
2011-08-02 XDML - markup language for XDM 1

XDML

an extensible markup language
for XDM

HansHans--JJüürgen rgen RennauRennau, bits GmbH, bits GmbH
David Lee, David Lee, EpocratesEpocrates

Inc.Inc.

Presenter
Presentation Notes
XDM is the data model of XPath and XQuery. Welcome to a presentation about how XDM can be turned into more: a small language for constructing a novel kind of entities which resemble both, documents and program objects; entities which represent information *and* process it, evaluate it, on demand.

2011-08-02 2

Information dedeliveliveryry

Information Information providerprovider Information Information useruser

XPath,
XQuery

XSLT,
XProc

XML

XDM
Java,
C++,
C#,
…

Presenter
Presentation Notes
Our starting point is the desire to broaden the scope of what XML processing languages can achieve. Not internally – but in terms of what they deliver to other languages, their environment. XDML is about the integration of XML technology into a larger context, especially general-purpose languages. What does XML technology deliver?

2011-08-02 XDML - markup language for XDM 3

XML is great but…


Sometimes we want atomic values, not nodes…

“Mike, <quantity>1</quantity>
more beer, please!”



Sometimes we want a collection

of independent

entities, not a monolithic, single tree

Would you like file directories to contain a single
“content document”, rather than a collection of files?

Presenter
Presentation Notes
Why concentrate on XDM not XML? In principle, XML can encode next to anything. In practice, XML can be inconvenient and downright inappropriate. Consider an XPath applied in order to retrieve a street name – but delivering a node containing the street name. Awkward, isn’t it? Imagine an operation system in which every file directory contains one single “content document”, rather than a collection of files…

2011-08-02 XDML - markup language for XDM 4

… XDM is larger



Collection

of independent items


Supports XML data and atomic values



Model summary


Every value is a sequence of items



An item is either a node or an atomic value



Seven node kinds (document, element, text, …)



45 atomic types (string, integer, date, …)

Presenter
Presentation Notes
XDM is a more general model than XML, it is a superset: an XDM value is a collection which can accommodate both, XML nodes and atomic values.

...

But when used as a general result model of XML processing, XDM has a shortcoming: lack of structure. An XDM value is simply a flat sequence of items, like an array. There is no intrinsic way to identify subsequences within it.

2011-08-02 XDML - markup language for XDM 5

XDM 3.0 (working draft)


XDM 1.0 + further item types:


function items; map items; array items?



Map items


Keys –

atomic value (e.g. string or QName …)


Values – XDM item sequences



Implications …


Support for complex values composed of named parts


Parts can be nested



Example: a file system

can be represented by an XDM value:
directory = map item; XML file = node item; other file = atomic item

Presenter
Presentation Notes
But a solution to this problem may be provided by the new version of XDM (3.0), which adds further item types… In the context of integration, the new map items deserve special attention.

2011-08-02 XDML - markup language for XDM 6

Map item –

an example
{

″state″

=> ″FL″

″projects″

=> ″I04″, ″S40″, ″S48″

″report″

=> <waterReport>…

″schema″

=> <xsd:schema

…>…

″interface″

=>

{
″getSummary″

=> ″xquery

1.0 …; declare

…

″

″getLocations″

=> ″//loc/@name/string(.)″

″toHTML″

=> <xsl:transform…>…

″broadcast″

=> <c:xproc

…> …

}
}

Presenter
Presentation Notes
Map items can solve the problem of XDM structure. With XDM 1.0, we would only have the right half of this value – the data without the keys. Such a heterogeneous value would be rather unmanageable – how to find out that the “projects” are represented by items number 2, 3 and 4?? We would not even dare to deliver such a value. Using map items we can create named parts, and everything becomes clear.

