

 EXPath Packaging

A framework to package libraries and
applications for core XML technologies

Balisage, August 4th, 2010
Montréal

Florent Georges
H2O Consulting

EXPath Packaging

● Introduction ←
● The problem
● How to use it?
● Write a package
● A project structure
● Going further
● Conclusion

Introduction - History

● EXSLT for XSLT 1.0
● XSLT 2.0 and needs for new extensions
● EXSLT 2.0, EXQuery & EXProc
● XML Prague 2009 – EXPath
● First modules – HTTP Client & ZIP Facility
● Summer 2009 – the Packaging System
● 2010 – the Webapp module

Introduction - Goals

● Collaboratively defining open standards for
portable XPath extensions

● The main means is extension functions
● The main goal is defining portable

specifications...
● ...and convincing vendors to endorse them
● But also providing support to open-source

implementations

Introduction - Processes

● More or less formal, more or less informal
(that is a feature, not a bug)

● The definitive goal is writing specifications
● The main tool is the mailing list
● Each module has one main maintainer,

responsible of editing & achieving consensus
● More infos about processes on the wiki

EXPath Packaging

● Introduction
● The problem ←
● How to use it?
● Write a package
● A project structure
● Going further
● Conclusion

The import problem

● The way to import a module is dependent on
the processor

● XSLT import URI
● XQuery evil: location hint
● For now, there is no standard way to import a

module in XSLT, XQuery nor XProc
● No other modern programming language as

this limitation

The import problem

(: in Saxon :)

import module namespace functx =
"http://www.functx.com"
 at "../../../../../../xlibs/functx/src/functx.xq";

declare function local:hello($who as xs:string) as xs:string
{
 concat('Hello, ', functx:capitalize-first($who), '!')
};
...

(: in eXist :)

import module namespace functx =
"http://www.functx.com"
 at "xmldb:exist:///db/modules/functx.xq";
...

The import problem

● The ideal solution would be to get rid of the
location hint, and see the import URI as a name

 (: portable :)

 import module namespace functx =
"http://www.functx.com";

 declare function local:hello($who as xs:string) as xs:string
 {
 concat('Hello, ', functx:capitalize-first($who), '!')
 };
 ...
● Achievable somehow through XML Catalogs,

but the install process is not uniform and thus
even more painful for the user

XML Catalogs

● XML Catalogs are in the correct direction, but
need automatization

● Both for the final user and for the author
● The solution needs to be used consistently,

XML Catalogs does not give enough info
● Even when a catalog is shipped with a library,

it needs advanced config in order to work
● And there is no standard release structure
● URI resolving is only part of the solution

EXPath Packaging

● Introduction
● The problem
● How to use it? ←
● Write a package
● A project structure
● Going further
● Conclusion

How to use it?

● A library user has two things to do:
– install the package, using an automatic

installer

– import it and use it, of course, by simply using
the pubic URI

● Installers can be command line tools, or a web
form, or whatever is provided by the processor

● By using the public URIs (and only the public
URIs), the written code is portable across
different processors

Installers
● Command-line tool:

● eXist's web-based install:

Import modules

● Going back to our example:
 (: portable :)

 import module namespace functx =
"http://www.functx.com";

 declare function local:hello($who as xs:string) as xs:string
 {
 concat('Hello, ', functx:capitalize-first($who), '!')
 };
 ...

● It is now portable across processors, without
imposing any configuration burden on the user

EXPath Packaging

● Introduction
● The problem
● How to use it?
● Write a package ←
● A project structure
● Going further
● Conclusion

Requirements

● Building upon and going behind XML
Catalogs, a packaging format must:

– describe what is needed but is not in the X*
specifications

– be understood by most processors

– package the components and additional
informations in a single file

– be eXtensible (to allow other specs to build
upon it, and allow processor specific infos)

● Installation process can then be automated

Overview

Structure

● A package is a ZIP file
● It contains exactly one subdirectory (content)
● It contains a package descriptor: expath­pkg.xml
● It can contain per-processor descriptors
● It can contain descriptors for other specs

The descriptor

● Record some meta infos about the package
● Record the content component's public URIs

Putting it together

● The components and the descriptor are just
zipped together to make the XAR package

● The XAR file must respect the structure
described in the descriptor

● Any ZIP tool can be used to achieve this goal

Standard repository layout

● How packages are installed is implementation-
dependent

● The spec defines an optional repository layout
● If the implementation adopts this layout, it can

share repositories with others
● Management tools in the command line have

been built to manage such repositories (install,
remove, list packages)

● A Java library exists for the URI resolution

EXPath Packaging

● Introduction
● The problem
● How to use it?
● Write a package
● A project structure ←
● Going further
● Conclusion

Too much for me!

