[image: Balisage logo]Balisage: The Markup Conference

Extension of the type/token distinction to document structure
Claus Huitfeldt
Associate Professor (førsteamanuensis)
Department of Philosophy, University of Bergen

Yves Marcoux
Associate Professor
Université de Montréal

<yves.marcoux@umontreal.ca>

C. M. Sperberg-McQueen
Black Mesa Technologies

<cmsmcq@blackmesatech.com>

Balisage: The Markup Conference 2010
August 3 - 6, 2010

Copyright © 2010 by the authors.

How to cite this paper
Huitfeldt, Claus, Yves Marcoux and C. M. Sperberg-McQueen. "Extension of the type/token distinction to document structure." Presented at: Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010. In Proceedings of Balisage: The Markup Conference 2010.
 Balisage Series on Markup Technologies vol. 5 (2010). https://doi.org/10.4242/BalisageVol5.Huitfeldt01.

Abstract

 The type/token distinction introduced by C. S. Peirce and taken
 up by many others is familiar when applied to individual symbols
 or characters in a writing system, and also when applied at a
 higher level to words (and word-like objects).

 Some writers apply the distinction not only at some basic or
 foundational level but also as a description of higher levels of
 organization. This paper follows their example by outlining a
 concrete extension of the type/token distinction to all levels of
 document organization, specifying that higher-level types may
 contain sequences of lower-level types, and similarly
 for higher- and lower-level tokens. We further extend the usual
 model of types and tokens by allowing higher-level types to
 contain not just sequences of (lower-level) types
 but also sets, bags, conjunctions and disjunctions of types.
 This allows the system to
 deal gracefully both with indeterminate documents (e.g., a
 manuscript in which it is not clear whether a given mark on the
 page represents a 'c' or a 't') and with intentionally polyvalent
 documents, in which some marks are to be read as tokens of more
 than one type, as in the ambigram, a sort of
 combination puzzle and calligraphic artwork in which the shapes
 on the page may be read in different ways, or the same way, in
 different directions.

 This account of document structure in terms of types and tokens
 is similar in many ways to that offered by SGML, XML, and other
 systems of descriptive markup. On this view, SGML and XML
 elements are, strictly speaking, types (and tokens) in Peirce's
 sense of those words. Some techniques developed in other areas
 to which the type/token distinction is relevant may be useful in
 work on markup languages (and vice versa).

Balisage: The Markup Conference

 Extension of the type/token distinction to document structure

 Table of Contents

 	Title Page

 	Introduction

 	The type/token distinction
 	Peirce's account

 	Other usages of type and token

 	Related distinctions

 	Types and tokens at different levels

 	Extensions to the conventional view of types and tokens
 	Basic concepts

 	Multiple levels of types and tokens

 	Ambiguity: disjunction, and conjunction

 	Type repertoires and type systems

 	Types, tokens, and markup languages

 	Conclusion

 	About the Authors

 Extension of the type/token distinction to document structure

Introduction
We propose to extend the familiar type/token distinction in two
 ways. First, we apply it not only to words or to atomic
 characters but also to higher-level document structures; second,
 we introduce mechanisms for handling tokens whose type identity
 is ambiguous either because of uncertainty or because of
 intentional use of multiple meanings. In the first point, we
 follow the example of a number of other authors who have
 distinguished at multiple levels what we here call tokens from
 what we here call types; we offer a more explicit and formal
 account than has been usual. Recasting the familiar type/instance
 distinction as a type/token distinction has the helpful
 consequence of providing a unified account of document structure
 at all levels, instead of treating the character and element
 levels as essentially different.

The ideas presented here originally arose (as some of the
 examples will show) in the context of work on the logical
 structure of transcription, but they concern general questions of
 document structure.
The next section (section “The type/token distinction”)
 presents a terse survey of the type/token distinction, as we
 believe it is conventionally accepted. The following section
 (section “Extensions to the conventional view of types and tokens”) elaborates the conventional view
 and extends it in three ways. First, our account handles not only
 atomic but also compound types; our compound types and compound
 tokens include the structures conventionally recognized and
 marked up in descriptive markup. Second, we propose a mechanism
 that handles not only the usual case in which a token has a
 single known type, but also less common and more difficult cases
 in which there is uncertainty about which type to assign to a
 token, or in which a token has been intentionally designed to
 belong to multiple types. Third, we introduce the notions of
 type repertoire and type system to clarify the ways in which
 multi-level types and tokens obey the normal rule stipulating
 that any token instantiates just one type. The penultimate
 section (section “Types, tokens, and markup languages”) discusses some of the obvious parallels between
 markup languages like XML and the application of the type/token
 distinction to document structures at levels above the individual
 character or word. The final section (section “Conclusion”) contains some concluding remarks and
 speculations.

The type/token distinction

 The distinction between strings as types and strings
 as tokens is a familiar one to almost any
 programmer, but what they have in mind is not quite
 the same as was described by Peirce when he introduced the distinction
 [Peirce 1906].
Consider a sequence of words on a page, for example the first
 sentence of the Algol 60 report [Naur et al. 1960],
 and the question How many
 words are in this sentence?
 After the publication of a preliminary report
 on the algorithmic language ALGOL, as prepared at a conference
 in Zürich in 1958, much interest in the ALGOL language
 developed.

 In one sense, there are 28 words; the sentence is a sequence of
 words, and the length of the sequence is 28. In another sense,
 however, the sentence contains only 21 words (assuming that 1958
 counts as a word), some of which
 (ALGOL, a, in, language, and the)
 appear more than once. In some contexts, it would be convenient to
 treat these repeated words as distinct, and in other contexts,
 to treat them as identical.

Peirce provided a simple way to do this, by distinguishing the
 two senses of word at issue here. He
 called words in the first sense tokens and in the
 second sense
 types. A token, in Peirce's account, is a thing
 which is in some single place at any one instant of time
 — this example, the tokens are the physical marks of ink
 on the page (or the physical illumination of the pixels on the
 screen). Types, meanwhile, are in the usual account the abstract
 objects we identify when we say that the second and ninth words
 (tokens) of the sentence are the same word.