7

XDM 3.0 & integration


Retrieval

of the parts: convenient (named-based)


Use

of the parts: unassisted by metadata

Usage Category Example
Transformation Apply

XSLT

Extraction Apply

XPath
Evaluation Apply

XQuery

Execution Execute

as a Perl script

or

stylesheet
Storage Store in a file

or

database

Delivery Pass on to another

component
Dispatchal Use

as a SOAP request

… more categories … and more examples

Presenter
Presentation Notes
Let us look at XDM values as the product which an XDM provider delivers to an XDM user. Is XDM 3.0 the ideal data model for this product? Retrieval of named parts is a great step forward. But different parts will have to be used or processed differently – and except for the names we have nothing to guide us. Analogy: filenames usually have a name extension indicating the kind of file – which is metadata. This is is a hint that it may be desirable to have more than a name, to have a name plus metadata

2011-08-02 XDML - markup language for XDM 8

XDM for integration: XDML


XDML = extensible markup language for XDM



Goal: creation of more useful XDM values
Perspective: XDM user point of viewXDM user point of view



Idea: add control items (“markup”) which …


Create structure



Attach metadata



Compatible with XDM 1.0 and XDM 3.0

Presenter
Presentation Notes
This is the point where XDML steps in. It attempts to invent “XDM for integration”.

9

XDML –

a first example
<xm:part

name=″projectsprojects″

type=″strings″/>,

″I04″, ″S40″, ″S48″

,

<xm:part

name=″reportreport″

type=″node″/>

<waterReport>…,

<xm:part

name=″toHTMLtoHTML″

type=″node″/>,

<xsl:transform

…>…,

XDML XDML valuevalue

= = datadata

itemsitems

+ + controlcontrol itemsitems

Named

parts

Presenter
Presentation Notes
The principle becomes clear when looking at a simple example – control items create structure, and they provide convenient slots into which to throw metadata…

10

XDML –

adding metadata
<xm:part

name=″projectsprojects″

type=″strings″/>,

″I04″, ″S40″, ″S48″

,

<xm:part

name=″reportreport″

type=″node″>

<xm:interface>
<xm:method

name=″getHTML″>

<submitToXSLT

serialize=″true″>

<stylesheet>$part{toHTML}</stylesheet>
</submitToXSLT>

</xm:method>
</xm:interface>

</xm:part>
<waterReport>…,

<xm:part

name=″toHTMLtoHTML″

type=″node″

private=″true″>,

<xsl:transform

…>…,

Metadata = Metadata = attributesattributes

and and childrenchildren

ofof

controlcontrol itemsitems

Presenter
Presentation Notes
The same example – now extended by metadata. They can be represented by attributes and children of the control items. The metadata define how the part “report” can be processed: by submitting it to a stylesheet which is fetched from a different part of the same XDML value. And the metadata give a name to this processing (“getHTML”), which will enable the XDML user to invoke the processing by name.

11

XDML –

(Java) user code
// *** obtain value
XDML xdml

= …;

// *** retrieve parts
String[] pro = xdml.getStrings(″projectsprojects″);
Node

rep

= xdml.getNode(″reportreport″);

// *** invoke part methods
String repH

= (String)xdml.invoke(″reportreport″,″getHTML″);

Retrieval of Retrieval of partpart datadata, , invocationinvocation

of of partpart methodsmethods

Presenter
Presentation Notes
The user can invoke the processing like the method of an object. And the data of the various parts are retrieved as conveniently as values from a map.

2011-08-02 XDML - markup language for XDM 12

XDML -

definition


Syntax rules

guide the creation of XDML values



Adding structure (named, nestable parts)


Adding metadata (each part has its metadata)



An information model

defines the information content

of an XDML value



A processing model

specifies a processing …



Defined by metadata


Triggered by XDML user actions (API calls)



An API

enables the XDML user to retrieve and to

process data

Presenter
Presentation Notes
Trying to summarize what the example illustrated…

2011-08-02 XDML - markup language for XDM 13

XDML –

syntax rules


XDML value = data items + control items



Schema

for control items
(xm:part, xm:complexPart)



Composition rules

-

how to associate control
items with data items


Present encoding: XDM 1.0 (no map items)



Later:

alternative based on map items

Presenter
Presentation Notes
Syntax rules guide the construction of XDML values.

