[image: Balisage logo]Balisage: The Markup Conference

Platform Independence 2010 - Helping Documents Fly Well in Emerging Architectures
Ann Wrightson
IT Consultant - Technical Architecture
Informing Healthcare (NHS Wales)

Balisage: The Markup Conference 2010
August 3 - 6, 2010

Copyright © 2010 Ann Wrightson

How to cite this paper
Wrightson, Ann. "Platform Independence 2010 - Helping Documents Fly Well in Emerging Architectures." Presented at: Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010. In Proceedings of Balisage: The Markup Conference 2010.
 Balisage Series on Markup Technologies vol. 5 (2010). https://doi.org/10.4242/BalisageVol5.Wrightson01.

Abstract
Parallel processing and memory bottlenecks dominate current platform architecture
 conversations. After many years on the sidelines, parallel architectures are rapidly
 becoming mainstream, with more parallelism the obvious way to gain yet more
 performance. Feeding data to and from all these parallel cycles is also becoming
 more challenging.
What does this have to do with XML? Surely all this is under the hood, something
 for compiler designers, software architects and other non-content people to worry
 about? The answer is that these issues can't be totally hidden under the hood.
 Balisageurs as content-folks and interoperability-folks need to pay attention now to
 the high level information design heuristics that will prevent our data structures
 being the ones that happen to run like treacle (or molasses) on the coming
 generations of faster, larger and neater systems.

Balisage: The Markup Conference

 Platform Independence 2010 - Helping Documents Fly Well in Emerging Architectures

 Table of Contents

 	Title Page

 	Introduction
 	Note on language

 	What are these emerging architectures?
 	Single processor architecture becoming multi-, then many-core

 	Memory and storage hierarchy

 	Platform Independence 2010++?

 	Design Principles for Platform-Independence
 	Minimize action at a distance

 	Help processing to "shop local"

 	Replication may be your friend

 	Detailed differences across lots of sort-of-similar things may be costly

 	Examples
 	Action at a distance, "shopping local", and replication

 	Variation in content between apparently similar things

 	Conclusion

 	About the Author

 Platform Independence 2010 - Helping Documents Fly Well in Emerging Architectures

Introduction
Ever faster sequential computations in single ever-larger memory spaces has been
 "just how it is" in mainstream computing for about a generation - long enough
 for design considerations that are actually dependent on this environment to become
 invisible, unthought assumptions. After many years on the sidelines, parallel
 architectures are becoming mainstream, with more parallelism now the obvious way to gain
 more performance. Memory performance has been growing more slowly, so feeding data to
 and from all these parallel cycles is also a major challenge, with platform architecture
 solutions generally focussing on efficient ways to move data through deep hierarchies
 spanning the range from distant network resources to on-chip caches. Large and
 distributed data in particular needs to move efficiently through many layers of memory
 hierarchy, with each layer behaving as a cache with respect to the previous layer, that
 is, being significantly smaller and faster, and with a different block or page size.
 What does this have to do with XML? Surely all this is under the hood or behind the
 scenes, something for compiler designers, software architects and other non-content
 people to worry about? After all, a platform is a just a platform, and XML and many XML
 tools are platform-independent.
To an extent this is true. Compiler designers, software architects and especially
 database vendors are busy worrying right now, and much thought from the Balisage
 community and others will also undoubtedly go into making basic XML tools work well on
 the new platforms. However, notwithstanding these efforts, data designed with due
 attention to the fundamental characteristics of emerging platform architectures are
 likely to fare better, especially in speed of processing, than data designed for the
 "old world".
Against this background, the premise underlying this paper is that since parallel
 processing and managing data flows within memory hierarchies are increasingly prominent
 in mainstream platform architecture, any large data structure, or collection of data
 that is usually processed together, now needs to be more or less parallel-friendly,
 cache-oblivious, and distribution-tolerant, to be really platform-independent - and this
 includes XML instances. This paper is about the attention we need to pay now as
 designers of XML content to the structural design patterns that will promote or prevent
 our data structures being the ones that happen to start running unexpectedly slowly next
 year or the year after.
Note on language
In this paper, the common parlance "XML vocabularies" is deprecated in
 favour of discussing XML data structures and design features of instances of XML
 content. This is partly from personal preference, but also from a suspicion that
 thinking about XML in terms of vocabularies may inhibit the kind of thinking that
 this paper is intended to encourage. Markup that contains terms reflecting natural
 language does function like language vocabulary in some ways (see Wrightson 05) however XML instances are also structured data, and
 the latter is the aspect that predominates in the issues discussed in this paper.

