[image: Balisage logo]Balisage: The Markup Conference

The Effects of Bytecode Generation in XSLT and XQuery
O'Neil Davion Delpratt
Saxonica

<oneil@saxonica.com>

Michael Kay
Saxonica

<mike@saxonica.com>

Balisage: The Markup Conference 2011
August 2 - 5, 2011

Copyright © 2011 by the authors. Used with permission.

How to cite this paper
Delpratt, O'Neil Davion, and Michael Kay. "The Effects of Bytecode Generation in XSLT and XQuery." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Delpratt01.

Abstract
This paper attempts to analyze the performance benefits that are achievable by
 adding a code generation phase to an XSLT or XQuery engine. This is not done in
 isolation, but in comparison with the benefits delivered by high-level query
 rewriting. The two techniques are complementary and independent, but can compete for
 resources in the development team, so it is useful to understand their relative
 importance. We use the Saxon XSLT/XQuery processor as a case study, where we can now
 translate the logic of queries into Java bytecode. We provide an experimental
 evaluation of the performance of Saxon with the addition of this feature compared to
 the existing Saxon product. Saxon's Enterprise Edition already delivers a
 performance benefit over the open source product using the join optimizer and other
 features. What can we learn from these to achieve further performance gains through
 direct byte code generation?

Balisage: The Markup Conference

 The Effects of Bytecode Generation in XSLT and XQuery

 Table of Contents

 	Title Page

 	Introduction

 	High-level Optimization

 	Bytecode Generation
 	Architecture of Java bytecode generator

 	Experimental Evaluation
 	Setup
 	Running Times

 	Effect of Optimization Rewrites

 	Using Hand-written Code as a Benchmark

 	Conclusion

 	Appendix A. Bytecode of generated Java source code

 	Appendix B. Running times of the 20 XMark XQuery queries

 	About the Authors

 The Effects of Bytecode Generation in XSLT and XQuery

Introduction
Many modern compilers generate code in an intermediate representation which is then
 interpreted by a virtual machine. One of the best known examples is Java: its
 intermediate code (known simply as bytecode) has proved flexible enough to be used as a
 target by many other high-level languages, allowing these languages to be mixed in the
 same Java Virtual Machine (JVM). XSLT and XQuery are no different from other languages
 in this respect, and a number of processors for these languages have used code
 generation to boost performance. There are few reports, however, that enable the
 effectiveness of this technique to be assessed, largely because of the difficulty in
 attributing performance differences to one particular optimization technique. This paper
 attempts to evaluate the impact of introducing code generation into the Saxon processor,
 enabling such a comparison to be made.
One well-known XSLT processor that compiles queries to Java bytecode is XSLTC [XSLTC]. [XSLTC] at a superficial level works by
 parsing the XSLT into an Abstract Syntax Tree (AST) which then goes through a
 type-checking phase before being compiled into Java bytecode. The output is a so-called
 translet class which can be used for
 transformations or saved to disk for re-use later. For XSLTC (which is distributed as
 part of the Apache Xalan-J package), the aim is not only to deliver enhanced performance
 in the runtime execution of queries, but also to produce a compact executable (the
 translet) which can be readily shipped around the network and executed anywhere.
Code generation is also believed to be used in a number of proprietary XSLT
 processors, such as the Datapower processor [DataPower] and
 Microsoft's .NET processor. However, no technical details of these products have been
 published in the literature.
Saxon first introduced Java code generation as long ago as version 4.2 [Kay1999] (some six months before XSLT 1.0 was published in 1999).
 However, this proved to be something of a blind alley, since it became clear that much
 greater performance gains could be realized through other optimization techniques, and
 that the existence of a code generator actually made these techniques more difficult to
 introduce. The architecture of Saxon at this time was to interpret the DOM of the source
 stylesheet directly instead of building an expression tree. This design made it
 impossible to do any extensive optimisation rewrites, as it is done now. One of the
 present authors [Kay2006a] argued that high-level
 optimizations are more important, and that compiling expressions to bytecode might
 reduce the scope for high-level optimizations, if only by making them more complex
 to implement and debug.As a result, the code generation was "shelved" while
 the architecture was changed to introduce tree rewriting.
Eventually code generation re-emerged in version 8.9 (Feb 2007), supporting XQuery
 only. It still took the form of Java source code generation, rather than bytecode
 generation. But it cannot be counted a great success: we are aware of very little usage.
 This is for several reasons:

 	From a user perspective the generation of java source code is cumbersome,
 requiring three phases: firstly they must generate the Java source code to a
 file, then the Java source must be compiled, and finally the query can be
 executed.

	The performance gains are modest (typically 25% improvement).

	There are numerous restrictions concerning the subset of the language that
 is supported in this mode.