14

Simple and complex parts
<xm:part

name= ″projectsprojects″

type=″strings″/>,

″I04″, ″S40″, ″S48″

,

<xm:part

name=″reportreport″

type=″node″/>,

<waterReport>…,

<xm:part

name=″schemaschema″

type=″node″

/>,

<xsd:schema

…>…,

<xm:complexPart

name=″codelibcodelib″>,

<xm:part

name=″getSummarygetSummary″

type=″string″>,

″xquery

version

1.0 …; declare

…

″,

<xm:part

name=″toHTMLtoHTML″

type=″node″>,

<xsl:transform

…>…,

<xm:complexPartEnd/>

Presenter
Presentation Notes
A complex part – that is, a part containing nested parts - is delimited by <xm:complexPart> and <xm:complexPartEnd> items. A simple part – a part containing only data items, no nested parts - is preceded by an <xm:part> item….

These syntax rules imply a logical structure - an information model, similarly to the way XML markup implies an infoset….. Important to note that the information model does not depend on the way how we encode it. Now we create structure by inserting the control items between the data items. A later alternative may work with map items and associate data and control items by map keys. But the information model will remain the same.

2011-08-02 XDML - markup language for XDM 15

XDML –

information model


XDML value = collection of information units



Information unit = name + value + metadata



Simple

information unit


Value = sequence of data items


No nested units



Complex

information unit


Value = set of nested units


No data items outside of nested units



Metadata

= descriptive metadata + control metadata

Presenter
Presentation Notes
The information model captures the logical structure of an XDML value, as the infoset captures the logical structure of an XML document.

…

The semantics of control metadata are defined by the processing model.

2011-08-02 XDML - markup language for XDM 16

XDML –

processing model


Principle: processing is …


Defined by metadata



Triggered by user actions (API calls)



Control metadata = definition of post-processing



Definition of post-processing =
design and implementation of a unit interface:


Names and implementation of methods



Implementation of certain built-in methods
(“finalize”

and “execute”)

Presenter
Presentation Notes
The processing in question is a post-processing – from the XDML provider’s point of view. The processing happens after delivery of the XDML value.

17

Information with an interface
<xm:part

name=″logdatalogdata″

type=″node″>

<xm:interface>
<xm:method

name=″getResources″

dependsOn″

c_gr″>

<submitToXSLT>…
<submitToXQuery>…

</xm:method>
<xm:method

name=″getWarnings″>

<submitToXQuery>…
</xm:method>
<xm:method

name=″getErrors″>

<submitToXQuery>…
</xm:method>

</xm:interface>
</xm:part>,
<hhla:log

…>…

Operations

Method

Data context

Presenter
Presentation Notes
The metadata may attach to information units a full-blown interface: named methods, implemented in terms of operation requests.

18

Information with an interface
<xm:part

name= ″logdatalogdata″

type=″node″>

<xm:interface>
<xm:method

name=″getResources″

dependsOn=″c_gr″>

<submitToXSLT>
<stylesheet>$part{c_gr}</stylesheet>

</submitToXSLT>

<submitToXQuery>
<query>

for $r in //resource order by $r/@id
return $r/@id/string()

</query>
</submitToXQuery>

</xm:method>
…

</xm:interface>
</xm:part>,
<hhla:log

…>…

Method

Data context

Presenter
Presentation Notes
The operation requests are defined by request messages. The root element name identifies the operation (e.g. “submitToXSLT”), attributes and child elements supply the values of named operation parameters (e.g. “stylesheet”).

2011-08-02 XDML - markup language for XDM 19

Operations


Basic unit of available functionality


Consumes input


Produces a result (optional)


May have side effects



Output = any value, not necessarily an XDM value



Input = data context

+ request message



Data context is …


The value of the containing information unit …


… or the result of a preceding operation

Presenter
Presentation Notes
Operations are the building blocks from which the methods are shaped. They are the basic unit of available functionality – like steps in XProc. What is an XDML operation?

20

Operation request message


Element providing the values of operation parameters



Statically known and dynamic parameters



Parameter values may …


Reference a named invocation argument



Reference the value of an information unit

<xm:method

name=″getSummary″

params=″select″>

<submitToXSLT

serialize=″false″>

<stylesheet>$part{getSummary}</stylesheet>
<xm:params

selectedLocs=″$arg{select}″/>

</submitToXSLT>
</xm:method>

Presenter
Presentation Notes
A request message provides all input information, except for the data context. Thus it corresponds to the bindings of XQuery external variables, or the bindings of XSLT stylesheet parameters.