● That's fine, but as a library author, that seems
a lot of work to do again and again

● Besides, most of the steps are similar every
time

● Creating new libraries usually involve copying
and pasting Makefiles or other build files, and
adapting them, over and over again

● By using some conventions, we can actually
automate those repetitive tasks

Project?

● Following a consistent structure, a project can
be built automatically

● This structure use naming conventions for
directories

● As well as a project descriptor for meta data
(title, version, etc.)

● The public URIs are maintained within the
components themselves

● An XSLT stylesheet packages the project

Project!

● The basic project structure has a build/
directory with a project file, and a src/ directory
with the project source files

xproj

● A simple script wraps the stylesheet
invocation

● You call it from the project directory to build
the project package:

Releasing

● Why did we put the test file outside the
project? Let's include it.

● And let's put a nice README file

● Can we create automatically a proper
release?

xproj, relaunched

(let's make it clear)

● Before going further, let's make it clear this
project structure stuff is already behind the
packaging system itself

● It is useful, or even crucial, for the user
experience

● But it is behind the packaging spec
● The spec is the minimal common piece to

conform to
● Tools and specs can then be built upon it

EXPath Packaging

● Introduction
● The problem
● How to use it?
● Write a package
● A project structure
● Going further ←
● Conclusion

Repository functions

● A set of functions to manage a package
repository directly from within XPath expression

● Not part of the spec (but could be in a v.Next)
● This is the approach followed by eXist:

– repo:list() as xs:string*

– repo:install($href as xs:string) as xs:boolean

– repo:remove($name as xs:string) as xs:boolean

● Could be used to build convenient managers,
not dependent on the processor

CXAN

● http://cxan.org/
● Comprehensive XML Archive Network
● Follow the same principle as well-known

CPAN for Perl and CTAN for (La)TeX
● Work in progress
● Collect existing packages
● Make them accessible and searchable from a

single one location

http://cxan.org/

CXAN

● CXAN is composed of:
– the package base set on the server

– the website to browse and search within this
package set

– a command line tool to install packages by
downloading them directly from the server

CXAN

● Some challenges are still to solve:
– versioning

– dependencies between packages

– website interface

Webapps

● Using X* technologies end-to-end for web
applications

● Most existing XML databases provide
proprietary framework for that (eXist,
MarkLogic, Sausalito, etc.)

● Then again, we are stuck with processor-
locked applications

● A standard would allow to write portable web
applications, libraries and frameworks

Request / response
<web:request servlet="name" path="/path" method="get">
 <web:uri>http://example.org/my-app/path/one?
p=v</web:uri>
 <web:authority>http://example.org</web:authority>
 <web:context-root>/my-app</web:context-root>
 <web:path>
 <web:part>path/</web:part>
 <web:match name="which">one</web:match>
 </web:path>
 <web:param name="p" value="v"/>
 <web:header name="connection" value="keep-alive"/>
 ...
</web:request>

<web:response status="200" message="Ok">
 <web:header name="..." value="..."/>
 ...
 <web:body content-type="text/html" method="xhtml"/>
</http:response>

Entry point
● Either a:

– XQuery function

– main XQuery module

– XSLT function

– XSLT named template

– XSLT stylesheet

– XProc pipeline

● Must accept two parameters
– the request element

– the sequence of bodies (possibly empty)

Entry point

Web descriptor
● Map requests to entry points
● Based on URI matching

Packaging
● A webapp is packaged as any standard

project
● The web descriptor is inserted next to the

package descriptor
● All the resolution mechanism is already there

Building block
● Once again, the webapp spec follow the same

principle than packaging: defining only the
strict minimum low-level mapping between an
HTTP request and an X* component (and its
response back to HTTP)

●

EXPath Packaging

● Introduction
● The problem
● How to use it?
● Write a package
● A project structure
● Going further
● Conclusion ←

● Join the mailing list and browse the website:

http://expath.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