This paper describes a new approach in which we hope to eliminate these problems. In
 particular, we believe that a 25% speed-up is not enough to encourage users to go to a
 great deal of effort in the way they execute their stylesheets and queries, but it will
 be much appreciated if it comes with no effort. There is a commercial factor which
 motivates this: Saxon is distributed in two versions, a free open-source product and a
 commercial paid-for version. While the commercial Enterprise Edition already has many
 features that users value, including features that can be used to deliver improved
 performance, users are sometimes disappointed to find it does not always run faster "out
 of the box". Code generation is an obvious way to remedy this, and ensure that users who
 pay their dues get some immediate benefit, with no need to change a single line of
 code.
Our objectives in adding code generation to Saxon are rather different from those for
 XSLTC, and this affects the approach we have adopted. In particular, we are not
 primarily interested in producing an executable that can be saved to disk or sent around
 the network. Rather, we want to integrate code generation and interpretation closely, so
 that we only generate code where there is a performance benefit to be gained, and
 continue to interpret otherwise. This should ensure that there are no language
 restrictions or differences when using code generation; it allows development effort to
 be focused where the potential gains are largest; and it limits the extent to which the
 existence of a code generation phase working off the expression tree limits our freedom
 to evolve the design of the expression tree itself when implementing new rewrite
 optimizations.
The remainder of this paper is organized as follows. Firstly, we discuss the
 high-level optimization of Saxon. Secondly, we discuss the bytecode generation feature
 of Saxon. Then we give an experimental evalaution of the running time performance of
 bytecode generation compared to Saxon interpreted mode. We base our experiments on the
 XMark benchmark queries, and conclude our findings.

High-level Optimization
The Saxon XSLT/XQuery processor includes a number of internal processes to compile,
 simplify and execute queries or stylesheets efficiently. In our discussion we will only
 make reference to XQuery, however in the Saxon internals very similar processes apply to
 XSLT.
Queries are parsed by a XSLT/XQuery compiler into a Abstract Syntax Tree (AST), which
 is a in-memory expression tree structure representing the logical structure of the
 query. In the case of XSLT, this tree combines the two sublanguages, XSLT and XPath,
 into a single integrated structure. References to variables and functions are largely
 resolved during parsing, an operation that is only slightly complicated by the fact that
 forwards references are permitted. Saxon then perfoms three optimization steps to
 produce the final AST that is interpreted at runtime. The first step is the
 normalisation of the AST, the second step is the type checking of the sub-expressions,
 and the third is expression rewriting. Detail of these are provided in the literature
 [Kay2008], [Kay2006b] and [Kay2005]. We summarize these steps below.
The optimizations require several depth-first traversals of the tree. In Saxon a
 visitor object provides a depth-first navigation of the expression tree. This class
 supports the various optimization steps involved in the processing of an expression
 tree, as it requires a recursive walk visiting each node in turn. A stack is also
 maintained as each node is visited, which holds the current ancestor nodes. The
 expression tree consists of many kinds of expression nodes, each of which implement the
 Expression interface. (This is the classic Interpreter design pattern.) The Expression
 class contains three important methods: simplify,
 typeCheck and optimize. 	Normalisation. As in databases this is an important
 step, where we minimize redundancies in queries. In Saxon the expression
 visitor is used to walk the tree. At each expression node the simplify method is called on its child
 sub-expressions before normalisation is applied if required. It is possible
 that at each node the simplify method may be called
 several times after the re-writing of sub-expressions. For example, the
 XPath a/b/c is rewritten to docOrder(a!b!c), where
 docOrder is an operator that eliminates duplicates and sorts into document
 order, and ! is a simple mapping operator which evaluates
 c once for each item in b, which in turn is
 evaluated once for each item in a.

	Type Check. As we traverse the expression tree each
 sub-expression node is type checked. Here checks are performed on the
 operands of the expression, whether the static types of the operands are
 known to be subtypes of the required type. [Kay2006b]
 details several possible outcomes in the process: The static type is a
 subtype of the required type, then no further check is required, or some
 instances only are instances of the required type, here a node is inserted
 in the tree to indicate run-time type check required. The other possiblility
 is that the static type and the required type are disjoint, therefore Saxon
 generates a type error at compile time. Saxon also performs atomization
 conversions, such as casting of untypedAtomic values. It also removes any
 redundant conversions, such as casts written by the user.

	Expression Rewriting (Optimization). The optimizing
 of XSLT stylesheets, XQuery and XPath expressions is a well studied area,
 which has provided implementations significant performance gains. In [Kay2007] and [Snelson2011] there is a
 detailed study of the main optimization techniques, some of which are used
 in Saxon. The rewrite of expressions is achieved in the
 optimize method, requiring a third pass of the
 expression tree. Saxon performs join optimization (familar in database
 languages), by replacing predicate expressions with key indexes. There are
 other techniques such as function inlining and the optimization of tail
 recursion, which is familar in functional programming languages. This is
 another area where Saxon differentiates the commercial product from the free
 open-source product: many of the more advanced optimizations are available
 in the Enterprise Edition only.

