[image: Balisage logo]Balisage: The Markup Conference

JATSPack and JATSPAN, a packaging format and infrastructure for the NLM/NISO
 Journal Archiving Tag Suite (JATS)
Chris Maloney
NCBI / NLM / NIH (Contractor)

Balisage: The Markup Conference 2011
August 2 - 5, 2011

 The Author's contribution to this Work was done as part of his official duties as
 an NIH employee and is a Work of the United States Government. Therefore, copyright
 may not be established in the United States. 17 U.S.C. § 105.
 If Publisher intends to disseminate the Work outside the U.S., Publisher may secure
 copyright to the extent authorized under the domestic laws of the relevant country,
 subject to a paid-up, nonexclusive, irrevocable worldwide license to the United
 States in such copyrighted work to reproduce, prepare derivative works, distribute
 copies to the public and perform publicly and display publicly the work, and to
 permit others to do so.

How to cite this paper
Maloney, Chris. "JATSPack and JATSPAN, a packaging format and infrastructure for the NLM/NISO
 Journal Archiving Tag Suite (JATS)." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Maloney01.

Abstract
The NISO Journal Archiving Tag Suite (JATS, formerly known as ‘the NLM DTD’) is a
 common format used in
 publication of scientific literature. JATSPack, a proposal based on the new EXPath Packaging System,
 provides a way to package schema customizations and software
 libraries associated with any of the JATS schemas, thus making it easier for developers
 to distribute JATS-related resources and easier for users to acquire, install, and use them.
 JATSPAN (the JATSPack Archive Network) is
 a website allowing users to share and collaborate on JATSPacks. A client-side command
 line tool, jatspan, interacts with the site and eases the task of
 maintaining local repositories of JATSPacks.

Balisage: The Markup Conference

 JATSPack and JATSPAN, a packaging format and infrastructure for the NLM/NISO
 Journal Archiving Tag Suite (JATS)

 Table of Contents

 	Title Page

 	Background

 	Introduction

 	Use Cases
 	A publisher installs support for a third-party JATS customization

 	A developer writes a new translator, and shares it with others

 	A publisher evaluates JATS for the first time

 	A publisher develops a new JATS customization

 	JATSPack
 	EXPath Packaging - the basis for the JATSPack format

 	Overall structure of JATSPacks

 	OASIS Catalog files

 	Examples
 	Existing JATS DTDs, and selected Relax NGs, are available as JATSPacks

 	Journal Publishing 3.0 Preview Stylesheets as a JATSPack

 	EPub Transformation

 	Accessible Tables Stylesheet

 	TaxPub

 	Customizations and Compatibility
 	TaxPub as an example of customization

 	Style checkers

 	Namespaces and Relax NG

 	More JATSPack features and recommendations
 	Documentation

 	Code libraries in XSLT, XQuery, and XProc

 	Sample files and automated tests

 	JATSPAN
 	jatspan.org web site

 	jatspan client program

 	Future possibilities

 	Conclusions

 	Acknowledgements

 	About the Author

 JATSPack and JATSPAN, a packaging format and infrastructure for the NLM/NISO
 Journal Archiving Tag Suite (JATS)

Background
 "JATS", the Journal Article Tag Suite,
 is a relatively new name given to the NLM Journal
 Archiving and Interchange Tag Suite, which is a set of XML schemas used in the
 publishing of scientific literature. These schemas originated initially to meet the needs of
 PubMed Central, for archiving and
 presenting journals and articles, and have grown to become widely used
 throughout the scientific publishing industry.
 JATS was recently released as a NISO standard for trial use. The JATS schemas are downloadable from the NLM site,
 and come in several flavors[1], which have different semantics and use cases. These
 include Archiving and Interchange (green), Journal Publishing (blue), and Article
 Authoring (pumpkin). They also come in three different formats: DTD, W3C Schema, and Relax NG.
 Most publishers who use the JATS choose to use the DTD format (Rosenblum 2010).
 Although they are still
 often referred to as the "NLM DTDs", this paper will use the terms "JATS" and "JATS schemas", to
 be clear that: A) the standard is now NISO, and is no longer specifically issued by
 the NLM; and B) it is not just DTDs, but also other schema formats. One unfortunate aspect of
 the JATS acronym is that the tag suite is not limited to Journal Articles, but can be used for
 other types of documents (books, for example).

