value pairs within tags.

But all tags are processed in parallel!

Max iteration count is max # of attributes in any one tag.

Block-by-block processing: iterate to max atts for block.

Bit stream logic checks for all tag syntax errors in parallel.

Logic is fully implemented within Parabix 2 prototype.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parsing Results: Call-Out Streams

Document <top x=’1’><a><leaf>4</leaf>;<void/></top>

NamePosns .1..........1..1..............1...............
NameFollows1........1.....1..............1...........

Names .111........1..1111...........1111............
AttNames1..

AttVals111....................................
Tags .111111111..1..1111...........11111...........

EmptyTagMarks:1..........
EndTags11111..........11..1111.

ParseError ...

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parsing Results: Call-Out Streams

Document <top x=’1’><a><leaf>4</leaf>;<void/></top>
NamePosns .1..........1..1..............1...............

NameFollows1........1.....1..............1...........
Names .111........1..1111...........1111............

AttNames1..
AttVals111....................................

Tags .111111111..1..1111...........11111...........
EmptyTagMarks:1..........

EndTags11111..........11..1111.
ParseError ...

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parsing Results: Call-Out Streams

Document <top x=’1’><a><leaf>4</leaf>;<void/></top>
NamePosns .1..........1..1..............1...............

NameFollows1........1.....1..............1...........
Names .111........1..1111...........1111............

AttNames1..
AttVals111....................................

Tags .111111111..1..1111...........11111...........
EmptyTagMarks:1..........

EndTags11111..........11..1111.
ParseError ...

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parsing Results: Call-Out Streams

Document <top x=’1’><a><leaf>4</leaf>;<void/></top>
NamePosns .1..........1..1..............1...............

NameFollows1........1.....1..............1...........
Names .111........1..1111...........1111............

AttNames1..
AttVals111....................................

Tags .111111111..1..1111...........11111...........

EmptyTagMarks:1..........
EndTags11111..........11..1111.

ParseError ...

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parsing Results: Call-Out Streams

Document <top x=’1’><a><leaf>4</leaf>;<void/></top>
NamePosns .1..........1..1..............1...............

NameFollows1........1.....1..............1...........
Names .111........1..1111...........1111............

AttNames1..
AttVals111....................................

Tags .111111111..1..1111...........11111...........
EmptyTagMarks:1..........

EndTags11111..........11..1111.
ParseError ...

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parsing Results: Call-Out Streams

Document <top x=’1’><a><leaf>4</leaf>;<void/></top>
NamePosns .1..........1..1..............1...............

NameFollows1........1.....1..............1...........
Names .111........1..1111...........1111............

AttNames1..
AttVals111....................................

Tags .111111111..1..1111...........11111...........
EmptyTagMarks:1..........

EndTags11111..........11..1111.

ParseError ...

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parsing Results: Call-Out Streams

Document <top x=’1’><a><leaf>4</leaf>;<void/></top>
NamePosns .1..........1..1..............1...............

NameFollows1........1.....1..............1...........
Names .111........1..1111...........1111............

AttNames1..
AttVals111....................................

Tags .111111111..1..1111...........11111...........
EmptyTagMarks:1..........

EndTags11111..........11..1111.
ParseError ...

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Parsing Results: Call-Out Streams

Document <top x=’1’><a><leaf>4</leaf>;<void/></top>
NamePosns .1..........1..1..............1...............

NameFollows1........1.....1..............1...........
Names .111........1..1111...........1111............

AttNames1..
AttVals111....................................

Tags .111111111..1..1111...........11111...........
EmptyTagMarks:1..........

EndTags11111..........11..1111.
ParseError ...

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

The Java Performance Challenge

Java has no facilities for direct use of SIMD.

Java’s built-in UTF-8 to UTF-16 transcoding is slow.

The Java Native Interface (JNI) provides access to C, but:

Java and C/C++ data objects may be incompatible.
Even string representations are incompatible.
JNI calls are expensive, hundreds of CPU cycles.

But Java is an important and popular technology for XML
processing.