What are these emerging architectures?
This section provides a concise account of emerging processor architectures and the
 state of the art in data access. Implications for platform-independent XML content
 design are discussed in the following section.
Single processor architecture becoming multi-, then many-core
About 2003-4, performance improvement in sequential processors slowed down very
 significantly. Power density was a major factor, but so was the growing difficulty
 of getting even cleverer about executing single sequences of instructions really
 fast. With a way still to go in raw chip capacity, a consensus rapidly emerged
 amongst the majority of processing-chip designers that the only way forward was to
 put multiple processing "cores" on a chip, first two or four, then twelve,
 sixty-four, eighty... The latest edition of Patterson & Hennesey's classic
 textbook on processor architecture provides a fuller account of this phenomenon (Patterson & Hennessey 09, Chapter 7).
Graphics processors and some other niche processing applications had already made
 some progress into gaining performance through large-scale parallel processing, but
 for the rest of the industry there was a fairly sudden realization a few years ago
 that all that weird parallel stuff from the 1980s onward that no-one except the
 high-performance crowd had been taking seriously was on its way back in with a
 vengeance. Following this realization, and taking into account the head start
 achieved by graphics applications, graphics processors and general purpose
 processors are on an interesting journey of combination and convergence, for example
 in Intel's "Larrabee" architecture (Seiler et al 08).
While various parallel computation models have been proposed and investigated, two
 of the most durable have been BSP (bulk-synchronous-parallelism) and nested
 parallelism. BSP (Valliant 90, Skillicorn et al 96) formalizes the notion of performing a bunch of parallel
 computations then collating the results before setting up and performing another
 bunch of parallel computations, in a regular cycle of
 compute-communicate/collate-compute. Nested parallelism (Blelloch et al 94,Peyton Jones et al 08) is more of a language model, enabling a programmer to
 describe a large computation as a recursively nested structure of parallel
 parts.
The main point for our purposes is that in order to work well in a parallel world,
 computation (and its requisite data) needs to come apart into independent pieces, at
 least for long enough to be useful in getting some work done. Two interesting
 special cases are where many computations run in parallel on the same data, and
 where a single computation runs the same instruction stream to process many
 different, similar items of data. The latter is the basis of graphics processing
 units. Both put a disproportionate cost on variation, in data content and processing
 respectively, compared to sequential processing, so that replication of common parts
 and separating rather than combining similar cases becomes more efficient.
This is very counterintuitive to those engineers and information designers,
 including many who have come into markup since XML emerged as a mainstream force in
 1998-2000, whose intuitions have been formed in situations that take for granted
 single (increasingly fast) computation and single (increasingly fast and capacious)
 memory. Based on personal conversations and anecdotal evidence, there is a mixed
 reaction from the older hands who did not play in the parallel pond, and remember
 what it took to keep computations and working memory compact on smaller machines or
 in the small job partitions in early multitasking architectures. To caricature
 somewhat, some feel that after a period of deep illusion, computing has finally
 woken up once more to some essential design disciplines - and some feel this is
 separating the engineer even further from the real machine, which is becoming ever
 more deeply incomprehensible.

Memory and storage hierarchy
Memory performance has been growing continually alongside processor performance,
 over decades. In recent years it has become a commonplace to say that the rate of
 growth in memory performance is markedly slower than for processing, leading to a
 large and increasing performance gap. This is broadly true, but stated simply
 obscures a more interesting detailed picture of evolving patterns of memory and
 storage access over a range of hardware, media and networks (Patterson & Hennessey 09, 5.13).
 Multiple cache levels within processors, deep memory hierarchies using different
 types of hardware, delegating disk access management to on-board processors within
 disk drives, and introducing specialized storage network managers, have between them
 taken the strain to a large extent. However, the very intensity and diversity of
 this effort means that different platforms are more likely than before to have
 different memory hierarchies and storage characteristics.A practical consequence is
 that fine tuning of memory hierarchy assumptions and data design to make data fast
 on one platform can very easily slow it down on another.
This is an area where a good theory has turned out to be very practical as a tool
 for thinking. Cache-obliviousness (better named hierarchy-obliviousness, but as
 usual the initial name has stuck) is the core concept of an area of research on data
 structures that are not only fast to process in principle, but remain fast however
 the memory hierarchy (and storage network, at larger scale) is structured.
 Cache-oblivious data structures have high locality with respect to whatever the
 usual operations are on the data.That is, if an instance of a cache-oblivious data
 structure is broken arbitrarily into pieces of any size (for example, loaded a page at a time into
 a cache, hence the name) the common operations on the data structure are, on
 average, highly likely to need data that is within the same piece. The value of this
 area of work for our purposes is not so much in the detail as in the overall
 concept. Data structures that follow this design pattern are likely to "fly
 well" in a wide range of memory hierarchies, since at any scale, the usual
 kinds of processing are less likely to walk or reference out of the piece that is
 already in fast(er) memory.
For readers interested in following up the detail of the theory, there is a
 thorough introduction to cache-obliviousness by Erik Demaine (Demaine 02) in the papers from a European summer school on large data
 structures in 2002 (Massive Data Sets 02).