Introduction
 This paper describes JATSPack, which is a packaging format based on the new EXPath Packaging System specification.
 JATSPack provides a well-defined way of packaging customizations and libraries associated with
 any of the JATS schema. JATSPacks are bundled packages of catalog files, schema,
 documentation, code, and sample files, all with a coherent purpose. The JATSPack format was
 primarily designed to facilitate the exchange and reuse of JATS customizations, but it could
 also be used to package and transfer code libraries — for example, XSLT transformations to
 translate JATS to/from some other format. JATSPack can be thought of as a format for
 plugin modules, with each
 plugin providing a bundle of new functionality which can be easily installed into an XML
 toolset.
Note

 JATSPack and JATSPAN are not part of the NLM/NISO JATS.
 JATSPack is a proposed specification that is completely independent of the tag suite.
 JATSPAN is a non-commercial web site with no affiliation with
 NLM or
 NISO.

 JATSPack specifies a directory structure and a package descriptor file format.
 The package descriptor file, similar to a manifest file in other packaging formats,
 describes the contents, metadata about the included resources, and the dependencies of the
 pack.
 Establishing this format will facilitate the automatic installation and
 maintenance of libraries and of schema extensions, which should allow easier reuse and
 interchange of the schema themselves. This, in turn, should allow for easier interchange
 of JATS document instances.

 JATSPAN, the JATSPack Archive Network,
 is a website similar in
 concept to the very successful CPAN
 (Comprehensive Perl Archive
 Network). Its main purpose is to allow users to share and collaborate on JATSPacks.
 Authors can upload their customizations or libraries, and can search for and
 download JATSPacks produced by
 others. Every JATSPack can be downloaded in one of two formats. The contents are
 exactly the same, but the download files differ in their filename extension: a .xar file,
 which is the extension used by the EXPath Packaging System, or as a .zip file, so that the
 package can be used stand-alone, without any special infrastructure.

 Providing a centralized repository like this will make it easier to discover
 packs that might be relevant to one's needs, as well as making it easier to install and manage
 them on the local system.
 Associated with JATSPAN is a command-line client, jatspan (lowercase),
 which runs on a user's machine and
 maintains a local on-disk repository. jatspan has a
 simple interface and lets users look up and install packages from JATSPAN. One benefit
 to this architecture is that dependencies between packs can be resolved automatically. For
 example, if users want to install packs that depend on others, they don't have to
 figure out where to go to get these, and then, perhaps, be frustrated by different
 directory structures and installation requirements. Instead, the dependency packs are
 found, downloaded, and installed automatically.
 The software and the baseline set of data files for these are being developed in the
 "jatspan" open source project on
 SourceForge.

Use Cases
 The following are a few examples of use cases that these specifications are designed to
 address.
A publisher installs support for a third-party JATS customization
 Suppose a publisher wants to integrate support for document instances that conform to
 some customization of JATS that was not developed in-house. Very often, document instances,
 if they even have a document type declaration (doctype decl) at all,
 do not include an absolute
 system identifier (a URI) to reference the DTD.
 So, at a minimum, either an OASIS catalog entry must be
 added to a local catalog file to cross reference the formal public identifier
 (FPI) to the DTD served somewhere on the Internet, or the DTD
 must be downloaded and installed on the local filesystem, and the XML processors be made
 aware of it. This is not especially difficult, but does require a certain level of expertise
 and coordination of system resources.
 If the customization were packaged in the JATSPack format, then the
 necessary setup would be more automated. It would be as easy as identifying the desired
 pack and using the jatspan utility to install it in the local repository.
 The jatspan
 utility automatically updates the local OASIS catalog file with a <nextCatalog>
 entry to
 point to the new JATSPack. So any tool that is able to use
 OASIS catalogs to resolve
 identifiers would automatically get access to the new schema files without any additional
 work.

 The important point here is that, because of the way the JATSPack format incorporates
 OASIS catalog files, this system can be used with any XML processing tool, not just ones
 that are JATSPack-aware. This is tested and works right now for both
 the oXygen XML editor and the
 libxml2 library.

 This use case is described in more detail in the TaxPub
 example, below.

A developer writes a new translator, and shares it with others
 In this use-case, suppose that a developer that has written a
 transformation from JATS into a new file format. It could be someone who did it for fun or,
 perhaps, a company has a vested interest in promoting the file format.
 For whatever reason, let's say that they want to share it with others and try to
 get others to adopt it and integrate it into their systems.