High performance solutions must be found.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

The Java Performance Challenge

Java has no facilities for direct use of SIMD.

Java’s built-in UTF-8 to UTF-16 transcoding is slow.

The Java Native Interface (JNI) provides access to C, but:

Java and C/C++ data objects may be incompatible.
Even string representations are incompatible.
JNI calls are expensive, hundreds of CPU cycles.

But Java is an important and popular technology for XML
processing.

High performance solutions must be found.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

The Java Performance Challenge

Java has no facilities for direct use of SIMD.

Java’s built-in UTF-8 to UTF-16 transcoding is slow.

The Java Native Interface (JNI) provides access to C, but:

Java and C/C++ data objects may be incompatible.
Even string representations are incompatible.
JNI calls are expensive, hundreds of CPU cycles.

But Java is an important and popular technology for XML
processing.

High performance solutions must be found.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

The Java Performance Challenge

Java has no facilities for direct use of SIMD.

Java’s built-in UTF-8 to UTF-16 transcoding is slow.

The Java Native Interface (JNI) provides access to C, but:

Java and C/C++ data objects may be incompatible.

Even string representations are incompatible.
JNI calls are expensive, hundreds of CPU cycles.

But Java is an important and popular technology for XML
processing.

High performance solutions must be found.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

The Java Performance Challenge

Java has no facilities for direct use of SIMD.

Java’s built-in UTF-8 to UTF-16 transcoding is slow.

The Java Native Interface (JNI) provides access to C, but:

Java and C/C++ data objects may be incompatible.
Even string representations are incompatible.

JNI calls are expensive, hundreds of CPU cycles.

But Java is an important and popular technology for XML
processing.

High performance solutions must be found.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

The Java Performance Challenge

Java has no facilities for direct use of SIMD.

Java’s built-in UTF-8 to UTF-16 transcoding is slow.

The Java Native Interface (JNI) provides access to C, but:

Java and C/C++ data objects may be incompatible.
Even string representations are incompatible.
JNI calls are expensive, hundreds of CPU cycles.

But Java is an important and popular technology for XML
processing.

High performance solutions must be found.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

The Java Performance Challenge

Java has no facilities for direct use of SIMD.

Java’s built-in UTF-8 to UTF-16 transcoding is slow.

The Java Native Interface (JNI) provides access to C, but:

Java and C/C++ data objects may be incompatible.
Even string representations are incompatible.
JNI calls are expensive, hundreds of CPU cycles.

But Java is an important and popular technology for XML
processing.

High performance solutions must be found.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

The Java Performance Challenge

Java has no facilities for direct use of SIMD.

Java’s built-in UTF-8 to UTF-16 transcoding is slow.

The Java Native Interface (JNI) provides access to C, but:

Java and C/C++ data objects may be incompatible.
Even string representations are incompatible.
JNI calls are expensive, hundreds of CPU cycles.

But Java is an important and popular technology for XML
processing.

High performance solutions must be found.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Array Set Models

JNI allows bulk import of arrays of simple types (bytes,
integers).

Therefore model XML data using sets of such arrays.

Transport array data across JNI boundary in bulk.

Array set models may also have other benefits.

Hardware/software prefetching.
DMA (direct memory access) hardware.
SIMD: Use SoA (structure of array) representations.
Multicore processors: array models support data partitioning.
Streaming buffers for large XML documents.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Array Set Models

JNI allows bulk import of arrays of simple types (bytes,
integers).

Therefore model XML data using sets of such arrays.

Transport array data across JNI boundary in bulk.

Array set models may also have other benefits.

Hardware/software prefetching.
DMA (direct memory access) hardware.
SIMD: Use SoA (structure of array) representations.
Multicore processors: array models support data partitioning.
Streaming buffers for large XML documents.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Array Set Models

JNI allows bulk import of arrays of simple types (bytes,
integers).

Therefore model XML data using sets of such arrays.

Transport array data across JNI boundary in bulk.

Array set models may also have other benefits.