Each of these phases adds information to the tree. The most obvious information is the
 inferred static type of each expression, but there are many other properties that play
 an equally important role: for example the dependencies of an expression on variables or
 on the dynamic context, and properties of node-sets such as whether they are known to be
 sorted and whether they can contain duplicates.

Bytecode Generation
We now discuss a new Java bytecode generation feature in Saxon, which we consider as a
 fourth step in the optimization processes discussed in Section 2. It directly replaces
 the java source code generation feature provided in Saxon up to version 9.3. Here we are
 now generating the Java bytecode directly when compiling a query after it has been
 optimized. Our approach is different to that in XSLTC because we are generating bytecode
 selectively for expressions that are considered to have potential performance
 improvements, so that interpreted code and compiled code interact freely. The fact that
 compiled code exists only transiently in memory means that it can refer to data
 structures on the expression tree, rather than regenerating them at initialization time.
 In the longer term, this architecture also leaves the door open to just-in-time
 compilation (or hotspot compilation) based on observed execution patterns at
 run-time.
There are a number of Java class manipulation tools available (see Bruneton2002). One of the most widely used of these tools is BCEL [Dahm1999, Bruneton2002]. In this tool the class
 modification is achieved in a three part process: The bytecode representing the class is
 deserialized into a constructed class structure in memory, with a object created for
 each node, right down to the bytecode instructions. This structure is then manipulated
 in the second phase. The third phase is to serialize the modified object structure into
 a new byte array.
We chose instead to use the ASM [Bruneton2002] framework library
 tool to generate bytecode for queries. ASM [Bruneton2002] claims to be
 smaller and to give better performance than other tools. Where BCEL builds a DOM-like
 tree representation of the code, ASM works using a series of SAX-like streaming passes
 over it. There are other Java class manipulation tools which we only mention here such
 as SERP, JIOE: these are described in [Bruneton2002]. We have not done
 any experimental anaylsis of the Java class manipulation tools nor is there scope in
 this paper to provide an anaysis of these tools. Nevertheless, we have chosen the ASM
 library based upon [Bruneton2002], due to the simplicity of the tool
 and our requirement which only relied upon a small part of the library to dynamically
 generate bytecode in the runtime of queries.
The bytecode generation process has as input an AST, optimized to a greater or lesser
 extent in earlier phases depending on the Saxon product that is used. The top-level
 expression in each function or XSLT template is compiled into an equivalent Java
 bytecode class. We call this a CompiledExpression: it is
 constructed as we traverse the AST and can be evaluated at runtime. If the expression
 cannot be compiled, perhaps because it uses unusual language constructs, it is simply
 interpreted instead: but its subexpressions can still be compiled. The structure of the
 CompiledExpression is as follows: Firstly we generate static
 variables which have been initialised. As mentioned above, we are generating transient
 bytecode that works interchangably with interpreted code. The static variables in the
 generated code contain references to data on the expression tree: either whole
 expressions, or helper classes such as node tests, comparators, converters, and the
 like. For example, the NodeTest object, which provides XSLT pattern
 matching, acts as a predicate in axis steps, and also acts as an item type for type
 matching, is stored as a static variable available for use in the bytecode generated.
As discussed in [Kay2009] and [Kay2010], Saxon can
 execute internally in both pull and push mode.
 In pull mode, an expression iterates over the data supplied by its child expressions;
 child expressions therefore implement an iterate()
 method which delivers results incrementally to the caller. In push mode, an expression
 writes SAX-like events to an output destination (a Receiver). Choosing between pull and push mode can make a substantial
 difference to performance: during development, when we have observed situations where
 compiled code was outperformed by interpreted code, it was generally because the
 interpreter was making better decisions on when to pull and when to push. The compiled
 code therefore needs to work in both modes, so each
 CompiledExpression has two methods: an
 iterate method to deliver results to its caller, and a
 process method to write events to a Receiver. A third method,
 evaluateItem(), is provided for single-shot
 evaluation of expressions that always return a singleton result. Of course in many cases
 these methods will share common logic.
Architecture of Java bytecode generator
The ExpressionCompiler is an abstract class which represents
 the compiler (that is, Java bytecode generator) for a particular kind of expression
 on the expression tree. The ExpressionCompiler classes are used
 to build the CompiledExpression class in bytecode, traversing
 the expression tree in depth-first manner: there is a one-to-one correspondence
 between the classes implementing the expression on the expression tree and the
 compiler object used to generate Java code fragments[1]. The following methods are supplied to compile expressions; exactly one
 of them is called, depending on the context in which the expression appears:
 compileToItem - Generate bytecode to evaluate the expression as an Item
compileToIterator - Generate bytecode to evaluate the expression as an Iterator.
compileToBoolean - Generate bytecode to evaluate the expression as a boolean.
compileToPush - Generate bytecode to evaluate the expression in push mode.
compileToLoop - Generate bytecode to evaluate the expression in such a way that
 the supplied loop body argument is executed once for each Item.
compileToPrimitive - Generate bytecode to evaluate the expression as a plain Java value
 (e.g. int, double, String). This method must only be called if the
 target type of the expression is known statically.