 Right now, there is no standard way to
 present this transformation library to the world. Typically, the library would be presented
 for download on the developer's website, as a Zip file, with a README file that includes
 instructions for unpacking and installation. The actual details of packaging the
 library, finding a place to put it, and letting others know about it, involve a lot of
 detailed decisions. Each individual step is not difficult, but taken together, they
 present a barrier to this kind of sharing of code libraries.

 All this is ripe for standardization. Indeed, this is the main raison d'etre
 for the EXPath Packaging specification.
 The transformation languages in which these
 are usually written, XSLT, XQuery, and XProc, are mature enough that they can be written in
 a portable, system-independent way.
 The JATSPack format is specified and JATSPAN provides many examples, which reduces the
 burden of making decisions about how exactly to package the bundle.
 JATSPAN provides a publically-accessible place to upload packages, so developers
 don't have to find places on their own websites for them.
 If a library were created as a JATSPack, and were put
 on JATSPAN, it would be easier for potential users to discover and install.
 If this
 library had dependencies on others, then those others would not have to be bundled with
 this package. The
 jatspan client program would take care of resolving these dependencies automatically.
 This use case is discussed in more detail in the
 EPub Transforms example, below.

A publisher evaluates JATS for the first time

 A publisher or a developer who is introduced to the JATS for the first time
 can be a bit overwhelmed. To be sure, JATS is extremely well documented,
 as one can readily see by browsing the
 NLM web site.
 Yet the fact that JATS have been in use for a long time, and that there are
 now many different branches (flavors) and versions, can make them seem,
 to someone who is not familiar with them, complicated.

 Someone who wants to evaluate the suitability of JATS for their particular
 needs might want to be able to quickly set up a system that can process
 any JATS instance document, regardless of what flavor or version that instance
 document conforms to. This is difficult to do, because each flavor and each
 version of the JATS is distributed as a separate, flattened Zip file which
 includes the bundled version of all of the files needed for that particular
 set. For example, the books
 2.3 DTD Zip file includes all of the
 books-specific modules, as well as all of the shared modules, and even
 the xhtml and mathml2 library modules.

 For each flavor/version of interest, it is necessary to download and extract
 the Zip file, and then manually tweak the provided OASIS catalog file for
 that set, and then point your XML tool set to use that catalog
 file.
 Because there are so many different tag set bundles, it would be quite
 time-consuming to configure a system that is able to use them all.
 This is not seen as a problem, because this is not the primary
 use-case that the NLM site is designed to serve.
 They provide stand-alone bundles specifically so that a user who
 is interested in only, for example, Publishing 2.3, can download that version
 and not be confused by all of the others (Jeff Beck, personal communication,
 3/22/2011).

 But if someone is interested in configuring a system that can
 understand and process any JATS instance document; either for the purposes
 of evaluating JATS, or so that they can exchange documents with other
 organizations, it would be quite difficult.

 To address this use case, and to provide a basis for the JATSPack
 architecture, I have repackaged all of the JATS DTD modules as JATSPacks,
 put them into a single bundle, and made the
 repackaged versions available on JATSPAN.
 This base bundle is (optionally) installed automatically when you first
 run the jatspan client utility, as part of its setting up the
 JATSPack repository.
 See
 Existing JATS DTDs are available as JATSPacks below for details.

A publisher develops a new JATS customization
 Let's say that a publisher has a need to customize the JATS, in order to include
 domain-specific data within the source documents in their database. This is actually the
 primary use-case that JATSPack was designed to address, and this is the complement of
 the first use case described above. That use case
 described customizations from the user's perspective, and this use case describes them
 from the author's perspective.

 There are a number of concerns that
 tend to make people reluctant to define customizations. Among the most prominent of these
 is that a customization to the JATS might make their
 documents less portable. This use case is discussed in detail in the
 Customizations and Compatibility section, below.