Hardware/software prefetching.
DMA (direct memory access) hardware.
SIMD: Use SoA (structure of array) representations.
Multicore processors: array models support data partitioning.
Streaming buffers for large XML documents.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Array Set Models

JNI allows bulk import of arrays of simple types (bytes,
integers).

Therefore model XML data using sets of such arrays.

Transport array data across JNI boundary in bulk.

Array set models may also have other benefits.

Hardware/software prefetching.
DMA (direct memory access) hardware.
SIMD: Use SoA (structure of array) representations.
Multicore processors: array models support data partitioning.
Streaming buffers for large XML documents.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Array Set Models

JNI allows bulk import of arrays of simple types (bytes,
integers).

Therefore model XML data using sets of such arrays.

Transport array data across JNI boundary in bulk.

Array set models may also have other benefits.

Hardware/software prefetching.

DMA (direct memory access) hardware.
SIMD: Use SoA (structure of array) representations.
Multicore processors: array models support data partitioning.
Streaming buffers for large XML documents.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Array Set Models

JNI allows bulk import of arrays of simple types (bytes,
integers).

Therefore model XML data using sets of such arrays.

Transport array data across JNI boundary in bulk.

Array set models may also have other benefits.

Hardware/software prefetching.
DMA (direct memory access) hardware.

SIMD: Use SoA (structure of array) representations.
Multicore processors: array models support data partitioning.
Streaming buffers for large XML documents.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Array Set Models

JNI allows bulk import of arrays of simple types (bytes,
integers).

Therefore model XML data using sets of such arrays.

Transport array data across JNI boundary in bulk.

Array set models may also have other benefits.

Hardware/software prefetching.
DMA (direct memory access) hardware.
SIMD: Use SoA (structure of array) representations.

Multicore processors: array models support data partitioning.
Streaming buffers for large XML documents.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Array Set Models

JNI allows bulk import of arrays of simple types (bytes,
integers).

Therefore model XML data using sets of such arrays.

Transport array data across JNI boundary in bulk.

Array set models may also have other benefits.

Hardware/software prefetching.
DMA (direct memory access) hardware.
SIMD: Use SoA (structure of array) representations.
Multicore processors: array models support data partitioning.

Streaming buffers for large XML documents.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Array Set Models

JNI allows bulk import of arrays of simple types (bytes,
integers).

Therefore model XML data using sets of such arrays.

Transport array data across JNI boundary in bulk.

Array set models may also have other benefits.

Hardware/software prefetching.
DMA (direct memory access) hardware.
SIMD: Use SoA (structure of array) representations.
Multicore processors: array models support data partitioning.
Streaming buffers for large XML documents.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Initial Study: Saxon-B Data Structures

An initial study of the ASM concept was to reimplement
Saxon-B data structures.

Two basic structures: TinyTree and NamePool.

TinyTree uses several arrays of integers.

Node kind, name code, depth and next sibling arrays.
Other arrays dependent on type.

NamePools are collections of namespace prefix, URI, local
name triples.

Reimplementation using Parabix/JNI.

Copying re-implementation: 2X faster build time.
Using direct memory byte buffers: 2.5X improvement.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Initial Study: Saxon-B Data Structures

An initial study of the ASM concept was to reimplement
Saxon-B data structures.

Two basic structures: TinyTree and NamePool.

TinyTree uses several arrays of integers.

Node kind, name code, depth and next sibling arrays.
Other arrays dependent on type.

NamePools are collections of namespace prefix, URI, local
name triples.

Reimplementation using Parabix/JNI.

Copying re-implementation: 2X faster build time.
Using direct memory byte buffers: 2.5X improvement.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Initial Study: Saxon-B Data Structures

An initial study of the ASM concept was to reimplement
Saxon-B data structures.

Two basic structures: TinyTree and NamePool.

TinyTree uses several arrays of integers.

Node kind, name code, depth and next sibling arrays.
Other arrays dependent on type.

NamePools are collections of namespace prefix, URI, local
name triples.

Reimplementation using Parabix/JNI.