Peirce's account
Peirce's account of the distinction runs as follows
 [Peirce 1906] pp. 423-4:
 A common mode of estimating the amount of
 matter in a MS. or printed book is to count the number of words.
 There will ordinarily be about twenty
 thes on a page, and of course they count
 as twenty words. In another sense of the word word,
 however, there is but one word the in the English
 language; and it is impossible that this word should lie visibly
 on a page or be heard in any voice, for the reason
 that it is not a Single thing or Single event. It does not
 exist; it only determines things that do exist. Such a
 definitely significant Form, I propose to term a
 Type. A Single event which happens once and whose
 identity is limited to that one happening or a Single object or
 thing which is in some single place at any one instant of time,
 such event or thing being significant only as occurring just
 when and where it does, such as this or that word on a single
 line of a single page of a single copy of a book, I will venture
 to call a Token. [...] In order that a Type may be
 used, it has to be embodied in a Token which shall be a sign of
 the Type, and thereby of the object the Type signifies. I
 propose to call such a Token of a Type an Instance
 of the Type. Thus, there may be twenty Instances of the type
 the on a page.

As may be seen, Peirce's distinction stresses the opposition
 between the concrete physical existence of the token and the
 abstract nature (and, in Peirce's terminology, the
 non-existence!) of the type. He also establishes the usage that
 tokens can be said to instantiate
 types.[1]
 To be a token, in fact, is to instantiate
 a type (and vice versa); there are no tokens without associated
 types.[2]

Other usages of type and token
There are a number of other usages of the terms type
 and token which differ from Peirce's, and
 should not be confused with it.
Peirce's types have nothing to do with Bertrand Russell's
 logical types, which are classes or orders
 of sets and belong to a completely different story. The
 (data) types of programming languages and XML schema languages
 are similarly distinct concepts.

 Some common usages (not only in computing, but particularly
 visible there), employ an opposition between token
 and type similar to Peirce's, but divorce it more
 or less completely from the opposition of concrete physical
 existence and abstraction; any instance of a particular string
 (more precisely, of a particular string type) is taken as a
 token of that type. In a related usage, token is
 also taken simply as one item in the results produced by a
 tokenizer, whose task it is to divide a sequence of characters
 into units.
 A more careful usage reserves the word
 token for concrete physical phenomena and
 uses the term occurrence for what common
 computing terminology calls tokens, reserving
 token for particular physical
 realizations of the type.[3]

 In this paper, we do distinguish between tokens, types, and occurrences of types.
 The latter will be encountered mainly in what we will call
 compound types, for example sets
 or sequences of (other) types. In those cases,
 the components of the compound type are implicitly understood to be
 occurrences of types, so we will not say, for example,
 sequence of occurrences of types (which would be somewhat
 pleonastic), but simply sequence of types.

Related distinctions
The type/token distinction is sometimes met with under different
 names (and those who use those different ways of speaking about
 things may or may not agree with our claim that what they
 are speaking about is in fact the type/token distinction). In
 this section we mention two of the more important, without
 being able to discuss them in the detail they deserve.

Nelson Goodman describes the constituents of a
 notational system thus
 [Goodman 1976], p. 131:
 Characters are certain classes of utterances or
 inscriptions or marks. (…
 an
 inscription is any mark — visual, auditory, etc. —
 that belongs to a character.)
 Now the essential feature of a
 character in a notation is that its members may be freely
 exchanged for one another without any syntactical effect; or
 more literally, since actual marks are seldom moved about and
 exchanged, that all inscriptions of a given character be
 syntactically equivalent. In other words, being instances of
 one character in a notation must constitute a sufficient
 condition for marks being true copies or
 replicas of each other, or being spelled the same way.

 Goodman speaks here of characters being classes of inscriptions,
 but he makes clear elsewhere that this is merely a convenient
 way of expressing himself and is not intended to commit him to
 the existence of classes or sets: in a more careful formulation,
 presumably, Goodman would say that characters are the
 mereological sums of their inscriptions: complex individuals
 (entities) made of the individual inscriptions of the
 character.[4]

We take Goodman's opposition between inscription
 and character to be the same as, or very similar
 to, Peirce's opposition of token and type. The properties
 Goodman ascribes to characters and inscriptions are precisely
 those of types and tokens. Goodman makes explicit some
 properties of types and tokens which are part of the usual
 view of the matter but are not explicit in the passage from
 Peirce quoted above. In particular:
 	No token is a token of more than one
	type.[5] In consequence, types are
	disjoint from each other.

	Any two types must be finitely differentiated
	from each other; it must always be possible, in principle, to
	distinguish tokens of one type from tokens of another.
	(This does not mean that it will always be easy or possible
	in practice, only that in any system of types it is not
	possible to have two which are not in principle
	distinguishable from each other.)

 The full exploitation of Goodman's work for illumination of
 the type/token distinction remains a desideratum for the future.

The type/token distinction also resembles the distinction made
 by most phonologists between specific individual sounds
 or configurations of the vocal organs
 (phones) and the distinctive units of phonology
 (phonemes).[6]
 Goodman's remark about the equivalence
 (at least for syntactic purposes) of the different tokens of a
 type recalls the occasional supposition by phonologists that
 different realizations of the same phoneme may be interchanged
 freely without affecting the acceptability of the utterance.

 The phone/phoneme distinction allows linguists to treat sounds
 in different utterances (or at different locations in the same
 utterance) as identical for certain purposes, and distinct for
 others. It thus serves a function analogous to the one we noted
 above for the type/token distinction. Like types, phonemes
 are instantiated by physical phenomena which can vary widely in
 detail. Like types, they are taken to be disjoint from each
 other (they serve, in a common description, as contrastive
 units, which we take to mean that one of their functions
 is to be distinct from each other).

