

Including XSLT stylesheet testing in
continuous integration process

Balisage 2011

Montreal, Thursday, August 4, 2011

Benoit Mercier

Background information

 Franqus research group (University of Sherbrooke)

 Building a French dictionary describing the French
language use in a North American context

 10+ years project (8 to 25 workers)

 http://franqus.ca/dictio

Intensive use of XML technologies

 Huge DTD (300+ elements)

 56000+ XML documents

 XML databases (TEXTML, eXist)

 XSLT stylesheets
 To produce various outputs (HTML, PDF, etc.)
 To validate data

Software environment

 Open Source Software (desktops and servers)

 Java as the main programming language to develop
 our web production system

(document workflow, drafting resources, etc.)
 the online electronic version of the dictionary
 all other supporting custom tools

Adapting to changes

 Dictionary = normative reference material

 After 10 years, we finally (think we) know how to do a
dictionary...

 A lot of changes and refactoring
 DTD
 XSLT

 Such refactoring are complex and error prone

Challenge

 How to do XSLT stylesheet refactoring with
confidence?

In Java world we have tools for...

 Unit testing, to test individual units of code

 Continous integration (CI), to detect integration errors
as quickly as possible

 We do it for Java code, why not for XSLT
stylesheets?

What is missing?

 XSLT testing framework

 Incorporation of such framework into Continuous
Integration process

Choosing an XSLT testing framework

 Test framework should :
 be easy, intuitive and frictionless
 require no or minimal Java knowledge
 allow to test entire document or only fragments
 be XSLT 2 aware
 be open source and free

Choosing an XSLT testing framework

And the winner is...

Choosing an XSLT testing framework

And the winner is...

XSpec

http://code.google.com/p/xspec

Authors : Jeni Tennison and Florent Georges

http://code.google.com/p/xspec

Why XSpec?

 First one we found

 To easy not to be used

 But... Schematron or Tamelizer could do the job

XSpec

 « XSpec consists of a syntax for describing the
behaviour of your XSLT or XQuery code, and some
code that enables you to test your code against
those descriptions. » (from XSpec Google code
web site)

 XSpec files = XML files

 XSpec file = 1..n test scenario

 Under the hook, XSpec wrapper script use XSLT
stylesheet to generate an XSL from XSpec files and
applies this generated stylesheet to run the test and
produce detailed report.

 (show sample XSpec file)

Xspec report

How to incorporate XSpec into
Continuous Integration process?

 By installing a CI server
(Hudson / Jenkins, Continuum, Bamboo, TeamCity, etc.)

 By triggering XSpec scenario executions from
mainstream Java build tools
(Maven, Ant, etc.)

 so is born JXsl

http://code.google.com/p/jxsl

 would not be necessary with Schematron for Ant

http://code.google.com/p/jxsl

JXsl allows to

 run XSpec tests from your own Java code
(via XspecTestScenarioRunner or XspecTestSuiteRunner)

 wrap XSpec tests in JUnit tests

 quick start thanks to Maven archetype (demo)

 easily trigger test execution manually

 easily add XSpec testing to existing Java projects (cf.
archetype code)

 support Ant via existing JUnit task

How to never forget running tests?

 By triggering test on commit into version control
system (demo)

Summary

 Unit testing and continuous integration tools are
readily available to the XML technology stack

 Awareness-raising presentation

 Just start writing tests and refactor with confidence!

?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19

