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Introduction - History

● EXSLT for XSLT 1.0
● XSLT 2.0 and needs for new extensions
● EXSLT 2.0, EXQuery & EXProc
● XML Prague 2009 – EXPath
● First modules – HTTP Client & ZIP Facility
● Summer 2009 – the Packaging System
● 2010 – the Webapp module



    

Introduction - Goals

● Collaboratively defining open standards for 
portable XPath extensions

● The main means is extension functions
● The main goal is defining portable 

specifications...
● ...and convincing vendors to endorse them
● But also providing support to open-source 

implementations



    

Introduction - Processes

● More or less formal, more or less informal 
(that is a feature, not a bug)

● The definitive goal is writing specifications
● The main tool is the mailing list
● Each module has one main maintainer, 

responsible of editing & achieving consensus
● More infos about processes on the wiki
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The import problem

● The way to import a module is dependent on 
the processor

● XSLT import URI
● XQuery evil: location hint
● For now, there is no standard way to import a 

module in XSLT, XQuery nor XProc
● No other modern programming language as 

this limitation



    

The import problem

(: in Saxon :)

import module namespace functx = 
"http://www.functx.com"
  at "../../../../../../xlibs/functx/src/functx.xq";

declare function local:hello($who as xs:string) as xs:string
{
  concat('Hello, ', functx:capitalize-first($who), '!')
};
...

(: in eXist :)

import module namespace functx = 
"http://www.functx.com"
  at "xmldb:exist:///db/modules/functx.xq";
...



    

The import problem

● The ideal solution would be to get rid of the 
location hint, and see the import URI as a name

      (: portable :)

      import module namespace functx = 
"http://www.functx.com";

      declare function local:hello($who as xs:string) as xs:string
      {
        concat('Hello, ', functx:capitalize-first($who), '!')
      };
      ...
● Achievable somehow through XML Catalogs, 

but the install process is not uniform and thus 
even more painful for the user



    

XML Catalogs

● XML Catalogs are in the correct direction, but 
need automatization

● Both for the final user and for the author
● The solution needs to be used consistently, 

XML Catalogs does not give enough info
● Even when a catalog is shipped with a library, 

it needs advanced config in order to work
● And there is no standard release structure
● URI resolving is only part of the solution
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How to use it?

● A library user has two things to do:
– install the package, using an automatic 

installer

– import it and use it, of course, by simply using 
the pubic URI

● Installers can be command line tools, or a web 
form, or whatever is provided by the processor

● By using the public URIs (and only the public 
URIs), the written code is portable across 
different processors



    

Installers
● Command-line tool:

● eXist's web-based install:



    

Import modules

● Going back to our example:
      (: portable :)

      import module namespace functx = 
"http://www.functx.com";

      declare function local:hello($who as xs:string) as xs:string
      {
        concat('Hello, ', functx:capitalize-first($who), '!')
      };
      ...

● It is now portable across processors, without 
imposing any configuration burden on the user
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Requirements

● Building upon and going behind XML 
Catalogs, a packaging format must:

– describe what is needed but is not in the X* 
specifications

– be understood by most processors

– package the components and additional 
informations in a single file

– be eXtensible (to allow other specs to build 
upon it, and allow processor specific infos)

● Installation process can then be automated



    

Overview



    

Structure

● A package is a ZIP file
● It contains exactly one subdirectory (content)
● It contains a package descriptor: expath­pkg.xml
● It can contain per-processor descriptors
● It can contain descriptors for other specs



    

The descriptor

● Record some meta infos about the package
● Record the content component's public URIs



    

Putting it together

● The components and the descriptor are just 
zipped together to make the XAR package

● The XAR file must respect the structure 
described in the descriptor

● Any ZIP tool can be used to achieve this goal



    

Standard repository layout

● How packages are installed is implementation-
dependent

● The spec defines an optional repository layout
● If the implementation adopts this layout, it can 

share repositories with others
● Management tools in the command line have 

been built to manage such repositories (install, 
remove, list packages)

● A Java library exists for the URI resolution
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Too much for me!