Within each kind of expression one or more of the methods above is implemented.
 For example, the exists() function delivers a
 boolean value so we implement the compileToBoolean
 method. To understand why compiled code is sometimes faster than interpreted code,
 it is useful to examine this example in some detail. Essentially, compiled code will
 only be faster than the interpreter if decisions can be made at compile-time than
 would otherwise be made at execution time. There are many cases where this is simply
 not possible: for example, code that is dominated by string-to-number conversion
 will gain no speed-up from compilation, because the actual code executed is
 identical whether it is compiled or interpreted. Making decisions at compile time is
 only possible where the information needed to make those decisions is present in the
 expression tree. For example, for the exists()
 function we compare its compileToBoolean method to
 the interpreted code and the Java source generation below. The simple query
 exists(.) generates the following bytecode in push mode (simplified
 only to remove diagnostic information used by the debugger):

 public process(Lnet/sf/saxon/expr/XPathContext;)V
 L0
 // Get the Receiver to which output will be sent
 ALOAD 1 // the XPathContext object
 INVOKEINTERFACE net/sf/saxon/expr/XPathContext.getReceiver ()Lnet/sf/saxon/event/SequenceReceiver;
 ASTORE 2 // local variable holding the current Receiver
 ALOAD 2
 L1
 L2
 // Get the context item (evaluate ".")
 ALOAD 1 // the XPathContext object
 INVOKEINTERFACE net/sf/saxon/expr/XPathContext.getContextItem ()Lnet/sf/saxon/om/Item;
 DUP
 // Generate an error if no context item is defined
 IFNONNULL L3
 NEW net/sf/saxon/trans/XPathException
 DUP
 LDC "Context item for '.' is undefined"
 LDC "XPDY0002"
 INVOKESPECIAL net/sf/saxon/trans/XPathException.<init> (Ljava/lang/String;Ljava/lang/String;)V
 DUP
 GETSTATIC CE_main_671511612.nContextItemExpression0 : Lnet/sf/saxon/expr/ContextItemExpression;
 INVOKEVIRTUAL javax/xml/transform/TransformerException.setLocator (Ljavax/xml/transform/SourceLocator;)V
 ATHROW
 // Load "true" (1) or "false" (0) depending on whether the value is null
 L3
 IFNULL L4_returnFalse
 ICONST_1 //Load true (1)
 GOTO L5
 L4_returnFalse
 ICONST_0 //Load false (0)
 L5_endExists
 // Convert the result to a Saxon BooleanValue object and send it to the Receiver
 INVOKESTATIC net/sf/saxon/value/BooleanValue.get (Z)Lnet/sf/saxon/value/BooleanValue;
 INVOKEVIRTUAL net/sf/saxon/event/SequenceReceiver.append (Lnet/sf/saxon/om/Item;)V
 RETURN
}
It is interesting to compare this with the java source code generated for the same
 query exists(.) using Saxon 9.3:
 public void process(final XPathContext context) throws XPathException {
 SequenceReceiver out = context.getReceiver();
 if (context.getContextItem() == null) {
 dynamicError("The context item is undefined", "XPDY0002", context);
 }
 final boolean b0 = (context.getContextItem() != null);
 out.append(BooleanValue.get(b0), 0, NodeInfo.ALL_NAMESPACES);
}
The
 logic is very similar, and in fact the bytecode generated when this Java source code
 is compiled is very similar too (just fractionally less efficient because of the
 unnecessary boolean variable b0). See the bytecode of the Java
 source code in Appendix A, which can be compared with the generated
 bytcode above. Thus for a typical query, the new bytecode generation feature does
 not provide noticeable performance benefits over the generated java source from
 Saxon 9.3. However from a usability point-of-view, the advantage is that there is no
 need to compile and run the java program source code, which makes all the difference
 for a typical user.
It's also worth noting that the logic in Saxon to generate the bytecode is not
 significantly more complex than the logic that was used to generate Java bytecode.
 All the complexity is in the ASM library. Debugging the logic when it is incorrect
 can be a little harder however (diagnostics are not ASM's strongest feature).