Much of the machinery of phonology can usefully be applied to
 types and tokens. Just as phonemes can almost always be realized
 by a number of different phonetic variants (allophones), with
 the choice of allophone often determined by the phonetic
 environment, so also do the tokens of a type frequently fall
 into subclasses which may vary depending on environment or other
 factors. Conventionally minimal pairs (pairs of words which
 differ only in a single sound) are taken as evidence for
 distinctions among phonemes; similarly minimal pairs can be used
 to distinguish different types from each other. And just as
 phonologists have found it helpful to define phonemes in terms
 of sets of minimally distinctive features, so also it may
 prove helpful to define types in terms of distinctive
 features. It is interesting to note that defining types
 in terms of finite sets of distinctive features guarantees
 that any type so defined will satisfy Goodman's requirement
 that it be finitely differentiated from other types.

Types and tokens at different levels
One further topic should be discussed at least briefly before
 we proceed with our elaboration of the type/token distinction.
 As the title of the paper indicates, its central idea is that
 the type/token distinction can be applied not just to words and
 characters, but also to higher-level document structures. Since
 document structures are generally understood to have internal
 structure and to nest within other document structures, we
 must necessarily consider both types and tokens as capable
 of nesting and having internal structure.
This appears not to be the most common view of the type/token
 distinction. The distinction is sometimes applied at the
 character level, and sometimes at the type level, but not
 (usually) at both levels at the same time. In the passage quoted
 above, for example, Peirce identifies types and tokens only as
 ways of looking at words, without mentioning their relation to
 types or tokens at lower or higher levels of analysis.
It is not unknown, however, to apply the type/token
 distinction at multiple levels.
Goodman, for example, explicitly applies the term
 character things which may contain other
 characters, and expects this to be the normal case:
 Any symbol scheme consists of characters,
 usually with modes of combining them to form others.

 So in Goodman's sense, the initial A of ALGOL is a
 character, and so is ALGOL itself. The first sentence of
 the Algol report can be regarded as a character in the same
 sense, as can the paragraph in which it occurs, and after a few
 more combinations at higher and higher levels, the Algol 60
 report itself as a whole. (Or, in the terminology we prefer as
 less confusing to users of Unicode, the initial A of
 ALGOL, the word ALGOL itself, and so on, are all
 types at various levels, instantiated by tokens at similarly
 various levels.)

The linguistic concept of phone and phoneme does not allow
 phonemes to nest. But the idea of phonetic/phonemic contrasts
 has been widely applied in other areas of linguistics, perhaps
 most widely and visibly by the linguist Kenneth L. Pike. Pike
 generalized the distinction between phonetic and phonemic
 phenomena, coining the terms emic and
 etic, and applied the distinction not
 only to other areas of linguistic analysis but also to virtually
 all of human behavior [Pike 1967]. The
 emic/etic distinction has apparently achieved wide currency in
 some schools of anthropology and sociology. And when
 both phonological and other linguistic levels are analysed
 in terms of emic and etic units, it is unavoidable that
 some of those units will have internal structure and nest
 in other emic and etic units.

Finally, recent discussions of types and tokens by the
 philosopher Linda Wetzel have devoted significant attention to
 questions that arise when considering tokens, or types, at
 multiple levels. If we consider any concrete realization of the
 sentence from the Algol report quoted above (i.e. any token of
 the sentence), then it is easy enough to see that the sentence
 token can be decomposed into word tokens, and the word tokens
 into character tokens. But of what, asks Wetzel, is the
 sentence type composed? It cannot be composed of
 word tokens, because as a type it is abstract. It cannot be
 composed simply of word types, because the sentence is 28 words
 long, but there are only 21 word types available for the job.
 Wetzel concludes, after painstaking investigation of
 alternatives, arguments, and counter-arguments, that the
 sentence type consists of 28 occurrences
 of word types. She
 elucidates the concept of occurrence with the aid of an appeal
 to sequences, and then generalizes it to situations where the
 parts of a larger whole are not arranged in sequences.

Another issue raised by Wetzel may be worth mentioning.
 In cases where the containing string is written out in full,
 each token in the string will (as always)
 constitute a different occurrence of a type, and each occurrence
 of a type will be signaled by a different token. This has led
 some philosophers to doubt the utility of any distinction
 between occurrences and tokens. How, they ask, can a type occur
 multiple times in a sequence (or other structure) unless it is
 instantiated by a different token for each occurrence? The
 question takes on a particular interest in the context of SGML
 and XML, where multiple references to an entity can in fact
 easily produce multiple occurrences of a type from a single
 token. Macros as handled by the C pre-processor have the same
 effect. Examples outside of mechanical systems appear to
 be less common, but they do exist. In printed versions of
 ballads and other songs with refrains, it is not uncommon
 for only the first occurrence of the refrain to be printed
 in full, while others are indicated only by the word
 Refrain, which functions here as a sort
 of macro or entity reference. And repeat-marks in music
 seem to make the note tokens so marked correspond to
 multiple note-type occurrences in the music.

Extensions to the conventional view of types and tokens
In this section we elaborate and extend the conventional
 type/token distinction, and provide a formal model for it. The
 formal model is expressed using the syntax of Alloy, a modeling
 tool developed by Daniel Jackson and his research team
 [Jackson 2006].[7] Readers uninterested
 in formalization may skip the Alloy extracts without loss of
 context.

Our model goes beyond the most common version of the
 type/token distinction in three ways:	We follow Goodman, Pike, Wetzel, and others in
 assuming types and tokens on multiple levels.

	We introduce disjunction of types to cover cases
 in which a reader is uncertain which type is instantiated
 by a given token, and conjunction of types to cover cases
 in which a token, contrary to the usual rule,
 instantiates multiple types.

	We introduce explicit notions of type repertoires and type
 systems as a way of resolving the contradictions that otherwise
 arise from assuming both (a) that several
 levels of type and token can coexist, and
 (b) that, as already noted, types are necessarily disjoint.

Basic concepts
The basic concepts of the model
 we propose can be summarized
 as follows.

The key concepts of the model are those of
 token and of type, which are defined
 partly in opposition to each other.
	Tokens are concrete physical phenomena:
	marks on paper, magnetic pulses on disk or tape, etc.