Copying re-implementation: 2X faster build time.
Using direct memory byte buffers: 2.5X improvement.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Initial Study: Saxon-B Data Structures

An initial study of the ASM concept was to reimplement
Saxon-B data structures.

Two basic structures: TinyTree and NamePool.

TinyTree uses several arrays of integers.

Node kind, name code, depth and next sibling arrays.

Other arrays dependent on type.

NamePools are collections of namespace prefix, URI, local
name triples.

Reimplementation using Parabix/JNI.

Copying re-implementation: 2X faster build time.
Using direct memory byte buffers: 2.5X improvement.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Initial Study: Saxon-B Data Structures

An initial study of the ASM concept was to reimplement
Saxon-B data structures.

Two basic structures: TinyTree and NamePool.

TinyTree uses several arrays of integers.

Node kind, name code, depth and next sibling arrays.
Other arrays dependent on type.

NamePools are collections of namespace prefix, URI, local
name triples.

Reimplementation using Parabix/JNI.

Copying re-implementation: 2X faster build time.
Using direct memory byte buffers: 2.5X improvement.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Initial Study: Saxon-B Data Structures

An initial study of the ASM concept was to reimplement
Saxon-B data structures.

Two basic structures: TinyTree and NamePool.

TinyTree uses several arrays of integers.

Node kind, name code, depth and next sibling arrays.
Other arrays dependent on type.

NamePools are collections of namespace prefix, URI, local
name triples.

Reimplementation using Parabix/JNI.

Copying re-implementation: 2X faster build time.
Using direct memory byte buffers: 2.5X improvement.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Initial Study: Saxon-B Data Structures

An initial study of the ASM concept was to reimplement
Saxon-B data structures.

Two basic structures: TinyTree and NamePool.

TinyTree uses several arrays of integers.

Node kind, name code, depth and next sibling arrays.
Other arrays dependent on type.

NamePools are collections of namespace prefix, URI, local
name triples.

Reimplementation using Parabix/JNI.

Copying re-implementation: 2X faster build time.
Using direct memory byte buffers: 2.5X improvement.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Initial Study: Saxon-B Data Structures

An initial study of the ASM concept was to reimplement
Saxon-B data structures.

Two basic structures: TinyTree and NamePool.

TinyTree uses several arrays of integers.

Node kind, name code, depth and next sibling arrays.
Other arrays dependent on type.

NamePools are collections of namespace prefix, URI, local
name triples.

Reimplementation using Parabix/JNI.

Copying re-implementation: 2X faster build time.

Using direct memory byte buffers: 2.5X improvement.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Initial Study: Saxon-B Data Structures

An initial study of the ASM concept was to reimplement
Saxon-B data structures.

Two basic structures: TinyTree and NamePool.

TinyTree uses several arrays of integers.

Node kind, name code, depth and next sibling arrays.
Other arrays dependent on type.

NamePools are collections of namespace prefix, URI, local
name triples.

Reimplementation using Parabix/JNI.

Copying re-implementation: 2X faster build time.
Using direct memory byte buffers: 2.5X improvement.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Automated Generation of Bit Stream Code

Eliminate tedious, error prone manual coding.

Apply code generation algorithms.

register allocation
rematerialization
instruction scheduling

Retarget for various instruction set architectures.

Retarget for different memory models.

Adapt for multicore.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Automated Generation of Bit Stream Code

Eliminate tedious, error prone manual coding.

Apply code generation algorithms.

register allocation
rematerialization
instruction scheduling

Retarget for various instruction set architectures.

Retarget for different memory models.

Adapt for multicore.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Automated Generation of Bit Stream Code

Eliminate tedious, error prone manual coding.

Apply code generation algorithms.

register allocation

rematerialization
instruction scheduling

Retarget for various instruction set architectures.

Retarget for different memory models.

Adapt for multicore.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Automated Generation of Bit Stream Code

Eliminate tedious, error prone manual coding.

Apply code generation algorithms.

register allocation
rematerialization

instruction scheduling

Retarget for various instruction set architectures.

Retarget for different memory models.