Experimental Evaluation
In this section we draw comparisons of the running time performance between
 interpreted code and generated bytecode. An important aim is to compare the impact of
 code generation with the impact of high-level rewrite optimizations: to this end we run
 with four configurations, both features being switched on or off. (In the released
 product, neither feature will be available in the open source Saxon-HE, and by default
 both will be enabled in Saxon-EE).
Setup
We used Saxon 9.3.0.4 as the baseline. The test machine was a Intel Core i5
 processor 430M laptop with 4GB memory, 2.26Ghz CPU and 3MB L3 cache, running Ubuntu
 10.04LTS Linux. The compiler was Sun/Oracle Java 1.6.0.2. The experiments are based
 on the XMark benchmark [XMark]. We use the XMark XQuery queries
 numbered q1 to q20, and synthetically generate several XML data files from [XMark], these being of sizes in the range 1MB to 64MB.
Running Times
The 20 XMark queries are run repeatedly up to 1000 times or until 30 seconds
 have elapsed, and we record the average time spent to complete the runs, using
 the system clock in Java. [Appendix B] shows the complete
 running times. We show these for Saxon-HE, Saxon-Bytecode, Saxon-EE and
 Saxon-EE-Bytecode (that is, with weak optimization and no code generation; with
 weak optimization plus code generation, with strong optimization and no code
 generation, and with strong optimization followed by code generation). We
 compare the running times of the Saxon-EE product for the interpreted code and
 bytecode. We found on average over all files that bytecode generation gave
 between 14% and 27% improvement.
Figure 1: Scalability test. Running time performance for different file sizes on
 query 10
[image:]
Scalability test: For Saxon-HE, Saxon-EE and Saxon-EE-Bytecode the
 timing results of running the XMark benchmark query 10 on XMark
 generated data files of sizes 2MB, 4MB, 8MB, 16MB, 32MB and 64MB. For
 Saxon-HE the running time for the 64MB data file is omitted as it goes
 off the graph.

In Figure 1, we show a graph of the scalability of running
 the query 10 on the XMark data files of sizes ranging from 2MB to 64MB with
 Saxon-HE, Saxon-EE and Saxon-EE-Bytecode. In Saxon-EE and Saxon-EE-bytecode the
 timing results show a linear growth as files become larger in size. For Saxon-HE
 we observe a quadratic growth: this shows up the absence of join optimization in
 the Saxon-HE product.
In Figure 2 and in Table III in Appendix B we observe that for certain queries the performance of
 bytecode generation is well above average. Queries 8, 10, 11 and 12 gave
 improvements between 35% and 50%. We compare the Saxon-EE products with the
 feature of Java code generation (Saxon-EE-JavaGen, featured in Saxon 9.3), the
 interpreted code and bytecode. Again we see an overall improvement over the
 intepreted code, but we observe similar results for Java code generation and
 bytecode generation, the difference being approximately 10% on average over all
 queries.

Effect of Optimization Rewrites
Comparison of the timings for different data sizes shows that with weak
 optimization, queries 8, 9, 10, 11 and 12 have performance that is quadratic in
 the data size; with strong optimization, only query 11 is quadratic. This is
 because queries 8, 9, 10 and 12 are equijoins, whereas query 11 is a
 non-equijoin which the Saxon optimizer cannot handle well.

 Figure 2: XQuery Queries Running Times (10MB data file)
[image:]
For Saxon-EE-JavaGen (Java Generation in Saxon 9.3), Saxon-EE
 and Saxon-EE-Bytecode the timing results of running XMark benchmark
 query 7, 8, 9, 10, 11 and 12 on a 10MB XMark generated data
 file.

Using Hand-written Code as a Benchmark
In the previous sections we've concentrated on comparing the performance of compiled
 queries and stylesheets with the same queries and stylesheets run under the interpreter.
 But there's another technique we have found useful, which is to compare the performance
 of a compiled query with hand-written Java code performing the same task. The
 performance of the hand-written code sets a target to aim for, and provides a measure of
 how much room for improvement is available.
The results show great variation between different queries, which is useful
 information in itself. Here we'll consider two simple queries.
The first computes the average income of buyers recorded in the XMark dataset: we're
 running the query
 avg(//profile/@income)
 against the
 10Mb version of the dataset.
The Saxon interpreter runs this in an average of 792ms. Currently, when compiling to
 bytecode, the improvement is quite modest: average time is 768ms.
The same query coded in Java looks like this:
 NodeInfo root = doc.getUnderlyingNode();
AxisIterator descendants = root.iterateAxis
 (net.sf.saxon.om.Axis.DESCENDANT,
 new NameTest(Type.ELEMENT, profileNC, pool));
NodeInfo profile;
double total = 0;
int count = 0;
while ((profile = descendants.next()) != null) {
 String income = Navigator.getAttributeValue(profile, "", "income");
 if (income != null) {
 total += Double.valueOf(income);
 count++;
 }
}

The execution time for this code is 690ms. So we see that the interpreter is already
 almost as fast as the hand-written Java code. On the assumption that generated bytecode
 will rarely be better than hand-written Java code, there is little headroom available
 for the code generator to make a significant impact. It's easy to see why this should be
 the case: the query is spending nearly all its time (a) searching the descendant axis
 for <profile> elements, and (b) converting
 attribute values from strings to numbers. These two operations are done by library
 routines that execute exactly the same code whether it is run under the XQuery
 interpreter, the XQuery code generator, or the hand-written Java code. Both routines
 have been carefully tuned over the years and there is little scope for improvement;
 neither is doing any work that doesn't absolutely need to be done.
Our second query is rather different. This one doesn't in fact process any XML, so one
 could argue that it is atypical; but as a fragment within a larger query it is code that
 one might well encounter:
 sum(for $i in 1 to $p return xs:double($i)*xs:double($i))