But not all physical marks are tokens: a mark is recognized
 as a token if and only if it is recognized as being a token of
 some type.[8] The recognition of
 tokens as instances of particular types requires a competent
 observer (e.g., a human reader, in the case of conventional
 writing), but we do not here address the perceptual and
 psychological processes by which humans recognize a token as
 being of a particular type.
	Types may be regarded as abstract
	objects represented or symbolized by tokens.

Alternatively (in the spirit of Goodman's calculus of
 individuals) they may be regarded as collective individuals
 whose constituent parts are tokens.[9]
In either case, we will say that tokens
 instantiate types, and that types are normally
 conveyed or communicated by being instantiated by tokens.
	Each token instantiates exactly one type.

It must instantiate at least one type, because a mark that
 does not instantiate a type is not a token. And it cannot
 instantiate more than one type, because types are mutually
 disjoint and no token can be of multiple types. (At least, this
 is the simplest way to start out. But see further the discussion
 of type repertoires and type systems
 below.)
In more formal terms: types have identity, but we specify
 no other properties for them.
abstract sig Type {}

Tokens map to types. The only salient property of a token,
 and thus the only property we model, is the identity of
 the type it instantiates.[10]
abstract sig Token {
 type : Type
}

The declaration type : Type indicates that the
 type relation links each Token to exactly one
 Type. It follows, then, that:

	Each token instantiates exactly one type.

	Any two types are instantiated by disjoint sets
 of tokens.

Multiple levels of types and tokens
As noted above, earlier authors have contemplated types and
 tokens which have internal structure and nest; here we take
 up that principle and formalize it.

	Some tokens are basic, or atomic in the sense that no
 other tokens are part of them; the types instantiated by them
 are similarly basic.

Simple examples are the characters of the Latin alphabet and
 punctuation marks.
Formally: basic types are a kind of type,
and basic tokens are a kind of token.
The types to which basic tokens map will normally be basic types,
but for reasons clarified below this is not required
by the model.

sig Basic_Type extends Type {}
sig Basic_Token extends Token {}

	Other tokens are compound: aggregations or
 collections of lower-level tokens; so also
 with types.

We refer to the lower-level types or tokens as the
 constituents of the higher-level one of which they
 form a part.
Because in written documents compound tokens typically
 occupy a discernible and possibly large region of the text
 carrier, we call them regions. Because compound
 types are, in the usual case, structural units of a kind
 familiar to any user of SGML or XML for document markup, we
 refer to them as S_Units.
Regions can be decomposed into subregions and S_Units
 have children. It proves useful to postulate that S_Units
 also have a set of property-value pairs, and are labeled
 as to their type or (to avoid overloading the word
 type yet again) their kind.

Formally: compound types and tokens are subsets, respectively,
 of types and tokens generally. They have subordinate types
 and tokens, referred to as their children
 and subregions, respectively.

abstract sig Region extends Token {
 subregions : set Token
}{
 type in S_Unit
 type.children = subregions.@type
}
abstract sig S_Unit extends Type {
 kind : lone Kind,
 props : set AVPair,
 children : set Type
}

	The lower-level items in compounds are frequently arranged in a
	sequence, but this is not invariably so. The constituents
	(subregions and children) may also form a set, or a bag.

Simple examples of sequence include the aggregation of
 sequences of character tokens to form word tokens and similarly
 the aggregation of sequences of character types to form word
 types. At higher levels, the aggregation of paragraphs to form
 a chapter, or of chapters to form a novel, provide further
 examples. Sets and bags are less frequent in documentary
 applications, but not unknown; they occur whenever it is
 meaningless or misleading to ask about the order of the
 children, or when the children are represented in some sequence
 of tokens which is explicitly stated to carry no significance.

Formally:

sig Ordered_Region extends Region {
 sub_seq : seq Token
}{
 elems[sub_seq] = subregions
 type in Ordered_S_Unit
 type.ch_seq = sub_seq.@type
}
sig Ordered_S_Unit extends S_Unit {
 ch_seq : seq Type
}{
 elems[ch_seq] = children
}

 The declaration sub_seq : seq Token says
 that each Ordered_Region is associated with a sequence of
 (sub)tokens; ch_seq : seq Type says the analogous
 thing for Ordered_S_Unites. The declarations
 elems[sub_seq] = subregions and elems[ch_seq]
 = children specify that the elements of those sequence
 are precisely the constituents of the compound object. The
 declaration type in Ordered_S_Unit requires that
 any ordered region instantiate an ordered
 type.[11] The declaration
 type.ch_seq = sub_seq.@type specifies that for any
 ordered region R, the children of
 R's type are the types of R's
 subregions.

Next, we turn to unordered types and tokens (bags and sets):

abstract sig Unordered_Region extends Region {}{
 type in Unordered_S_Unit
}
abstract sig Unordered_S_Unit extends S_Unit {}

Note that those definitions make Ordered_S_Unit
 and Unordered_S_Unit disjoint from each other, as
 expected (an S_Unit cannot be both ordered and
 unordered).

 Types and tokens whose constituents are unordered have
 either set structure or bag structure. Set-structured
 tokens map to set-structured types (and ditto for
 those with bag structure). Bag-structured types and
 tokens keep track of the number of occurrences of each
 constituent (modeled here by the functions sub_counts
 and ch_counts, which map from constituents
 to natural numbers.

abstract sig Set_Structured_Region extends Unordered_Region {}{
 type in Set_Structured_S_Unit
}
abstract sig Set_Structured_S_Unit extends Unordered_S_Unit {}

abstract sig Bag_Structured_Region extends Unordered_Region {
 sub_counts : subregions -> Natural_number
}{
 type in Bag_Structured_S_Unit
}
abstract sig Bag_Structured_S_Unit extends Unordered_S_Unit {
 ch_counts : children -> Natural_number
}

Normally, basic tokens instantiate basic types; exceptions
 are the disjunctive and conjunctive types defined below.
 Only compound tokens can successfully instantiate most compound
 types, because of the rule type.children = subregions.@type
 in the declaration of regions. Essentially, this requires a
 kind of compositionality: if the type of a region has child
 types, then those child types must be instantiated by
 subregions of the region. Since basic tokens have no
 subregions, they cannot satisfy this constraint.
Several observations can be made about compound types and tokens.
The lowest level of compound, consisting of a sequence of
 basic tokens (or types), is frequently an object of special
 interest. (For example, the text node of the XPath
 data model is characterized precisely by being a sequence of
 Unicode characters [here taken as basic] uninterrupted by markup
 and without any further properties or structure.)[12]

Basic tokens consist of marks on a text-bearing writing
 medium; compound tokens consist of collections of other tokens
 (basic or compound); not infrequently, these are physically
 proximate and so compound tokens may be identified with
 regions of the text carrier.[13]
The compound types instantiated by compound tokens are not
 infrequently structural units of the kind identified by elements
 and attributes in standard markup practice.
Among the compound tokens, the document itself is
 an important edge case, and similarly the text
 among compound types.[14]
Finally, some ancillary declarations are needed for the
 Kind, AVPair, and Natural_number
 objects appealed to in some of the earlier declarations.