21

Invocation arguments
<xm:part

name=″emailsemails″

type=„node“>

<xm:interface>
<xm:method

name=″getSummary″

params=″date

select″>

<execAsPerl

args=″-m

sum

–d $arg{date}″

/>

<submitToXSLT

serialize=″false″>

<stylesheet>$part{getSummary}</stylesheet>
<xm:params

selectedLocs=″$arg{select}″/>

</submitToXSLT>
</xm:method>

</xm:interface>
</xm:part>,
#!/usr/bin/perl

-w

…

==
XDML xdml

= …;

Args args

= new

Args();

args.set(″date″, ″2011-03-21″

).set(″select″, ″FL″

);
Node

summary

= xdml.invoke(″emailsemails″, ″getSummary″, args);

Presenter
Presentation Notes
When operations reference invocation arguments, the containing method acquires by implication a signature – the names and types of expected arguments.

22

Available operations


User-defined

operations

(runtime registration)



Standard operations

createMapFromStrings
createPropertiesFromString

execAsSQL
execAsPerl
execAsSQL
execAsSystemCmd
execAsXProc
execAsXQuery
execAsXSLT

readDocument
readTextFile

sendFTP
sendSOAP

submitToPerl
submitToSystemCommand
submitToXQuery
submitToXSLT
submitToXProc

validate

writeDocument
writeTextFile

Presenter
Presentation Notes
What operations are available to the XDML provider? Standard operations and user-defined operations – registered at runtime. The definition of a set of standard operations is a work in progress. We certainly want operations submitting the value of a unit to various languages; and also operations executing the value of the unit as code of various languages, e.g. XSLT.

2011-08-02 XDML - markup language for XDM 23

Methods


Unit of defined processing



Execution = sequential execution of one or several
operations



Definition = sequence of operation request
messages



The definition is bound to an “execution context”:


When to execute


What to do with the return value

Presenter
Presentation Notes
Whenever the metadata define a processing, they define a method. The definition of a method is a sequence of operation requests. The definition is bound to an “execution context”…

2011-08-02 XDML - markup language for XDM 24

Execution context


When to execute a method, what to do with the return value.



Context “enable”:


Return value is delivered to the caller


Triggered by API call invoke(partName, methodName)



Context “execute”:


No return value


Triggered by API call execute()



Context “finalize”:


The return value replaces the initial value of the information unit


Triggered by API call finalize()

Presenter
Presentation Notes
We distinguish four contexts; I want to explain three of them.

25

Execution context “enable”
XDML value:

<xm:part

name=″loglog″

type=″node″>

<xm:interface>
<xm:method

name=″getWarnings″>

<submitToXQuery>
<query>//*[etype

eq

″warn″

]</query>

</submitToXQuery>
<xm:method>

</xm:interface>
</xm:part>
<log>…</log>
==
XDML user

code:

XDML xdml

= …;

Node[] w = (Node[]) xdml.invoke(″loglog″,“getWarnings“);

Presenter
Presentation Notes
Context “enable” – the user perceives the part like an object with an interface. He calls the method he wants, passing the method name to the generic “invoke” method as an argument.

26

Execution context “execute”
XDML value:

<xm:part

name= ″backupWizardbackupWizard″

type=″string″>

<xm:execute>
<execAsPerl/>

</xm:execute>
</xm:part>,
#!/usr/bin/perl

-w

Use

strict;

Use

Time::Local;

…

==
XDML user

code:

XDML xdml

= …;

xdml.execute();

Presenter
Presentation Notes
Context “execute” … Meant for the case when the XDML provider creates code with the intention to execute it. The context “execute” contains a single, predefined method which the metadata can fill appropriately, so as to perform the execution – in this example a Perl execution without arguments. The user can trigger any intended execution by calling “execute” - without having to know method names or other details.