 Here, with $p set to 100000, the XQuery interpreter executes the query in 29.4ms. The
 equivalent hand-written Java code is
 double j = 0;
for (int i=1; i<=100000; i++) {
 j += (double)i * (double)i;
}
and
 this executes much faster, in just 1.2ms. So this time there is a lot more headroom, a
 lot more scope for the code generator to make a difference. Our first version of the
 code generator in fact made no difference at all to the execution time of this query (a
 mere 1% improvement, which is within the range of experimental error). It's not
 difficult to see why: the generated code was essentially an inlined version of the same
 instructions that the interpreter was executing, except for a very small amount of
 control logic to walk the expression tree. Comparing this with the hand-written code in
 this case shows us that we can do a lot better. There is no reason in principle why the
 XQuery code should not run just as fast as the Java code. We're not quite there yet, but
 we have improved it to around 12ms. One technique that proved useful in achieving this
 was to write a Java program that executed the same logic as the XQuery-generated
 bytecode, and to measure the effect of making a variety of improvements to it: this
 exercise showed where it would be worthwhile to invest effort. The two areas that
 account for the improvement are: 	Removal of unnecessary boxing and unboxing operations. Saxon generally
 wraps simple values such as integers, strings, and booleans in a wrapper
 (IntegerValue, StringValue, and BooleanValue, all subclasses of AtomicValue)
 so they can all be manipulated using polymorphic methods. This means that
 multiplying two doubles to produce another double involves not only the
 multiplication, but two unboxing steps and one boxing step. Eliminating
 these operations accounted for around half the improvement.

	Removal of unnecessary mapping iterators. The way this query is executed
 in the interpreter is to create an iterator over the integers 1 to 100000;
 the results of this iterator are piped into a mapping iterator which applies
 a mapping function to each value, this being the expression xs:double($i)*xs:double($i); and the resulting
 doubles are then piped to the sum() function, which reads through the
 iterator and totals the values. Inverting this structure to a loop where a
 running total is incremented in the body of the loop, as in the hand-written
 Java solution, accounts for the other half of the improvement.

The lessons from this exercise are firstly, that there are some execution paths where
 it is very hard to improve performance because it is already very close to optimal; but
 that there are other operations that still leave much room for improvement, and one good
 way to identify this is to compare the system-generated code with hand-written Java code
 that performs the same task.

Conclusion
The purpose of this paper was to study the performance benefits that can be achieved
 by adding a code-generation phase to an XSLT or XQuery processor. To do so, we examined
 these side-by-side with the benefits achieved by high level optimization rewrites. The
 two techniques are orthogonal to each other, in that one can do either or both, but it
 is interesting to analyze which delivers better improvements in relation to the
 cost.
In the best case (or the worst case, depending on how you look at it), optimization
 rewrites can turn a query with quadratic performance into one with linear performance.
 This is something code generation can never aspire to. This therefore vindicates the
 approach that has been taken in Saxon of putting aside work on code generation until the
 high-level optimizer had achieved a sufficient level of maturity.
The conclusion of our study is that compiled code can be expected to run about 25%
 faster than code executed under an optimal interpreter, but the improvements can be
 greater (up to 50% in our case) when the interpreter is less than optimal or when the
 individual expressions on the expression tree are performing tasks such as arithmetic
 operations or numeric comparisons whose execution time is small in comparison to the
 overhead of the control logic for invoking them.
For Saxon, the extra 25% is well worth achieving, since there are many users with
 demanding workloads, and since the business model for the product relies on the
 development being funded by revenue from the small number of users with the most
 demanding requirements. For other products, the trade-off might be different: in
 particular the message from this study is that code-generation is something you should
 do only when all other opportunities for performance improvement have been
 exhausted.

Appendix A. Bytecode of generated Java source code
Using Saxon 9.3.0.4 generated Java code for the simple query exists(.) we
 show its byte code using the tool javap with option
 -c:
 public void process(net.sf.saxon.expr.XPathContext) throws net.sf.saxon.trans.XPathException;
 Code:
 0:	aload_1
 1:	invokeinterface	#2, 1; //InterfaceMethod net/sf/saxon/expr/XPathContext.getReceiver:()Lnet/sf/saxon/event/SequenceReceiver;
 6:	astore_2
 7:	aload_1
 8:	invokeinterface	#3, 1; //InterfaceMethod net/sf/saxon/expr/XPathContext.getContextItem:()Lnet/sf/saxon/om/Item;
 13:	ifnonnull	25
 16:	aload_0
 17:	ldc	#4; //String The context item is undefined
 19:	ldc	#5; //String XPDY0002
 21:	aload_1
 22:	invokevirtual	#6; //Method dynamicError:(Ljava/lang/String;Ljava/lang/String;Lnet/sf/saxon/expr/XPathContext;)V
 25:	aload_1
 26:	invokeinterface	#3, 1; //InterfaceMethod net/sf/saxon/expr/XPathContext.getContextItem:()Lnet/sf/saxon/om/Item;
 31:	ifnull	38
 34:	iconst_1
 35:	goto	39
 38:	iconst_0
 39:	istore_3
 40:	aload_2
 41:	iload_3
 42:	invokestatic	#7; //Method net/sf/saxon/value/BooleanValue.get:(Z)Lnet/sf/saxon/value/BooleanValue;
 45:	iconst_0
 46:	iconst_2
 47:	invokevirtual	#8; //Method net/sf/saxon/event/SequenceReceiver.append:(Lnet/sf/saxon/om/Item;II)V
 50:	return