 The signatures Kind and AVPair
 serve purposes analogous to the generic identifiers and
 attribute-value pairs of SGML and related markup languages. We
 do not analyse them further. Natural_number
 is just an integer greater than zero.

abstract sig Kind {}

sig AVPair {
 att_name : Kind,
 att_value : Type
}

sig Natural_number {
 theNumber : Int
}{
 theNumber > 0
}

Ambiguity: disjunction, and conjunction
Our model of the type/token distinction goes beyond
 the conventional view in a second way: we postulate
 disjunctive and conjunctive types, to address some
 cases which are otherwise difficult to handle.

In some documents it may be difficult to say just what type
 is instantiated by some tokens (e.g., if the document is
 difficult to read). For example, consider the following
 extract from a manuscript of Ludwig Wittgenstein:
 Figure 1
[image:]
A word in Wittgenstein's Geheimschrift
	(Item 118, page 8v).

 Transcribers not yet aware that this word is written in Wittgenstein's
 so-called secret writing (in which A is
 substituted for Z, B for Y, etc., and vice versa) might have
 difficulty deciphering the token. Transcriber A might
 render the word as munonyqi, transcriber B as
 wunouyqi. Both might accept the other's transcription
 as just as likely as their own. How, in this case, should
 a neutral observer whose knowledge of the original is derived
 only from the transcription, or a transcriber uncertain how
 to read the philosopher's handwriting, characterize the first
 letter of this word? Is it a w or
 an m?

We could of course simply insist that each
 token be mapped to a unique type as a matter of principle, thus
 forcing a choice among the possibilities: m
 or w. But it might provide a
 more accurate depiction of the state of affairs if we specified
 not that the first letter is an m, or
 that it is a w, but specified instead
 that it is either
 the one or the other.[15]
So we extend the model given above by adding the possibility of
 disjunctive types.
	Some compound types represent a disjunction among
 their constituents.

In Alloy notation:
sig Disjunctive_Type extends S_Unit {}{
 kind = Disjunction
 some children
}
one sig Disjunction extends Kind {}

 Here again, note that
 Disjunctive_Type is disjoint from both
 Ordered_S_Unit and Unordered_S_Unit.

 Note that the mapping from token to type remains a function:
 each token continues to map to a single type, but in cases of
 uncertainty, that single type simply happens to be a
 disjunction. Formally, this state of affairs could be handled
 instead by making the token/type mapping a relation, through
 which any given token would map to one or more types; we choose
 to reify the notion of disjunction for reasons which should
 become clear shortly.

Uncertainty is not the only reason one might wish to map a
 given token to more than one type. Just as ambiguity in
 utterance may be either unintentional or intentional, so also
 polyvalence in the token/type mapping may reflect either the
 uncertainty of the reader or the purposeful choice of the
 creator. Some of the most entertaining instances of this
 phenomenon are the mixtures of calligraphy and puzzle creation
 known as ambigrams or
 inversions, in which the marks of a
 document are carefully constructed to instantiate not single
 types but two or even more. In the following example,

 the marks can be read either clockwise or counter-clockwise
 as tokens of the word infinity.[16]
 Figure 2
[image:]
An inversion. © Scott Kim,
	scottkim.com.
	Reproduced by permission.

We extend the model, therefore, to include
 conjunctive types.
	Some compound types represent the conjunction of
 their constituents: tokens instantiating such types
 instantiate, at the same time, each constituent of the
 type.

In Alloy:

sig Conjunctive_Type extends S_Unit {}{
 kind = Conjunction
 some children
}
one sig Conjunction extends Kind {}

 As with disjunctive types, no additional fields or machinery are
 needed: it suffices to classify a type as disjunctive or
 conjunctive to make clear how the constituent types relate to
 each other and to the tokens of the type.[17]

 Other cases of willed polyvalence include acrostics (in which
 individual basic tokens form parts of two compound tokens, not
 just one) and some simple forms of coded communication (e.g.,
 documents where the intended recipient must read every other
 word, or every other line, to glean the secret message). These
 deviate from the normal case in which each token (except
 the top-most, namely the document) is a constituent of just
 one higher-level token (and similarly, with appropriate
 adjustments, for types). In the normal case, that is, both
 tokens and the types they instantiate can typically be arranged
 in a simple hierarchy. Violations of this hierarchical
 assumption do not require a special kind
 of type like a disjunction or a conjunction; it suffices
 to avoid requiring that no two tokens, and not two types,
 share any constituents.
It is not hard to imagine (though it is beyond our ability to
 provide plausible examples of) cases in which the marks of a
 document are clearly intended to be polyvalent and thus appear
 to require a mapping to some conjunctive type, but in which it
 is not clear which conjunctive type is called for. In such
 situations, the tokens in question may be regarded as
 instantiating a disjunctive type whose constituents are
 conjunctive types. One might also imagine an inversion in which
 the identity of one conjoined type is certain but the other is
 not: that may be described by mapping the token in question to a
 conjunctive type whose constituents are a
 normal type (compound or basic) and a
 disjunctive type.

Type repertoires and type systems
It is a fundamental property of types as commonly defined, that
 types are mutually exclusive: each token instantiates a single
 type. With the exception of special cases involving accidental
 or willed ambiguity, a given mark is always an
 a, or a b, or a
 c, etc., and never more than one.
 Essentially, types and tokens form a digital rather
 than an analog system.