Adapt for multicore.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Automated Generation of Bit Stream Code

Eliminate tedious, error prone manual coding.

Apply code generation algorithms.

register allocation
rematerialization
instruction scheduling

Retarget for various instruction set architectures.

Retarget for different memory models.

Adapt for multicore.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Automated Generation of Bit Stream Code

Eliminate tedious, error prone manual coding.

Apply code generation algorithms.

register allocation
rematerialization
instruction scheduling

Retarget for various instruction set architectures.

Retarget for different memory models.

Adapt for multicore.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Automated Generation of Bit Stream Code

Eliminate tedious, error prone manual coding.

Apply code generation algorithms.

register allocation
rematerialization
instruction scheduling

Retarget for various instruction set architectures.

Retarget for different memory models.

Adapt for multicore.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Automated Generation of Bit Stream Code

Eliminate tedious, error prone manual coding.

Apply code generation algorithms.

register allocation
rematerialization
instruction scheduling

Retarget for various instruction set architectures.

Retarget for different memory models.

Adapt for multicore.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Compiler

Use character class definitions

individual characters

compile([CharDef(LAngle, "<")])

character ranges

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

Generates bit stream code automatically.

Applies various optimizations.

Used in first-generation Parabix.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Compiler

Use character class definitions
individual characters

compile([CharDef(LAngle, "<")])

character ranges

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

Generates bit stream code automatically.

Applies various optimizations.

Used in first-generation Parabix.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Compiler

Use character class definitions
individual characters

compile([CharDef(LAngle, "<")])

character ranges

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

Generates bit stream code automatically.

Applies various optimizations.

Used in first-generation Parabix.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Compiler

Use character class definitions
individual characters

compile([CharDef(LAngle, "<")])

character ranges

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

Generates bit stream code automatically.

Applies various optimizations.

Used in first-generation Parabix.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Compiler

Use character class definitions
individual characters

compile([CharDef(LAngle, "<")])

character ranges

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

Generates bit stream code automatically.

Applies various optimizations.

Used in first-generation Parabix.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Compiler

Use character class definitions
individual characters

compile([CharDef(LAngle, "<")])

character ranges

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

Generates bit stream code automatically.

Applies various optimizations.

Used in first-generation Parabix.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Compiler

Use character class definitions
individual characters

compile([CharDef(LAngle, "<")])

character ranges

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

Generates bit stream code automatically.

Applies various optimizations.

Used in first-generation Parabix.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Compiler

Use character class definitions
individual characters

compile([CharDef(LAngle, "<")])

character ranges

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

Generates bit stream code automatically.

Applies various optimizations.

Used in first-generation Parabix.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Formation

Combining 8 bits of a code unit gives a character class stream.

7 bitwise logical operations required.

compile([CharDef(LAngle, "<")])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Formation

Combining 8 bits of a code unit gives a character class stream.

7 bitwise logical operations required.

compile([CharDef(LAngle, "<")])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Formation

Combining 8 bits of a code unit gives a character class stream.

7 bitwise logical operations required.

compile([CharDef(LAngle, "<")])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Formation

Combining 8 bits of a code unit gives a character class stream.

7 bitwise logical operations required.

compile([CharDef(LAngle, "<")])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Common Subexpressions

Different characters have common subexpressions.

compile([CharDef(LAngle, "<"),
CharDef(RAngle, "<")])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

temp7 = simd_andc(bit[6], bit[7]);
temp8 = simd_and(temp4, temp7);
RAngle = simd_and(temp3, temp8);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Common Subexpressions

Different characters have common subexpressions.

compile([CharDef(LAngle, "<"),
CharDef(RAngle, "<")])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

temp7 = simd_andc(bit[6], bit[7]);
temp8 = simd_and(temp4, temp7);
RAngle = simd_and(temp3, temp8);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Common Subexpressions

Different characters have common subexpressions.

compile([CharDef(LAngle, "<"),
CharDef(RAngle, "<")])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

temp7 = simd_andc(bit[6], bit[7]);
temp8 = simd_and(temp4, temp7);
RAngle = simd_and(temp3, temp8);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Common Subexpressions