JATSPack
EXPath Packaging - the basis for the JATSPack format
 JATSPack is an extension of the
 EXPath
 Packaging System (hereinafter EXPath-pkg, written by Florent Georges).
 EXPath-pkg is a simple, concise format for the packaging of files of various core
 XML technologies, including XML Schema, Relax NG, Schematron, NVDL, XSLT, XQuery, and
 XProc (Georges 2010).
 It also provides a flexible extension mechanism which is exploited by JATSPack to define
 additional file types, and other requirements specific to its needs.
 As defined by EXPath-pkg, a package is a set of files that fulfill a common purpose.
 Each package has a globally unique name (which is a URI) and an abbreviated name (hereafter
 referred to as abbrev), an NCName.
 Abbrev values are case-insensitive, and, by convention,
 all lowercase. A component is one file within a package, and can be one of several different
 types.
 A package includes a package descriptor (similar to a JAR manifest file) which lists
 the package contents and top-level metadata about the package. This metadata includes the
 URI name, abbrev, version number, and a list of dependencies.
 Finally, all the files of a
 package are arranged in a specified directory structure, and used to create a Zip file, which
 by convention is given a name based on the abbrev, the version number,
 and a ".xar" extension.
 EXPath-pkg is an emerging standard which is already supported by several tools,
 including the eXist and Qizx XML databases, the Saxon XSLT and XQuery processor and the
 Calabash XProc processor. (Support in Saxon and Calabash is via third-party plugins.) It is
 also implemented as an open-source Java library, hosted as the
 expath-pkg project
 on Google Code.
 The goal of JATSPack is to be a forward-compatible extension of EXPath-pkg[2],
 meaning that any system that
 is capable of deploying EXPath packages will be able to deploy JATSPacks (although
 not all of the features of JATSPacks would be fully exploited). Note that, in fact, both
 EXPath packages and JATSPacks are forward-compatible extensions of
 simple Zip files, meaning that
 JATSPacks could be used by anyone, without any special infrastructure at all, just by
 unzipping them onto the local filesystem.
 JATSPack extends EXPath-pkg as follows.
 	
 JATSPack-specific extensions to the package
 descriptor file. This will include the ability to record the author,
 release date, and other
 metadata. See Overall structure of
 JATSPacks, below, for more information about this.

	
 Addition of the OASIS catalog file type.
 See OASIS Catalog files, below.

	
 Addition of documentation file types. See
 Documentation,
 below.

	
 Sample instances documents. If the pack includes a schema
 customization, then it should include a set of sample documents.
 See Sample files and automated tests,
 below.

	
 More specific directory
 structure. EXPath-pkg is very loose about the directory structure of
 files within the main
 package directory. JATSPack specifies this structure more explicitly.

	
 Requirement for two-part abbrevs[3]. Currently, EXPath-pkg abbrevs
 are simple NCNames. In JATSPack, they are two NCNames separated by a slash.
 For example, "nlmjats/archiving".

 Another source of
 inspiration for the JATSPack format was the
 One
 Document Does it all (ODD) format of TEI.
 The ODD has very clean structure, which encourages literate programming (documentation
 and code in the same source document), examples of usage, clear separation of concerns, and
 best of all, encapsulation of all the relevant data into a single document with a
 standardized structure (Lou Burnard et al 2005).
 The JATSPack format strives to be similar to ODD, and could even be
 thought of as encapsulating the library or customization in one document,
 if one expands the
 definition of "document" to include "Zip file" (which is quite reasonable).

Overall structure of JATSPacks[4]
 As already mentioned, every JATSPack must have an
 abbrev and a version number. In JATSPack, in order
 to help ensure that the abbreviated names will be unique, they are composed of
 two parts, each of which is an NCName (by convention, all lowercase, and the underscore
 character should not be used in either part).
 These are separated by a forward slash in the package descriptor file, for example,
 "nlmjats/archiving".

 The name of the package file is specified to be
 abbrev-ver.xar.
 When the two part abbrev is used in the package
 filename, the forward slash is translated into an underscore. For example,
 "nlmjats_archiving-1.0.xar".
 The actual low-level format of the file is that of a
 Zip file, and the directory structure within that archive is as shown here[5].
[root]
 abbrev-1/
 abbrev-2/
 README.txt (optional)
 expath-pkg.xml
 catalog.xml
 dtd/
 rng/
 rnc/
 xsd/
 xslt/
 xquery/
 xproc/
 doc/
 samples/
 resources/
 test/
 At the top two levels are directories corresponding to the two parts of the
 abbrev.
 Within the package contents directory are the EXPath-pkg descriptor file expath-pkg.xml,
 and optionally a README.txt file. Also in this
 directory are an OASIS catalog file and one
 subdirectory for each of the main file types of the package.
 The expath-pkg.xml file format is described in Georges 2010. Extensions to the file format, as
 allowed by the extension mechanism, allow us to include metadata specific to JATSPacks.
 The 'jp' namespace prefix is used for this.