Platform Independence 2010++?
So what is it to be platform independent in 2010 and beyond? What do we need to be
 independent of, specifically? In simple terms, the key platform features are:
	 A processing model that uses many processing units, breaking large computations
 into many independent, different tasks that run simultaneously. This happens
 within a many-core chip, and also happens when computations are deployed across
 several processors with different data processing characteristics (one example
 that is already mainstream is a desktop computer with a separate graphics
 processor that is highly data-parallel);

	A memory hierarchy of arbitrary depth and width, with considerable variation
 in the detail of how data is moved up and down the hierarchy; and

	Greater variation in platform architectures as architecture concepts developed
 in niche areas (especially high performance scientific computing and graphics
 processing) are brought to bear in mainstream computing platforms.

Any one platform can be assumed to have clever low-level software that is designed to
 hide its complexity and weirdness, so that everything still works correctly. Preserving
 correct processing is a high priority in designing new processor architectures with
 forward compatibility from older ones - however it turns out that data designed for the
 "old world" , although not broken, can be unexpectedly slow in emerging
 architectures. This can also lead indirectly to faults, for example when timing
 assumptions are broken.
The main evidence I have for this is anecdotal - side-remarks in talks and
 water-cooler chat with infrastructure-specialist colleagues who are managing a range of
 data-intensive applications in a growing data centre. Suffice it to say that there are
 people who earn a living advising how to get this right, and that my colleagues tell me
 that more than one well-established product has needed updates to resolve performance
 problems in a more distributed, parallel environment.
 Abstracting away from platform features into data processing, the key features are as
 follows.
	Significant performance speed-up by separating large computations into smaller
 pieces of computation that can run independently long enough to get some useful
 work done (task parallelism).

	Significant performance speed-up by executing exactly the same process
 simultaneously and independently across numbers (8, 16, 32...) of data items
 (data parallelism);

	Separating large data structures into smaller pieces that are usable in
 isolation long enough to get some useful work done (required in both task
 parallelism and data parallelism).

	Moving data up (read) and down (write) a deep memory hierarchy. At each level
 some size of data will need to be broken into parts (in a very simple manner, eg
 pages), and there is significant performance benefit if, on average, such parts
 of data (at any level) are usable in isolation long enough to get some useful
 work done.

	Moving data between the pieces of a parallel computation so that each piece
 has the data it needs, respecting dependencies regarding data integrity (eg read
 vs write) and the intended overall flow of computation.

The balance of emphasis between these features varies across the different
 architectures involved, for example scheduling dependencies and data exchange (rather
 than just data partitioning) become more prominent the more communication is needed
 between pieces of computation. Data exchange operates at different scales such as a
 multicore chip passing data between independently processing cores that have separate
 caches, and a multi-processor architecture passing data between processors (such as the
 common example of a desktop computer with a separate graphics processor).
A fundamental research result regarding data exchange is that, in the general case
 where the structures at each end are different, and a computation is needed to map data
 from one to the other, the computational complexity of a data exchange is exponentially
 related to the complexity of the data schemas at each end. The complexity of a data
 schema is a combination of complexity measures on the actual data structure and how it
 is described (Kolaitis et al 06).
This result is no great surprise, since data exchange feels like a hard problem in
 practice. However, when data exchange becomes a larger proportionate part of general
 computation, its exponential general complexity properties suggest that there are
 significant benefits to be gained from keeping data structures and the ways they are
 described as simple as possible.
Partitioning data and computation is a more familiar problem, though one effect of a
 generation of ever-more-capable sequential processing environments with ever-larger
 memory spaces has been a tendency to regard such concerns as rather old-fashioned. High
 performance computing for scientific data analysis has kept this area of work alive,
 especially in relation to arrays of data and matrix computations (for example Lee & Zedem 2002) and automatic data partitioning on this kind of data in XML
 has also been investigated (Head et al 09).