But if types can nest within other types, it is easy to
 find cases where the same token must instantiate multiple
 types, at different levels. A token I might at one
 and the same time instantiate several different types:
 	a character (upper-case Latin letter I)

	a letter (as opposed to a punctuation character or
 other non-letter character)

	a word

	a pronoun

	a noun phrase

	a sentence

	an utterance

This is not a problem for uses of the type/token distinction
 which work with a single level at a time; it is a more serious
 difficulty for a model like ours, in which multiple levels are
 normally present. In such a multi-level system, it is no longer
 true that all types are disjoint or that each token
 instanatiates only a single type. On the other
 hand, the phenomenon arises only because multiple levels of type
 are present at the same time, in the same view of things. Within
 a given level (for some suitable definition of that construct)
 the conventional rule applies: all types are pairwise disjoint.

We postulate that types can be grouped together in type
 repertoires in such a way that the disjointness rule
 holds true not absolutely, but for all types in a repertoire.
 The token I can be both a character and a word, because
 the character I is a member of one
 type repertoire, and the word I is
 a member of a different type repertoire.

In practice, normal readers reading conventional written
 documents (or listening to normal spoken utterances) apply
 several type repertoires in parallel, with complex interactions
 among them.

 A non-empty finite collection of type repertoires we call a
 type system.
Any particular reading of a document will involve a type
 system. Different readings of a document may diverge not because
 of irreconcilable substantive differences, but only because they
 are applying different type systems. For example, a transcriber
 of eighteenth-century documents who preserves the distinction
 between long s and short s, and a transcriber who levels the
 distinction (perhaps on the grounds that the two forms are in
 complementary distribution and are thus clearly allographs) do
 not in fact disagree on what their common exemplar actually says;
 if they disagree, it is only about the appropriate type system to
 bring to bear on transcriptions of such material.

In some cases (as in the case of long and short s), the
 relation between type repertoires is a straightforward
 refinement/abstraction relation: one repertoire makes finer
 distinctions than the other and contains more information.
 In other cases, the relation will be more complex.

Types, tokens, and markup languages
There are noticeable parallels between the structured types
 and tokens we have described and the analysis of documents
 underlying many colloquial SGML and XML vocabularies.
 In both cases, we identify structured units which may
 occur as parts of larger structured units. In both
 cases, the same abstract units may be instantiated by
 different concrete realizations.

The model we have presented has been kept rather abstract
 and general; we have not attempted to enforce in it any
 of the structural regularities of SGML and XML, such as
 strict nesting and hierarchical structure. In fact, as far
 as we can tell, the abstract model of types and tokens we
 have sketched provides a model not only for SGML and XML,
 but for all the other kinds of document markup with which
 we are familiar: MECS and Cocoa and TexMecs and
 various batch-formatting languages (TeX, Script, troff, ..),
 as well as word-processor formats. That is, we believe
 the model outlined here provides a sort of greatest common
 denominator for markup systems.

The first implication of our work for markup languages,
 then, appears to be: element types are types, in the sense
 of the type/token distinction. Element instances are tokens,
 in the sense of type type/token distinction. This holds
 at least for the most common cases in colloquial markup
 vocabularies.

Since by default, all children are ordered in XML documents,
 XML itself provides no mechanism for signaling that children are
 in fact unordered. Since such a signal is sometimes necessary,
 it is to be expected that some vocabularies will define such a
 signal — as in fact some (e.g., the TEI) do.

The second implication of our work is that higher-level
 textual objects like paragraphs, sections, chapters, and
 books, are not different in kind from the characters
 appearing in character data in the document. The fundamental
 distinction in SGML and XML between markup
 and content appears, on this account, to be
 a technological artifact which masks the underlying
 reality that characters, paragraphs, sections, and so on
 are all objects of the same fundamental kind.

 It is true that historical writing systems are most complete,
 consistent, and explicit for the character level, while the
 realization of higher-level structures like paragraphs, chapters,
 etc. tends to be more haphazard and inconsistent. But historical
 writing systems are virtually always incomplete: they do not
 capture all the relevant linguistic facts, only enough of them to
 make it possible to convey information. When an existing writing
 system is applied in new contexts, it may become necessary (and
 historically this has often been so) to elaborate the writing
 system so as to make it more explicit. (The development
 of vowel pointing in Hebrew and Arabic scripts is a case in
 point.)

This leads us to the third implication of our work:
 markup languages form nothing other than the extension of
 conventional writing systems in order to make them more explicit.
 That is, the paragraph and chapter types which may be
 marked up by typical vocabularies for descriptive markup
 are neither more nor less part of the text than the
 character data which makes up their content. It is
 sometimes convenient to regard all markup as a kind of
 annotation, different in nature from the recording of
 the text itself. But if our model
 of types and tokens is correct, then there is no difference
 in essential nature between the A of the word
 ALGOL, and the paragraph within which it appears.
 Both are realized in a document by physical phenomena
 which are tokens of corresponding types.

 For a long time, one of the authors of this paper introduced new
 users to SGML and XML by saying that markup languages are a way
 to make explicit (part of) our understanding of a text. To the
 extent that this suggests a separation between the text and our
 understanding of it and thus encourages the view that markup is a
 kind of annotation separate from and additional to the text
 proper, this formulation now seems misleading.
 Markup languages are a way to make explicit some aspects of the
 text, as we understand it.

Conclusion
The assertion that all levels of document structure may be
regarded as exhibiting a form of the type/token distinction
may have a number of implications, some of which appear to require
further elaboration and exploration.
If basic and compound tokens and types form a logical
continuum rather than entirely separate levels of representation
with entirely different rules, then conceptual models which
treat documents as consisting of one or more sequences of
characters and a set of character ranges would seem to be
imposing a radical distinction in methods of representation
between the two levels
which has no analogue in the phenomena being modeled.