The following is an example of what the package descriptor file would look like
 for a hypothetical customization of
 the base Archiving and Interchange Tag Set, version 3.0, designed to add elements
 and attributes to describe filesystems[6].
<package xmlns="http://expath.org/ns/pkg"
 xmlns:jp='http://jatspack.org/ns/jatspacks'
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 abbrev='sys/archiving-3.0-filesystem'
 name='http://jatspan.org/jatspacks/sys/archiving-3.0-filesystem'
 version='0.1'
 spec='1.0'
 jp:spec='0.1'>

 <title>Filesystem customization of JATS Archiving 3.0</title>
 <dependency package='http://jatspan.org/jatspacks/nlmjats/archiving'
 semver='3.0'/>

 <rdf:Description>
 <dc:creator>Chris Maloney</dc:contributor>
 <dc:date>2011-04-04</dc:date>
 <dc:description>
 This customization of the Archiving and Interchange Tag Set, version 3.0,
 adds filesystem-related elements and attributes, for describing computer
 filesystems within instance documents.
 </dc:description>
 <dc:language>en</dc:language>
 <dc:rights>This work is in the public domain.</dc:rights>
 </rdf:Description>

 <!-- Package contents. -->
 <jp:catalog>
 <file>catalog.xml</file>
 </jp:catalog>
 <xslt>
 <import-uri>http://jatspan.org/ns/jatspacks/filesystem/to-archiving.xsl</import-uri>
 <file>xslt/to-archiving.xsl</file>
 </xslt>
</package>
 The top-level <package> element includes
 attributes that give the abbrev,
 the package name (a URI), and the version of this package.
 The @spec attribute indicates the version of EXPath-pkg
 that this package descriptor conforms to. The <title> element
 gives a human-readable title of the package.
 The @jp:spec attribute is a JATSPack extension to the
 EXPath-pkg package file format. This attribute is required for all JATSPacks,
 and its value gives the version of the JATSPack specification that this
 package conforms to.

 Another JATSPack extension is the addition of the
 <rdf:Description> metadata section, which uses the XML
 vocabulary defined by the Dublin Core
 Metadata Initiative (DCMI) to allow authors to describe the package
 in more detail.

 EXPath-pkg allows zero-to-many <dependency> elements,
 each of which indicates a
 dependency of this package. In this example, we see that the
 filesystem package depends on
 the JATS Archiving 3.0 base JATSPack.
 The <jp:catalog> element specifies the location of the
 OASIS catalog file that
 accompanies this package. Finally, the <xslt> element
 specifies the location of an
 XSLT module, and the URI which is used to import it from other modules.

OASIS Catalog files
 Note that there are no individual entries in the package descriptor for the top-level
 DTD files of this filesystem
 customization. That's because these DTD modules are specified in the OASIS catalog
 file, and,
 following the principle of DRY,
 are not duplicated in the
 descriptor. Resolution of public identifiers (FPIs) and system identifiers (URIs) to
 DTD modules within
 this package is delegated to the catalog file mechanism.
 An elided view of the OASIS catalog file accompanying this package is the following.
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer='public'>
 <public publicId="-//JATSPAN//DTD Filesystem Archiving 0.1//EN"
 uri="dtd/filesystem.dtd"/>
 ...
</catalog>
 This catalog file uses the @uri attribute with a relative URI value
 to specify the location of the main DTD included
 with this package. An important point here is that there is nothing special about this
 catalog file. It is usable by any system that can read OASIS catalog files, and does not
 depend on those systems' understanding the JATSPack format.

Examples
Existing JATS DTDs, and selected Relax NGs, are available as JATSPacks
 The existing set of 34 complete DTDs of the JATS, as downloadable from the NLM
 archive_dtd and
 jats FTP sites, has been
 repackaged as JATSPacks. In addition, the latest NISO trial versions of the
 Relax NG schemas have been included in those JATSPacks. (The older NLM JATS versions
 of the JATSPacks only include the DTDs.) These can all be downloaded
 from JATSPAN as a single bundle.
 The DTDs include all seven flavors, and
 up to seven versions of each, going all the way back to version 1.0, and all the
 way up to the recently released NISO trial versions.