Different characters have common subexpressions.

compile([CharDef(LAngle, "<"),
CharDef(RAngle, "<")])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);
temp7 = simd_andc(bit[6], bit[7]);
temp8 = simd_and(temp4, temp7);
RAngle = simd_and(temp3, temp8);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Ranges

Ranges of characters are often very simple to compute.

compile([CharSet(’Control’, [’\x00-\x1F’]),

CharSet(’Digit’, [’0-9’]

)]])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2)

temp3 = simd_and(bit[2], bit[3]);
temp4 = simd_andc(temp3, temp1);
temp5 = simd_or(bit[5], bit[6]);
temp6 = simd_and(bit[4], temp5);
Digit = simd_andc(temp4, temp6);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Ranges

Ranges of characters are often very simple to compute.

compile([CharSet(’Control’, [’\x00-\x1F’]),

CharSet(’Digit’, [’0-9’]

)]])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2)

temp3 = simd_and(bit[2], bit[3]);
temp4 = simd_andc(temp3, temp1);
temp5 = simd_or(bit[5], bit[6]);
temp6 = simd_and(bit[4], temp5);
Digit = simd_andc(temp4, temp6);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Ranges

Ranges of characters are often very simple to compute.

compile([CharSet(’Control’, [’\x00-\x1F’]),

CharSet(’Digit’, [’0-9’]

)]])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2)

temp3 = simd_and(bit[2], bit[3]);
temp4 = simd_andc(temp3, temp1);
temp5 = simd_or(bit[5], bit[6]);
temp6 = simd_and(bit[4], temp5);
Digit = simd_andc(temp4, temp6);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Ranges

Ranges of characters are often very simple to compute.

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2)

temp3 = simd_and(bit[2], bit[3]);
temp4 = simd_andc(temp3, temp1);
temp5 = simd_or(bit[5], bit[6]);
temp6 = simd_and(bit[4], temp5);
Digit = simd_andc(temp4, temp6);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Character Class Ranges

Ranges of characters are often very simple to compute.

compile([CharSet(’Control’, [’\x00-\x1F’]),
CharSet(’Digit’, [’0-9’])]])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2)
temp3 = simd_and(bit[2], bit[3]);
temp4 = simd_andc(temp3, temp1);
temp5 = simd_or(bit[5], bit[6]);
temp6 = simd_and(bit[4], temp5);
Digit = simd_andc(temp4, temp6);

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Regular Expression Compilation

Extend character class compiler for regexp operations.

Use bitstream addition for character class repetitions.

Ex. [0-9]*

Masking for upper or lower bounds: [0-9]{2,5}
Restrict to a deterministic RE subset.

Under development.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Regular Expression Compilation

Extend character class compiler for regexp operations.

Use bitstream addition for character class repetitions.

Ex. [0-9]*

Masking for upper or lower bounds: [0-9]{2,5}
Restrict to a deterministic RE subset.

Under development.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Regular Expression Compilation

Extend character class compiler for regexp operations.

Use bitstream addition for character class repetitions.

Ex. [0-9]*

Masking for upper or lower bounds: [0-9]{2,5}
Restrict to a deterministic RE subset.

Under development.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Regular Expression Compilation

Extend character class compiler for regexp operations.

Use bitstream addition for character class repetitions.

Ex. [0-9]*

Masking for upper or lower bounds: [0-9]{2,5}

Restrict to a deterministic RE subset.

Under development.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Regular Expression Compilation

Extend character class compiler for regexp operations.

Use bitstream addition for character class repetitions.

Ex. [0-9]*

Masking for upper or lower bounds: [0-9]{2,5}
Restrict to a deterministic RE subset.

Under development.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Regular Expression Compilation

Extend character class compiler for regexp operations.

Use bitstream addition for character class repetitions.

Ex. [0-9]*

Masking for upper or lower bounds: [0-9]{2,5}
Restrict to a deterministic RE subset.

Under development.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Unbounded Bit Stream Compilation

Recent prototypes use unbounded bitstreams in Python.