Appendix B. Running times of the 20 XMark XQuery queries
The following three tables show running times of the 20 XMark XQuery queries. Each
 query is executed 1000 or until 30 seconds have elapsed, whichever comes first. The
 average is time reported in micro-seconds. We show results for Saxon-HE (no
 optimization), Saxon-Bytecode (no optimization, with bytecode generation), Saxon-EE
 (with optimization), Saxon-EE-JavaCode (with optimization and java source code
 generation) and Saxon-EE-Bytecode (with optimization and bytecode generation). We also
 show the Saxon-EE-Bytecode speedup as percentages with respect to Saxon-EE times. The
 fastest Saxon configuration for each result is set in bold font.Table I
Running Times, with 1MB data file

	Query	Saxon-HE	Saxon-Bytecode	Saxon-EE	Saxon-EE-Bytecode	Bytecode speedup (%)
	q1	0.363	0.394	0.095	0.080	NEG
	q2	0.456	0.452	0.473	0.432	9%
	q3	0.547	0.450	0.606	0.416	31%
	q4	0.308	0.296	0.443	0.380	14%
	q5	0.183	0.127	0.176	0.144	18%
	q6	0.181	0.208	0.177	0.166	6%
	q7	0.773	0.717	0.773	0.626	19%
	q8	15.468	12.630	0.491	0.458	7%
	q9	19.401	15.833	1.313	1.058	19%
	q10	4.639	4.128	4.180	2.329	44%
	q11	7.688	5.984	7.533	4.957	34%
	q12	2.926	2.226	2.918	1.812	38%
	q13	0.138	0.137	0.146	0.152	-4%
	q14	1.740	1.710	1.698	1.654	3%
	q15	0.108	0.149	0.123	0.170	-39%
	q16	0.162	0.161	0.262	0.274	-5%
	q17	0.175	0.140	0.176	0.160	9%
	q18	0.343	0.303	0.231	0.219	5%
	q19	1.774	1.549	1.633	1.483	9%
	q20	0.371	0.403	0.454	0.452	NEG

 Table II
Running Times, with 4MB data file

	Query	Saxon-HE	Saxon-Bytecode	Saxon-EE	Saxon-EE-Bytecode	Bytecode speedup (%)
	q1	0.210	0.209	0.011	0.012	-7%
	q2	0.408	0.329	0.416	0.417	NEG
	q3	1.143	0.845	1.238	0.962	22%
	q4	1.005	0.926	1.257	0.922	27%
	q5	0.418	0.268	0.428	0.305	29%
	q6	0.371	0.362	0.369	0.306	17%
	q7	2.930	2.908	2.941	2.354	20%
	q8	293.398	207.416	1.605	1.107	31%
	q9	333.601	257.565	2.992	2.750	8%
	q10	52.349	41.815	19.142	9.514	50%
	q11	119.141	90.013	118.535	71.100	39%
	q12	37.280	26.328	37.029	20.050	46%
	q13	0.254	0.216	0.262	0.261	NEG
	q14	6.531	6.181	6.489	6.011	7%
	q15	0.325	0.294	0.382	0.434	-14%
	q16	0.536	0.453	0.597	0.627	-5%
	q17	0.632	0.501	0.700	0.537	23%
	q18	0.692	0.601	0.577	0.517	10%
	q19	4.613	4.164	4.517	3.638	19%
	q20	1.428	1.397	1.689	1.449	14%

 Table III
Running Times, with 10MB data file

	Query	Saxon-HE	Saxon-Bytecode	Saxon-EE	Saxon-EE-Bytecode	Bytecode speedup (%)
	q1	0.597	0.519	0.010	0.015	NEG
	q2	1.067	0.820	1.130	0.880	22%
	q3	3.415	2.505	3.63	2.54	30%
	q4	2.8824	2.5606	3.66	2.43	34%
	q5	1.0686	0.6742	1.08	0.76	30%
	q6	0.9080	0.8893	0.90	0.76	16%
	q7	7.487	7.403	7.55	6.03	20%
	q8	1725.13	1295.78	5.00	3.26	35%
	q9	2081.03	1534.66	10.1	8.168	19%
	q10	325.35	276.57	49.74	25.16	49%
	q11	701.79	539.59	708.45	421.38	41%
	q12	228.34	162.37	228.38	124.48	45%
	q13	0.66	0.58	0.70	0.59	16%
	q14	15.57	15.23	16.03	14.73	8%
	q15	0.77	0.72	0.94	1.05	-12%
	q16	1.28	1.11	1.50	1.39	7%
	q17	1.59	1.26	1.77	1.27	28%
	q18	1.86	1.62	1.57	1.29	18%
	q19	12.85	12.12	12.64	10.90	14%
	q20	5.32	3.64	5.92	3.74	37%