27

Execution context “finalize”
XDML value:

<xm:part

name=″curTemperaturecurTemperature″

type=″string″>

<xm:finalize>
<sendSOAP

href=″http://meteo.org/ws“/>

<submitToXQuery>
<query>//*:temperature/xs:string</query>

</submitToXQuery>
</xm:finalize>

</xm:part>,
<getTemperature><site>abc</site></getTemperature>

==
XDML user

code:

XDML xdml

= …;

xdml.finalize();
String temp

= xdml.getString(″curTemperaturecurTemperature″);

Presenter
Presentation Notes
An example for context “finalize”. Let’s first look at the user actions… The user calls “finalize”, thus making sure that any initial values are replaced by final values – but he need not know what really happens, or if anything happens at all! And he only sees the final value, as if it had been there all the time.

28

Execution context “finalize”
XDML value:

<xm:part

name= ″logdatalogdata″

type=″node″>

<fm:finalize

dependsOn=″logx″>

<submitToPerl>
<perl>$part{logx}</perl>

</submitToPerl>
</fm:finalize>
<xm:interface>
<xm:method

name=″getResources″

…>…

</xm:interface>
</xm:part>, ″log-ops-20110401.txt″
==
XDML user

code:

XDML xdml

= …;

xdml.finalize();
String[] r = xdml.invoke(″logdatalogdata″, ″getResources″);

Presenter
Presentation Notes
This second example reflects a common use case – the processing of non-XML resources. Finalization can be used to create an XML representation of the resource, for example by calling a Perl script. The resulting XML becomes the final value of the unit, and the interface applies XML-technology to it. A great approach for log data evaluation!

29

Implicit finalization
<xm:part

name=″xsdxsd″

type=″node″>

<xm:interface>
<xm:method

name=″getElemNames″

dependsOn=″exsd″

>

<submitToXQuery>…
<xm:method>

</xm:interface>
</xm:part>,
<xsd:schema…>…,

<xm:part

name=″exsdexsd″

type=″node″

private=″true″>

<xm:finalize

dependsOn=″xsd″>

<execAsXQuery>
<contextItem>$part{xsd}</contextItem>

</execAsXQuery>
</xm:finalize>

</xm:part>,
xquery

version

1.0;

…

Presenter
Presentation Notes
Sometimes the finalization of a part is only required if some particular methods are executed. Declaring the methods dependent on that part, method invocation triggers finalization, if it has not already been performed. Such dependencies defer data processing without increasing complexity.

30

Example –

“schema-reporter”
<xm:part

name=″xsdxsd″

type=″node″>

<xm:finalize

params=″href″>

<loadDocument

href=″$arg{href}″/>

</xm:finalize>
<xm:interface>
<xm:method

name=″getTargetNS″>…

<xm:method

name=″getElemNames″dependsOn=″exsd″>…

<xm:method

name=″getTypeNames″dependsOn=″exsd″>…

<xm:method

name=″getDataPaths″dependsOn=″txsd″>…

</xm:interface>,
</xm:part>, ″TO-BE-REPLACED-BY-XSD″,

<xm:part

name=″exsdexsd″

type=″node″

private=″true″>

<xm:finalize

dependsOn=″xsd″>…

</xm:part>,

″TO-BE-REPLACE-BY-EXPANDED-XSD″,

<xm:part

name=″txsdtxsd″

type=″node″

private=″true″

>

<xm:finalize

dependsOn=″exsd″>…

</xm:part>,

″TO-BE-REPLACED-BY-TREE″

Presenter
Presentation Notes
Time for a little, but comprehensive example. This XDML value represents an XML schema. The schema is only loaded at finalization, which expects the file name as invocation argument. The interface offers interesting information about the schema, for example a list of all possible data paths.

All methods are implemented by XQuery expressions, but in most cases the query is not applied to the schema itself, but to an intermediary obtained by processing the schema, and stored in a different part: “exsd” is the expanded schema, resulting from recursively expanding imports und includes. “txsd” is a tree representation of the instance documents described by the schema. By declaring the methods as dependent on the part holding the required intermediary, a just-in-time creation of intermediaries is ensured. Note that “getElemPaths” may even trigger a cascading finalization.