This view may shed a new light on the practice of some XML
vocabularies of using empty elements to represent character types not
present in (the current version of) the Unicode /ISO 10646 universal
character set. Instead of being an ad hoc solution,
practically necessary but conceptually awkward, this
approach becomes (on the view outlined here) a natural
application of the fundamental fact that UCS characters
and XML elements are essentially similar: concrete
tokens instantiating types of some writing system.

Just as the phonemic units of a language's sound system
can be defined in terms of distinctive features,
and specific phones are regarded as instantiating particular
phonemes whenever they exhibit the requisite pattern of
distinctive features, so also it is possible to define
the basic types (graphemes) of a writing system in terms
of distinctive features. It would be illuminating to
extend the analogy further and define distinctive features
for the elements and attributes of markup vocabularies.

The realization of phonemes as phones is subject to variation
of many kinds: different regional accents may systematically
affect the realization of many phonemes in the system,
different speakers have different qualities of voice tone,
and individual utterances by the same speaker may vary in
many ways either systematically or (as far as analysis
can tell) randomly. The realization of graphemes is similarly
various: different fonts (in printed books and electronic
display), different handwriting styles, different hands,
different letter formation at different places. And
of course the possibility of systematic changes in realization
was historically one of the motive forces impelling
the development of descriptive markup in the first place.
The parallels and possible differences among these phenomena
merit consideration at greater length than is possible here.

References
[Cayless 2009]
Cayless, Hugh.
2009.
Image as markup: Adding semantics to manuscript images.
Paper given at Digital Humanities 2009, College Park, Maryland, June 2009.
[Goodman 1976]
Goodman, Nelson. 1976.
Languages of art:
An approach to the theory of symbols.
Indianapolis, Cambridge: Hackett, 1976.

[Jackson 2006]
Jackson, Daniel.
Software abstractions: Logic, language, and
analysis. Cambridge: MIT Press, 2006.

[Naur et al. 1960]
Naur, Peter, ed., et al.
Report on the Algorithmic Language ALGOL 60.
Numerische Mathematik
2 (1960): 106-136.
Also
Communications of the ACM
3.5 (1960): 299-314. doi:https://doi.org/10.1145/367236.367262.

[Peirce 1906]
Peirce, Charles Santiago Sanders.
Prolegomena to an apology for pragmaticism.
The Monist
16 (1906): 492-546.
Reprinted vol. 4 of C. S. Peirce,
Collected papers,
ed. Charles Hartshorne and Paul Weiss
(Cambridge, MA: Harvard University Press, 1931-58).

[Pike 1967]
Pike, Kenneth L.
Language in relation to a unified theory of the structure of human behavior.
The Hague, Paris: Mouton, 1967.

[Wetzel 2008]
Wetzel, Linda.
2008.
Types and Tokens,
in
The Stanford Encyclopedia of Philosophy
(Winter 2008 Edition),
ed. Edward N. Zalta.
Available on the Web at
http://plato.stanford.edu/archives/win2008/entries/types-tokens/.

[Wetzel 2009]
Wetzel, Linda.
2009.
Types and tokens: On abstract objects.
Cambridge, Mass., London: MIT Press, 2009.

[1] It may be worth noting that Peirce makes
 explicitly clear that blank spaces between words are also to be
 considered tokens of a specific type. The quoted paragraph
 continues as follows:
 The term (Existential)
	Graph will be taken in the sense of a Type; and the act of
	embodying it in a Graph-Instance will be termed scribing the
	Graph (not the Instance), whether the Instance be written,
	drawn, or incised. A mere blank place is a Graph-Instance, and
	the Blank per se is a Graph - but I shall ask you to assume
	that it has the peculiarity that it cannot be abolished from
	any Area on which it is scribed as long as that Area
	exists.
[2] We remain agnostic on the related
 question whether there can be types without associated
 tokens.
[3] The concept of
 occurrences is not without its own complications and
 subtleties, but we will not detain the reader with a discussion
 of them. A helpful discussion of the distinction between
 tokens and occurrences, and a useful summary of some of the
 related philosophical issues, may be found in [Wetzel 2008] and [Wetzel 2009], and also our discussion further below in
 section section “Types and tokens at different levels”.
[4] The notion of such spatially and
 temporally disjoint objects forming a single whole may trouble
 some readers, but consideration of such noun phrases as the
	Aleutian islands, the Olympic Games, and
 Poland may persuade such readers that some cases (at
 least) of temporal and physical disjointness seem to pass
 without comment.
[5] In Goodman's terms, no mark may belong to
	 more than one character [Goodman 1976]
	 p. 133.
[6] One outstanding
 difference should probably be mentioned: while Peirce
 explicitly contrasts the concrete token with the abstract
 type, the phones discussed by linguists and captured in
 phonetic transcriptions whether broad or narrow are not
 concrete sounds but abstract classes of sounds. This does
 not, however, seem to us to make the concept of phoneme
 irrelevant to our topic: like a type, a phoneme provides
 a unit which serves to make identical many things which
 would otherwise be distinct. It does not matter for our
 purposes whether those things are abstract phones or
 concrete segments of utterances.
[7] Other
 notations could serve the purpose as well; we choose Alloy
 because it has a reasonably clear, easily learnable logical
 notation and convenient, useful tools for checking the model.
 We offer no systematic introduction to Alloy syntax here; the
 reader is directed to the Alloy web site at
 http://alloy.mit.edu/ and to Jackson's book [Jackson 2006]. The reader unfamiliar with
 Alloy notation should be able to follow the essentials of the
 discussion, since every salient property of the model is stated
 both in Alloy and in English prose.
[8] For purposes of this
 paper, the identity of the type is not part of the identity of
 the token. If a particular mark is either an
 n or a u, then it
 is a token which is either of type n or
 of type u; the two different readings
 are different readings of the same token, not readings positing
 different tokens in the document. This allows two readers to
 disagree about which type is instantiated by a given token
 without requiring them also to disagree about the identity of
 the token in question.
[9] Note,
 however, that the arguments brought forward by Wetzel against
 the association of types with sets or classes may also
 apply with equal force to mereological sums
 [Wetzel 2009] (chapter 4, section 5).