Design Principles for Platform-Independence
This section suggests a few rules of thumb that are likely to make larger documents,
 and smaller documents (such as messages) that turn up in large numbers, more truly
 platform independent over these changes in processing architecture. Some of the rules
 come naturally when writing or designing documents by hand, but are pretty easy to break
 or ignore when marked-up data is generated by a program. Others may look like obvious
 bad practice from the point of view of writing and maintaining documents by hand, but
 look more like candidates for sensible design trade-offs when marked-up data is being
 generated by a program. (Note that "generated by a program" includes using one
 of the many authoring tools that provide an illusion of manual editing. If you are not
 seeing all the grim details of the pointy brackets as you type, then your data is being
 generated by a program.)
Note that it is specifically NOT assumed here that the current usual-suspect XML
 processing tools will be used to process or pre-process the document instances
 concerned. These tools may or may not be able to overcome fundamental problems in data
 characterstics " under the hood ", even if rewritten, and new tools will come.
 The only assumptions made below are the structural properties of XML instances.
Minimize action at a distance
	Ensure that the intended scope of influence of any data value that
 represents a parameter for processing data in the document propagates in a
 direction from root to leaf along the tree structure of the document.

	 Minimize cross-references in the data (in particular when purely implicit
 in the data and not made evident in the raw XML structure) that mean that a
 computation on the data finds out in flight that it needs to look at a
 distant part of the tree.

Help processing to "shop local"
	Put things that are relevant to each other for processing, close to each
 other in the document, that is, few steps apart in the document tree. Expect
 the document tree to be cut into branches, twig-bunches or even small twigs
 for processing, and think about what computations can be completed in-twig
 with larger and smaller twig-sizes.

	Keep document structure aligned with probable processing structures. Think
 about the flow of information through expected computations on the document,
 and see if it follows a natural decompositon of the document structure. A
 simple positive example is hyphenation a paragraph at a time over many
 paragraphs making up a chapter of a novel.

Replication may be your friend
	Repeating pieces of data in different places seems wasteful, yet it may be
 a really good idea. If a document is generated by a program, so that the
 conceptual burden of repetition and likelihood of error are small, then
 there is no reason not to replicate data items it if it helps to reduce
 action at a distance.

Detailed differences across lots of sort-of-similar things may be costly
	 If a processor with data-parallel capabilities thinks that some bunch of
 things are all the same, then it may decide to process them in a
 data-parallel way, that is, assume that their processing is identical. A
 consequence of this is that, from the point of view of any arbitrary one of
 the parallel processing threads, it has to wait idly through the work needed
 to cope with all the detailed optional differences that apply to any of the
 others. If this really is efficient for your data, fine, however it may be
 better have more different kinds of things, and less optionality within the
 same kind of thing, so that the under-the-hood gnomes can make more
 efficient choices more easily for parallel processing.

Examples
The performance penalties discussed above would be expected to be felt mainly at
 large scale, that is, on large documents or high volume processing of smaller
 documents. However, the structural patterns in the rules of thumb can be illustrated
 using small examples, and that is the purpose of this section.
Action at a distance, "shopping local", and replication
These patterns are illustrated in this section using two contrasting examples.
 Each example is based on the structural characteristics of a (different) real
 data format designed for exchanging information extracted from patient records.
The first example has instances divided into in two main parts. First, a list
 of entities (people, roles and locations), and second, a list of recorded events
 involving these entitites. Entities are included in events by reference to a
 unique identifier for each entity.
As the number of events grows, then because a patient will tend to interact
 with the same people and be treated in the same places, the proportion of
 entities compared to events will decrease.
There are two motivating ideas underlying these design features. One is to
 minimize repetition of data, and the other is to facilitate data transfer
 between instances of software applications having similar (relational) database
 structures that are closely aligned with the structure of the data. These aims
 lead to a structure that explicitly avoids replication and has a strong tendency
 not to "shop local". In addition, the references to
 identifiers are well hidden in the data from the point of view of XML parsing,
 and the majority of references are between two subtrees that diverge near the
 root of the document (" action at a distance").
Figure 1: Example 1