Ex: catalog of XML bit streams.

Manual coding then used to reimplement in C++.

But, can this be automated?

Yes!

Define restricted form of Python bitsream operations.
Translate to SIMD operations using C/C++ intrinsics.
Compiler handles segmentation into blocks or segments.
Work in progress.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Unbounded Bit Stream Compilation

Recent prototypes use unbounded bitstreams in Python.

Ex: catalog of XML bit streams.

Manual coding then used to reimplement in C++.

But, can this be automated?

Yes!

Define restricted form of Python bitsream operations.
Translate to SIMD operations using C/C++ intrinsics.
Compiler handles segmentation into blocks or segments.
Work in progress.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Unbounded Bit Stream Compilation

Recent prototypes use unbounded bitstreams in Python.

Ex: catalog of XML bit streams.

Manual coding then used to reimplement in C++.

But, can this be automated?

Yes!

Define restricted form of Python bitsream operations.
Translate to SIMD operations using C/C++ intrinsics.
Compiler handles segmentation into blocks or segments.
Work in progress.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Unbounded Bit Stream Compilation

Recent prototypes use unbounded bitstreams in Python.

Ex: catalog of XML bit streams.

Manual coding then used to reimplement in C++.

But, can this be automated?

Yes!

Define restricted form of Python bitsream operations.
Translate to SIMD operations using C/C++ intrinsics.
Compiler handles segmentation into blocks or segments.
Work in progress.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Unbounded Bit Stream Compilation

Recent prototypes use unbounded bitstreams in Python.

Ex: catalog of XML bit streams.

Manual coding then used to reimplement in C++.

But, can this be automated?

Yes!

Define restricted form of Python bitsream operations.
Translate to SIMD operations using C/C++ intrinsics.
Compiler handles segmentation into blocks or segments.
Work in progress.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Unbounded Bit Stream Compilation

Recent prototypes use unbounded bitstreams in Python.

Ex: catalog of XML bit streams.

Manual coding then used to reimplement in C++.

But, can this be automated?

Yes!

Define restricted form of Python bitsream operations.

Translate to SIMD operations using C/C++ intrinsics.
Compiler handles segmentation into blocks or segments.
Work in progress.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Unbounded Bit Stream Compilation

Recent prototypes use unbounded bitstreams in Python.

Ex: catalog of XML bit streams.

Manual coding then used to reimplement in C++.

But, can this be automated?

Yes!

Define restricted form of Python bitsream operations.
Translate to SIMD operations using C/C++ intrinsics.

Compiler handles segmentation into blocks or segments.
Work in progress.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Unbounded Bit Stream Compilation

Recent prototypes use unbounded bitstreams in Python.

Ex: catalog of XML bit streams.

Manual coding then used to reimplement in C++.

But, can this be automated?

Yes!

Define restricted form of Python bitsream operations.
Translate to SIMD operations using C/C++ intrinsics.
Compiler handles segmentation into blocks or segments.

Work in progress.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Unbounded Bit Stream Compilation

Recent prototypes use unbounded bitstreams in Python.

Ex: catalog of XML bit streams.

Manual coding then used to reimplement in C++.

But, can this be automated?

Yes!

Define restricted form of Python bitsream operations.
Translate to SIMD operations using C/C++ intrinsics.
Compiler handles segmentation into blocks or segments.
Work in progress.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Concluding Remarks

Parallel bit stream methods accelerate

UTF-8 and XML character validation.
Transcoding.
Whitespace and line break handling.
Sequential parsing using bit scans over lexical item streams.
Parallel tag parsing using bitstream addition.

Methods may be used to support any XML API.

Results can be delivered to Java through Array Set Models.

Compiler technology promises to ease the programming
burden and support retargetting for various architectures.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Concluding Remarks

Parallel bit stream methods accelerate

UTF-8 and XML character validation.

Transcoding.
Whitespace and line break handling.
Sequential parsing using bit scans over lexical item streams.
Parallel tag parsing using bitstream addition.

Methods may be used to support any XML API.