● That's fine, but as a library author, that seems 
a lot of work to do again and again

● Besides, most of the steps are similar every 
time

● Creating new libraries usually involve copying 
and pasting Makefiles or other build files, and 
adapting them, over and over again

● By using some conventions, we can actually 
automate those repetitive tasks



    

Project?

● Following a consistent structure, a project can 
be built automatically

● This structure use naming conventions for 
directories

● As well as a project descriptor for meta data 
(title, version, etc.)

● The public URIs are maintained within the 
components themselves

● An XSLT stylesheet packages the project



    

Project!

● The basic project structure has a build/ 
directory with a project file, and a src/ directory 
with the project source files



    

xproj

● A simple script wraps the stylesheet 
invocation

● You call it from the project directory to build 
the project package:



    

Releasing

● Why did we put the test file outside the 
project?  Let's include it.

● And let's put a nice README file

● Can we create automatically a proper 
release?



    

xproj, relaunched



    

(let's make it clear)

● Before going further, let's make it clear this 
project structure stuff is already behind the 
packaging system itself

● It is useful, or even crucial, for the user 
experience

● But it is behind the packaging spec
● The spec is the minimal common piece to 

conform to
● Tools and specs can then be built upon it
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Repository functions

● A set of functions to manage a package 
repository directly from within XPath expression

● Not part of the spec (but could be in a v.Next)
● This is the approach followed by eXist:

– repo:list() as xs:string*

– repo:install($href as xs:string) as xs:boolean

– repo:remove($name as xs:string) as xs:boolean

● Could be used to build convenient managers, 
not dependent on the processor



    

CXAN

● http://cxan.org/
● Comprehensive XML Archive Network
● Follow the same principle as well-known 

CPAN for Perl and CTAN for (La)TeX
● Work in progress
● Collect existing packages
● Make them accessible and searchable from a 

single one location

http://cxan.org/


    

CXAN

● CXAN is composed of:
– the package base set on the server

– the website to browse and search within this 
package set

– a command line tool to install packages by 
downloading them directly from the server



    

CXAN

● Some challenges are still to solve:
– versioning

– dependencies between packages

– website interface



    

Webapps

● Using X* technologies end-to-end for web 
applications

● Most existing XML databases provide 
proprietary framework for that (eXist, 
MarkLogic, Sausalito, etc.)

● Then again, we are stuck with processor-
locked applications

● A standard would allow to write portable web 
applications, libraries and frameworks



    

Request / response
<web:request servlet="name" path="/path" method="get">
   <web:uri>http://example.org/my-app/path/one?
p=v</web:uri>
   <web:authority>http://example.org</web:authority>
   <web:context-root>/my-app</web:context-root>
   <web:path>
      <web:part>path/</web:part>
      <web:match name="which">one</web:match>
   </web:path>
   <web:param name="p" value="v"/>
   <web:header name="connection" value="keep-alive"/>
   ...
</web:request>

<web:response status="200" message="Ok">
   <web:header name="..." value="..."/>
   ...
   <web:body content-type="text/html" method="xhtml"/>
</http:response>



    

Entry point
● Either a:

– XQuery function

– main XQuery module

– XSLT function

– XSLT named template

– XSLT stylesheet

– XProc pipeline

● Must accept two parameters
– the request element

– the sequence of bodies (possibly empty)



    

Entry point



    

Web descriptor
● Map requests to entry points
● Based on URI matching



    

Packaging
● A webapp is packaged as any standard 

project
● The web descriptor is inserted next to the 

package descriptor
● All the resolution mechanism is already there



    

Building block
● Once again, the webapp spec follow the same 

principle than packaging: defining only the 
strict minimum low-level mapping between an 
HTTP request and an X* component (and its 
response back to HTTP)

●
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● Join the mailing list and browse the website:

http://expath.org/   
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