<?xml version="1.0" encoding="UTF-8"?>
<record>
 <entities>
 <person>
 <id>FF138AF1-F3BC-4BF7-B45C-427E012BA3F4</id>
 <dateOfBirth>1987-11-20</dateOfBirth>
 <name>...</name>
 <address>...</address>
 </person>
 <person>
 <id>BBBBE23A-A9D1-A411-F824-9F7A00A33757</id>
 <dateOfBirth>1987-11-20</dateOfBirth>
 <name>...</name>
 <address>...</address>
 </person>
 <location>
 <id>4B98A89C-41AD-4425-B6CF-17DE8C779FC7</id>
 <name>...</name>
 <address>...</address>
 </location>
 <role>
 <id>8533C566-74FB-4176-8EFE-13E3FCE5B3A6</id>
 <name>General Practitioner</name>
 <moreAboutRole>...</moreAboutRole>
 </role>
 <practitioner>
 <id>3CBA0926-1E25-4B0E-AAFC-F9CF02F8596B</id>
 <person>BBBBE23A-A9D1-A411-F824-9F7A00A33757</person>
 <role>8533C566-74FB-4176-8EFE-13E3FCE5B3A6</role>
 </practitioner>
 <patient>
 <id>A17B8BFA-3A2B-4796-87ED-F9A4D7375C3D</id>
 <pasNumber>39752746</pasNumber>
 <patientPerson>FF138AF1-F3BC-4BF7-B45C-427E012BA3F4</patientPerson>
 </patient>
 </entities>
 <events>
 <encounter>
 <id>97E037BE-4CBE-46BA-98F8-3BA6B4DA3D1C</id>
 <date>2010-04-01</date>
 <patient>A17B8BFA-3A2B-4796-87ED-F9A4D7375C3D</patient>
 <practitioner>3CBA0926-1E25-4B0E-AAFC-F9CF02F8596B</practitioner>
 <location>4B98A89C-41AD-4425-B6CF-17DE8C779FC7</location>
 </encounter>
 </events>
 </record>

In the second example, data about the people and places involved in a care
 event are given directly in each event subtree of the record extract. This data
 format was designed to convey information from a number of different software
 applications into a common store, from which it is then retrieved on a per-event
 basis. An explicit design criterion was to make no assumptions about the
 internal structure of the data store, and in the real situation this is based
 on, there are several such stores with different internal database structures.
This example also illustrates the role of replicating subtrees of data. A
 location address may appear many times, however the benefits of replication were
 judged to outweigh the costs, and the sending system is unlikely to make errors
 putting the same data into a number of events in a transferred record.
Figure 2: Example 2

<?xml version="1.0" encoding="UTF-8"?>
<Record>
<Event>
 <EffectiveTime>2008-04-23T15:10:00.0Z</EffectiveTime>
 <EventType>
 <IdValue>[Identifier for this event type]</IdValue>
 </EventType>
 <PatientDetails>
 <NHSnumber>
 <IdValue>1234567890</IdValue>
 </NHSnumber>
 <Name>...</Name>
 <Address>...</Address>
 </PatientDetails>
 <ResponsiblePerson>
 <StructuredName>
 <Title>Dr</Title>
 <GivenName>Local</GivenName>
 <FamilyName>Doctor</FamilyName>
 </StructuredName>
 </ResponsiblePerson>
 <Role>
 <IdValue>[role of responsible person]</IdValue>
 </Role>
 <Location>
 <StructuredAddress>
 <PropertyNumber>65</PropertyNumber>
 <AddressLine>Festaville Way</AddressLine>
 <AddressLine>Limnoleon</AddressLine>
 <AddressLine>Cranmore Regis</AddressLine>
 </StructuredAddress>
 <PostCode>LL99 3BB</PostCode>
 </Location>
 <LocationType>
 <IdValue>[Identifier for location type]</IdValue>
 </LocationType>
</Event>
</Record>

Variation in content between apparently similar things
The next example illustrates in principle how parallel processing of instances
 of the same element is slowed down by optionality in the data, in a processor
 that runs the same instruction stream in parallel on many data instances (SIMD).
 Each picture in the series shows the effect of progressively more variation
 between instances. Coloured cells indicate steps where no progress is made in
 processing that element.
The first picture below shows element instances with no variation at all, and
 there is no loss of performance. In the next, some items are optional. Any
 instance that lacks an optional item will be waiting while the other instances
 use that part of the instruction stream. The next one after shows what happens
 when a content model has a choice of sequences of elements. Finally, the fourth
 picture shows the result of having many possible options (for example, a rich XML vocabulary) with only a few used in
 any one data instance.
Figure 3: No optionality
[image:]