Results can be delivered to Java through Array Set Models.

Compiler technology promises to ease the programming
burden and support retargetting for various architectures.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Concluding Remarks

Parallel bit stream methods accelerate

UTF-8 and XML character validation.
Transcoding.

Whitespace and line break handling.
Sequential parsing using bit scans over lexical item streams.
Parallel tag parsing using bitstream addition.

Methods may be used to support any XML API.

Results can be delivered to Java through Array Set Models.

Compiler technology promises to ease the programming
burden and support retargetting for various architectures.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Concluding Remarks

Parallel bit stream methods accelerate

UTF-8 and XML character validation.
Transcoding.
Whitespace and line break handling.

Sequential parsing using bit scans over lexical item streams.
Parallel tag parsing using bitstream addition.

Methods may be used to support any XML API.

Results can be delivered to Java through Array Set Models.

Compiler technology promises to ease the programming
burden and support retargetting for various architectures.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Concluding Remarks

Parallel bit stream methods accelerate

UTF-8 and XML character validation.
Transcoding.
Whitespace and line break handling.
Sequential parsing using bit scans over lexical item streams.

Parallel tag parsing using bitstream addition.

Methods may be used to support any XML API.

Results can be delivered to Java through Array Set Models.

Compiler technology promises to ease the programming
burden and support retargetting for various architectures.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Concluding Remarks

Parallel bit stream methods accelerate

UTF-8 and XML character validation.
Transcoding.
Whitespace and line break handling.
Sequential parsing using bit scans over lexical item streams.
Parallel tag parsing using bitstream addition.

Methods may be used to support any XML API.

Results can be delivered to Java through Array Set Models.

Compiler technology promises to ease the programming
burden and support retargetting for various architectures.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Concluding Remarks

Parallel bit stream methods accelerate

UTF-8 and XML character validation.
Transcoding.
Whitespace and line break handling.
Sequential parsing using bit scans over lexical item streams.
Parallel tag parsing using bitstream addition.

Methods may be used to support any XML API.

Results can be delivered to Java through Array Set Models.

Compiler technology promises to ease the programming
burden and support retargetting for various architectures.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Concluding Remarks

Parallel bit stream methods accelerate

UTF-8 and XML character validation.
Transcoding.
Whitespace and line break handling.
Sequential parsing using bit scans over lexical item streams.
Parallel tag parsing using bitstream addition.

Methods may be used to support any XML API.

Results can be delivered to Java through Array Set Models.

Compiler technology promises to ease the programming
burden and support retargetting for various architectures.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Concluding Remarks

Parallel bit stream methods accelerate

UTF-8 and XML character validation.
Transcoding.
Whitespace and line break handling.
Sequential parsing using bit scans over lexical item streams.
Parallel tag parsing using bitstream addition.

Methods may be used to support any XML API.

Results can be delivered to Java through Array Set Models.

Compiler technology promises to ease the programming
burden and support retargetting for various architectures.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

Introduction
Catalog of XML Bit Streams

Parallel Parsing with Bitstream Addition
Efficient XML in Java with Array Set Models

Compiler Technology
Conclusion

Knuth’s Final Exercise on Bitwise Techniques

217. [40] Explore the processing of long strings of text by packing
them in a “transposed” or “sliced” manner: Represent 64
consecutive characters as a sequence of eight octabytes w0 . . . w7

where wk contains all 64 of their kth bits.

Donald E. Knuth, The Art of Computer Programming,
Volume 4, Fascicle 1, Addison-Wesley, Boston MA, 2009.

Knuth’s Answer

217. See R. D. Cameron, U.S. Patent 7400271 (15 July 2008);
Proc. ACM Symp. Principles and Practice of Parallel
Programming 12 (2008), 91–98.

Rob Cameron, Ken Herdy and Ehsan Amiri International Symposium on Processing XML Efficiently

	Introduction
	Catalog of XML Bit Streams
	Parallel Parsing with Bitstream Addition
	Efficient XML in Java with Array Set Models
	Compiler Technology
	Conclusion