References
[Bruneton2002] E. Bruneton et al. ASM: A code
 manipulation tool to implement adaptable systems. In Proceedings Adaptable and
 extensible component systems, November 2002, Grenoble, France. http://asm.ow2.org/current/asm-eng.pdf

[Dahm1999] Dahmm, Markus. Byte Code Engineering.
 1999. doi:10.1.1.103.8299

[DataPower] WebSphere DataPower SOA Appliances.
 http://www-01.ibm.com/software/integration/datapower/

[Kay1999] Kay, Michael. SAXON 4.2 - An XSL Compiler.
 23 April 1999. http://xml.coverpages.org/saxon42Ann.html

[Kay2005] Kay, Michael. Saxon: Anatomy of an XSLT
 processor. April 2005. http://www.ibm.com/developerworks/library/x-xslt2/

[Kay2006a] Kay, Michael. Experiments with
 Compilation, 24 July 2006. http://saxonica.blogharbor.com/blog/archives/2006/7/24/2157486.html

[Kay2006b] Kay, Michael. Optimization in XSLT and
 XQuery. In Proceeding XMLPrague 2006, June 2006, Prague, Czech
 Republic. http://www.xmlprague.cz/2006/images/xmlprague2006.pdf

[Kay2006c] Kay, Michael. First compiled XMark
 results. 6 November 2006. http://saxonica.blogharbor.com/blog/_archives/2006/11/6/2477675.html

[Kay2007] Kay, Michael. Writing an XSLT Optimizer in
 XSLT. In Proceeding Extreme Markup Languages 2007, 2007, Montreal,
 Canada. http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html

[Kay2008] Kay, Michael. Ten Reasons Why Saxon XQuery
 is Fast. In the IEEE Data Engineering Bulletin, December 2008.
 http://sites.computer.org/debull/A08dec/saxonica.pdf

[Kay2009] Kay, Michael. You Pull, I’ll Push: on the
 Polarity of Pipelines Balisage: The Markup Conference 2009, Aug
 11-14, 2009, Montréal, Canada. doi:https://doi.org/10.4242/BalisageVol3.Kay01. http://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html

[Kay2010] Kay, Michael. A Streaming XSLT Processor.
 In Proceeding Balisage: The Markup Conference 2010, August 3-6, 2010. Montreal, Canada.
 doi:https://doi.org/10.4242/BalisageVol5.Kay01. http://www.balisage.net/Proceedings/vol5/html/Kay01/BalisageVol5-Kay01.html

[Snelson2011] Snelson, John. Declarative XQuery
 Rewrites for Profit or Pleasure. An optimization meta language for implementers and
 users alike. In Proceeding XMLPrague 2011, March 2011, Prague,
 Czech Republic. http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf

[XMark] XMark - XML Benchmark Project. http://www.xml-benchmark.org/

[XSLTC] XSLTC, a part of Xalan-J. The Apache
 XML Project. http://xml.apache.org/xalan-j/xsltc/index.html

[1] It would have been possible to use the same class for both purposes: This
 is a rare example of a distortion to the design caused by Saxon's need to
 divide open-source from proprietary code.

Balisage: The Markup Conference

The Effects of Bytecode Generation in XSLT and XQuery
O'Neil Delpratt
Saxonica

<oneil@saxonica.com>
Dr Delpratt is a software developer at Saxonica. Before joining Saxonica, he
 completed his post-graduate studies at the University of Leicester. His thesis
 title was 'In-memory Representations of XML documents', which coincided with a
 C++ software development of a memory efficient DOM implementation, called
 Succinct DOM.

Michael Kay
Saxonica

<mike@saxonica.com>
Michael Kay has been developing the Saxon product since 1998, initially as a
 spare-time activity at ICL and then Software AG, but since 2004 within the
 Saxonica company which he founded. He holds a Ph.D from the University of
 Cambridge where he studied under the late Maurice Wilkes, and spent 24 years
 with ICL, mainly on development of database software. He is the editor of the
 W3C XSLT specification.

Balisage: The Markup Conference

content/images/Delpratt01-002.png
800

700

600

500

Times (ms)
s
g

300

200

100

S ——

q7

a8 q9 q10
XQuery queries
mSaxonEE-JavaCodeGen DSaxon-EE

q11

wSaxon-EE-ByteCode

q12

content/images/Delpratt01-001.png
Time (ms)

File Size (MB)

50 60

—#— 5300 HE 5 Saxon-EE-Bytecode =~ - Saxon-EE

70

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