Figure 4: Sparse optionality
[image:]

Figure 5: Alternative substructures
[image:]

Figure 6: Selective use of a large vocabulary
[image:]

A simple count provides a rough indication of the magnitude of the effect.
 Taking the content of the example element only, in the first case,
 all steps are active. In the second, there are 5 idle steps out of 40, giving a
 crude efficiency measure of 87.5%. In the third case, 24 steps out of 40 are
 idle, i.e. 45% are active. In the final case, the majority of the steps relate
 to options not represented in the data, and only 4 steps out of 40 are active,
 i.e. 10%.
It must be emphasized that this is only a rough indication in principle; real
 effects will depend on a combination of data structures, application-level
 algorithms, programming language implementations, and operating system and
 processor strategies. However, even this crude analysis indicates the potential
 value of, for example, reconfiguring messages that have repetitive internal
 structure to use different element names in preference to naming elements by
 role and varying their internal structure, in order to provide easy
 opportunities for efficient data-parallel processing.

Conclusion
Only experience will show conclusively what effect emerging architectures may have on
 processing XML and other markup language instances. It just might turn out that the
 under-the-hood gnomes in the new architectures are so clever that most document and data
 designers can safely ignore these issues. However, the factors discussed above suggest
 that developers and owners of XML vocabularies, document types and data architectures
 should give some thought to the effect of emerging architectures on the realities of
 platform-independence.
This paper has focussed strongly on XML instances, independent from schemas, data
 models and processing models. Thorough consideration of these from the perspective of
 platform independence on emerging archtitectures may well either show some of the
 concerns in the paper to be groundless, or (more likely) yield more refined guidance on
 design principles. In particular, it is worth noting that the functional style of XSLT,
 and the explicitly context-limited formal semantics of XQuery, are both favourable
 characteristics (XPath/XQuery formal semantics, XPath/XQuery data model, XSLT 2.0) .
Another possible area of further work would be to analyse data exchange complexity
 specifically for XML to XML data exchanges. Theoretical work on data exchange complexity
 mostly uses relational database schemas as a reference model of data structure, and the
 work on XML-to-XML data exchange that came to light in researching this paper (though
 well short of a thorough literature review on the topic) indicated a tendency to work
 from oversimplified models of XML without apparent knowledge of foundational XML-related
 work such as the XPath/XQuery data model and formal semantics.

References
[Lee & Zedem 2002] P Lee, Z Kedem Automatic Data and Computation
 Decomposition on Distributed Memory Parallel Computers ACM Transactions
 on Programming Languages and Systems, Vol. 24, No. 1, January 2002, Pages 1–50. doi:https://doi.org/10.1145/509705.509706
[Par Lab 09] Asanovic, Bodik et al A view of the parallel computing
 landscape. Commun. ACM 52, 10 (Oct. 2009), 56-67.
 doi:https://doi.org/10.1145/1562764.1562783
[Par Lab 06] Asanovic, Bodik et al The Landscape of Parallel
 Computing Research: A View from Berkeley Technical Report No.
 UCB/EECS-2006-183 2006
 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
[Seiler et al 08] L Seiler et al Larrabee: A Many-Core x86
 Architecture for Visual Computing ACM Transactions on Graphics, Vol. 27,
 No. 3, Article 18 August 2008. doi:https://doi.org/10.1145/1360612.1360617
[Valliant 90] L Valliant A Bridging Model for Parallel Computation
 Communications of the ACM Vol.33, No.8 August 1990. doi:https://doi.org/10.1145/79173.79181
[Skillicorn et al 96] D Skillicorn, J Hill and W McColl Questions
 and Answers about BSP Oxford University Computing Laboratory
 PRG-TR-15-96 November 1996
[Peyton Jones et al 08] S Peyton Jones et al Harnessing the Multicores: Nested Data
 Parallelism in Haskell Foundations of Software Technology and
 Theoretical Computer Science (Bangalore) 2008.
[Kolaitis et al 06] P Kolaitis, J Panttaja, W Tan The Complexity of Data Exchange
 ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS)
 2006. doi:https://doi.org/10.1145/1142351.1142357
[XPath/XQuery formal semantics] XQuery 1.0 and XPath 2.0 Formal
 Semantics W3C Recommendation 23 January 2007
 http://www.w3.org/TR/xquery-semantics/
[XPath/XQuery data model] XQuery 1.0 and XPath 2.0 Data Model (XDM) W3C
 Recommendation 23 January 2007
 http://www.w3.org/TR/xpath-datamodel/
[XSLT 2.0] XSL Transformations (XSLT) Version 2.0, W3C
 Recommendation 23 January 2007 http://www.w3.org/TR/xslt20/
[Patterson & Hennessey 09] D Patterson, J Hennessey Computer
 Organization and Design: The Hardware/Software Interface 4th edition,
 Morgan Kaufmann 2009.
[Blelloch et al 94] G Blelloch et al Implementation of a Portable
 Nested Data-Parallel Language Journal of Parallel and Distributed
 Computing, 21(1), April 1994. doi:https://doi.org/10.1006/jpdc.1994.1038
[Demaine 02] E Demaine Cache-Oblivious Algorithms and Data Structures
 EEF Summer School on Massive Data Sets June 27-July 1, 2002, BRICS,
 University of Aarhus, Denmark http://www.brics.dk/MassiveData02/
[Massive Data Sets 02] EEF Summer School on Massive Data Sets 2002, BRICS,
 University of Aarhus, Denmark http://www.brics.dk/MassiveData02/
[Head et al 09] M Head & M Govindaraju Performance enhancement with
 speculative execution based parallelism for processing large-scale xml-based
 application data 18th ACM international symposium on High performance
 distributed computing 2009. doi:https://doi.org/10.1145/1551609.1551615
[Wrightson 05] A Wrightson Semantics of Well Formed XML as a Human
 and Machine Readable LanguageExtreme Markup Languages 2005