[10] It is
 sometimes thought that the tokens of any given type necessarily
 resemble each other in some way (graphical or visual similarity
 in the case of written tokens, acoustic similarity in that of
 phonemes). But it seems to us unlikely that any measure of
 visual similarity could possibly be constructed that would group
 together all tokens of (for example) lower-case Latin
 letter g, and exclude all other objects.
 As far as we can tell, the only property tokens of a given type
 are guaranteed to have in common is that they instantiate that
 type. (One might indeed speculate that the concept of type was
 invented precisely to allow us to talk about these tokens as
 a group, since the instances of a type cannot by identified by
 appealing to any other property.) Independently, Goodman
 and Wetzel have come to the same conclusion; Wetzel devotes much
 of her chapter 3 to
 demolishing the view that tokens of a type must share some
 properties other than that of instantiating the type;
 see also [Goodman 1976], pp. 131 and 138.

[11] The model thus disallows the convention mentioned
 above, in which tokens are ordered but the order is taken as
 insignificant. It might be better to require only that ordered
 regions instantiate compound types.
[12] It
	might be desirable to single these lowest-level compound types
	and tokens out with a signature of their own, for example:

sig Text_Flow extends S_Unit {
 types : seq Basic_Type
}{
 kind = PCData
 no children
}
sig Token_Sequence extends Region {
 tokens : seq Basic_Token
}{
 type in Text_Flow
 type.types = tokens.@type
 no subregions
}
one sig PCData extends Kind {}

	The overall system seems simpler, however, without this elaboration.

[13] It
 is tempting to suggest that the regions of a document partition
 the physical space of the text carrier [Cayless 2009], and in some simple cases they do. In the
 general case, however, the marks even of basic tokens may
 overlap with other marks constituting other tokens, and
 unwritten space in a document does not always constitute a
 token.
[14] We strive to use the
 term document always and only for physical
 objects, and the term text for the type
 instantiated by a document. This usage is not universal among
 those who speak and write about texts and documents.
[15] As the
 example illustrates, this
 proposal for disjunctive types arose in the context of work on
 the logic of transcription, but we believe it to be more
 generally applicable: it can be used to describe all cases of
 uncertainty, whether the document in question is being
 transcribed or not.
 The curious reader may wish to know that the correct
 literal transcription of the example is muuvnyzi,
 which is the secret-writing form of the German word
 offenbar public, apparent, obvious.

[16] Strictly speaking, in this case even the
 individuation of particular marks as constituting tokens
 differs in the two readings: the marks constituting a single token
 of the type y in one reading are,
 in the other reading, two tokens of f
 and i. The word tokens have different
 boundaries in the two directions. And so on. For now, our
 model ignores these complications; to address them directly
 it would seem to be necessary to model explicitly the marks which
 constitute tokens, and to indicate how different sets of
 marks are individuated now as one token and now as another.
 But it does not seem possible, in the general case, to treat
 marks as sets of individuals independent of particular readings
 of the marks: it is frequently only through being identified as a
 token of a particular type that marks can successfully be
 individuated and distinguished from each other. A similar
 (albeit aesthetically less interesting)
 example can be found in
 [Goodman 1976] pp. 138-139.
 Goodman's example has the property that there is no ambiguity
 about the organization of marks into tokens, and that the
 same token is intentionally written so
 that it can be assigned to several types.

[17] This is not strictly true: the formulation
	above includes constraints that
	enforce the parallel compositionality of tokens and types
	by requiring the types of a region's subregions to be the
	children of the region's type. These need to be reformulated
	to account for the presence of disjunctive and conjunctive
	types. In this paper, we simply
 ignore this complication.

Balisage: The Markup Conference

Extension of the type/token distinction to document structure
Claus Huitfeldt
Associate Professor (førsteamanuensis)
Department of Philosophy, University of Bergen

Mag.art. Claus Huitfeldt (born 1957) is Associate Professor (førsteamanuensis) at the Department of Philosophy of the University of Bergen since 1994.

	He was founding Director (1990-2000) of the Wittgenstein Archives at the University of Bergen, for which he developed the text encoding system MECS as well as the editorial methods for the publication of Wittgenstein's Nachlass — The Bergen Electronic Edition
(Oxford University Press, 2000).

	He was Research Director (2000-2002) of Aksis (Section for Culture, Language and Information Technology at the Bergen University Research Foundation). In 2003 he returned to his position at the Department of Philosophy, where he teaches modern philosophy and philosophy of language, and also gives frequent courses in text technology at the The Department of Humanistic Informatics.

	He was active in the Text Encoding Initiative (TEI) since 1991, and was centrally involved in the foundation of the TEI Consortium in 2001. The consortium now counts more than 90 member institutions.

	Huitfeldt's research interests are within philosophy of language, philosophy of technology, text theory, editorial philology and markup theory. He is currently leader of the project Markup Languages for Complex Documents (MLCD).

Yves Marcoux
Associate Professor
Université de Montréal

<yves.marcoux@umontreal.ca>
Yves Marcoux is a faculty member at EBSI, University of Montréal,
 since 1991. He is mainly involved in teaching and research activities in the
 field of document informatics. Prior to his appointment at EBSI, he has worked
 for 10 years in systems maintenance and development, in Canada, the U.S., and
 Europe. He obtained his Ph.D. in theoretical computer science from University
 of Montréal in 1991. His main research interests are document semantics,
 structured document implementation methodologies, and information retrieval in
 structured documents. Through GRDS, his research group at EBSI, he has been
 principal architect for the Governmental Framework for Integrated Document
 Management, a project funded by the National Archives of Québec and by the
 Québec Treasury Board.

C. M. Sperberg-McQueen
Black Mesa Technologies

<cmsmcq@blackmesatech.com>
C. M. Sperberg-McQueen is a consultant specializing
in preserving and providing access to cultural and scientific data.
He has served as co-editor of the XML 1.0
specification, the Guidelines of the Text Encoding Initiative, and the
XML Schema Definition Language (XSDL) 1.1 specification. He holds a
doctorate in comparative literature.

Balisage: The Markup Conference

content/images/Huitfeldt01-002.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Huitfeldt01-001.png