2011-08-02 XDML - markup language for XDM 31

Example -

user perspective
// *** loading the XDML value
XDML xdml

= …;

Args args

= new

Args().set(″href″, ″weather.xsd″);

xdml.finalize(args);

// *** use the information interface
String tns

= xdml.invoke(″xsdxsd″, ″getTargetNS″

);

String[] enames

= xdml.invoke(″xsdxsd″, ″getElemNames″);

String[] tNames

= xdml.invoke(″xsdxsd″, ″getTypeNames″);

String[] dpaths

= xdml.invoke(″xsdxsd″, ″getDataPaths″);

All All datadata

areare

hiddenhidden

behindbehind

thethe

interfaceinterface; ;
intermediariesintermediaries

areare

generatedgenerated

just in time and just in time and cachedcached..

Presenter
Presentation Notes
The user perspective is perfect simplicity.

2011-08-02 XDML - markup language for XDM 32

XDML benefits (SMEB)


Structure –

XDML creates an intuitive structure which



Integrates XML nodes and atomic values


Treats its parts as independent, self-contained entities



Metadata –

XDML attaches metadata externally, non-invasively.



Extended functionality –

XDML provides access to XDML
operations, often offering otherwise unavailable functionality.



Behavior –

XDML may associate data with an interface.

Presenter
Presentation Notes
Wrapping up…

…..

If you are ONLY interested in structure and prepared to wait a few years – take map items.

If you are ONLY interested in extended functionality, you might use extension functions or work with XProc.

If you want one of the other benefits, or a combination of benefits, XDML is an option to consider.

2011-08-02 XDML - markup language for XDM 33

XDML issues (CTI)


Complexity –

often overhead


We don’t need named parts if there is only one part


We don’t need methods if the processing is trivial



Type system –

still immature


Uneasy integration of XDM data types and arbitrary types


Missing formal definition of type matching



Interoperability of operations -

not yet formally defined



Next steps:


Simplified creation/usage of simple results


Interface inheritance, XDML value import, …

Presenter
Presentation Notes
We are aware of several issues… The main one may be – complexity. Attempting to cope with possible complexity, XDML introduces actual complexity: the XDML provider must create control items, and the user must identify an information unit by name. However, we don’t need named parts if there is only one part; we don’t need methods if the processing is trivial. In the very common case of a single part result without a particular processing, control items and part names are pure overhead! Definitely: XDML must be refined and exclude any overhead, must learn to accept ordinary XDM values without control items, treating them as single-part result without metadata. And XDML must enable the user to use single-part results without identifying a part.

34

Imagine…

Information Information providerprovider

XPath,
XQuery

XSLT,
XProc

XML

XDM
Java,

C++,
C#,
…

Encoding Information

XDML Info. user

Technology

Presenter
Presentation Notes
But the most important extension might be supporting a pure XML encoding of the XDML information model. It just takes a few rules how to represent an XDML value as an XML document. This way we can pull XSLT and XProc into the boat, make them XDML providers. We might come close to a unified model for the integration of XML processing languages into general languages. In the hazy distance, this is the silhouette I perceive:

general language developers do not any more by and large ignore XML technology; but they do not think about stylesheets, queries or pipelines, neither. They use an X-layer, manned by X-developers, who supply him with data and functionality tailored to his needs. Data and functionality are delivered by signatures which express semantics and hide technology.

2011-08-02 XDML - markup language for XDM 35

Thank you!

Presenter
Presentation Notes
Or what do you think? Thank you.

	XDML
	Information delivery
	XML is great but…
	… XDM is larger
	XDM 3.0 (working draft)
	Map item – an example
	XDM 3.0 & integration
	XDM for integration: XDML
	XDML – a first example
	XDML – adding metadata
	XDML – (Java) user code
	XDML - definition
	XDML – syntax rules
	Simple and complex parts
	XDML – information model
	XDML – processing model
	Information with an interface
	Information with an interface
	Operations
	Operation request message
	Invocation arguments
	Available operations
	Methods
	Execution context
	Execution context “enable”
	Execution context “execute”
	Execution context “finalize”
	Execution context “finalize”
	Implicit finalization
	Example – “schema-reporter”
	Example - user perspective
	XDML benefits (SMEB)
	XDML issues (CTI)
	Imagine…
	Thank you!