Balisage: The Markup Conference

Platform Independence 2010 - Helping Documents Fly Well in Emerging Architectures
Ann Wrightson
IT Consultant - Technical Architecture
Informing Healthcare (NHS Wales)

Ann Wrightson has been working with markup since 1978, from typesetting
 languages & fielded records through generic coding to SGML & XML. She
 has experience of using markup for interoperability and platform-independence
 across a wide range of content including published reference works, technical
 publications, e-learning, legal codes & materials, and semantic
 interoperability standards for information systems in healthcare.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Wrightson01-002.jpg
<example>

<example>

<example>

<example>

<a>... <a>... <a>... <a>...
...
<c>...<fc> <c>...<fc> <c>...<fc> <c>...<fc>
<d>...</d> <d>...</d>

<e>...</e> <e>...</e> <e>...</e> <e>...</e>
<f>...</f> <f>...</f> <f>...</f>
<g>...</g> <g>...</g> <g>...</g> <g>...</g>
<h>...</h> <h>...</h> <h>...</h> <h>...</h>
<i>...</i> <i>...</i> <i>...</i> <i>...</i>
<j>...</j> <j>...</j> <j>...</j>

</example>

</example>

</example>

</example>

content/images/Wrightson01-001.jpg
<example>

<example>

<example>

<example>

<a>..<f/a> <a>..<f/a> <a>..<f/a> <a>..<f/a>
...
<c>...<fc> <c>...<fc> <c>...<fc> <c>...<fc>
<d>...</d> <d>...</d> <d>...</d> <d>...</d>
<e>...</e> <e>...</e> <e>...</e> <e>...</e>
<f>...</f> <f>...</f> <f>...</f> <f>...</f>

<g>...</g> <g>...</g> <g>...</g> <g>...</g>
<h>...</h> <h>...</h> <h>...</h> <h>...</h>
<i>...</i> <i>...</i> <i>...</i> <i>...</i>

<j>...</j> <j>...</j> <j>...</j> <j>...</j>

</example>

</example>

</example>

</example>

content/images/Wrightson01-004.jpg
<example>

<example>

<example>

<example>

<a>..

...

<f>...</f>

<g>...</g>

</example>

</example>

</example>

</example>

content/images/Wrightson01-003.jpg
<example>

<example>

<example>

<example>

<a>..
...
<C>...</C>
<d>...</d> <d>...</d>
<e>..</e> <e>..</e>
<f>..</f> <f>.</f>
<g>...</g>
<h>...</h>
<i>...</i>
<j>...</j> <j>...</j> <j>...</j> <j>...</j>

</example>

</example>

</example>

</example>