 As described in the use case "A publisher evaluates JATS for the first time"
 above, each DTD version on the NLM FTP site is downloadable as a single Zip file which
 includes all of the
 files required for that version, including all the core files that the version
 depends on. As mentioned, this is very suitable for, for example,
 a publisher or author who is interested in configuring a system
 capable of dealing with a specific flavor and version (for example, Article
 Authoring 3.0) of JATS.
 Unfortunately, however, this method of distribution makes it difficult to implement a
 single system that's capable of processing instance documents that conform to
 any of the many different versions of JATS.

 Because each Zip file on the FTP site is a complete set of all of the files needed by
 an instance of the DTD, among the complete set of all flavors and versions, there is a lot
 of duplication of files.
 This leads to some ambiguity when many of these sets coexist on the
 same system at the same time. If the same public identifier is used in multiple catalog
 files on the
 system, and point to document instances which are not identical,
 it is difficult for someone
 configuring the system to sort out whether the differences are substantive, and if so,
 which is the canonical instance.
 The JATSPack base bundle eliminates this redundancy, factors shared modules out into a
 core package, and cleans up a few inconsistencies.
 The result is a well-defined directory
 structure, with well documented dependencies. Each individual package comes with an OASIS
 catalog file that only has entries for the file in that particular module. A top-level
 catalog file is provided that uses the <nextCatalog>
 element to include all of the others.
 These JATSPack versions of the schema are 100% compatible with those on the NLM site, and
 because of this, the JATSPack versions of the NISO DTDs are fully compliant implementations of
 the NISO standard[7].

 The Relax NG Zip files downloadable from the NLM site do not include OASIS catalog files,
 and so to include these files in the JATSPacks, it was necessary to create entries
 for them. This is discussed in more
 detail in Namespaces and Relax NG, below.

Journal Publishing 3.0 Preview Stylesheets as a JATSPack
 These are a set of preview stylesheets for the
 Publishing tag set, version 3.0, that are available for download from the
 NLM website.
 They are authored by Wendell Piez, and are described very nicely in
 Piez 2010, from the
 Proceedings of
 JATS-Con, 2010.
 These were repackaged into the JATSPack format. This was very straightforward, and
 involved the following steps:
	
 Assigning an abbrev:
 "html/publishing-3.0-preview"; a name, which is a URI:
 "http://jatspan.org/jatspacks/html/publishing-3.0-preview", and a version: "1.0".

	
 Creating the requisite directory structure.

	
 Moving files around. The files in this library comprise 14
 XSLT files, nine files of documentation, a CSS resource, and a readme.txt file.

	
 Reimplementation of all of the shell stylesheets as individual steps defined within a single
 XProc pipeline. At the top level of the preview stylesheets are seven "shell" XSLT files,
 which are basically pipelines. One of the seven should be used depending on choices of
 citation style, desired output format, and content filtering (print only). Unfortunately,
 these shell stylesheets use Saxon-specific extensions and depend on one of the non-free
 versions of Saxon. It makes sense to implement these as an XProc pipeline, with three
 parameters for the choices described above.

	
 Writing the package descriptor file. This
 involved assigning absolute import URIs to the outward-facing XProc and XSLT modules.

	
 Zipping it into the file html_publishing-3.0-preview-1.0.xar, and uploading it to JATSPAN.

 By itself, repackaging this library in this way could
 not be considered an improvement over the current deployment of this tool,
 as a Zip file.
 However, there are a few advantages. Since this package is on JATSPAN, it can be searched
 for and discovered on JATSPAN. The documentation can be browsed by anyone from the JATSPAN
 site, without downloading and extracting the package. Anyone using the jatspan client
 utility could install it automatically with the following simple command.
 jatspan install html/publishing-3.0-preview

 Anyone with an EXPath-pkg enabled system would have instant
 programmatic access to the XProc stylesheets and XSLT modules, through their import URIs.
 Normally this would require some integration effort, but with JATSPack, it is automatic.

 Furthermore, there are no disadvantages to packaging this way. The JATSPAN site allows
 anyone to download this package as a .zip file (exactly the same file as the .xar, but with
 a different extension), which can then be unzipped on the filesystem and used just as easily
 as before.
 Another advantage is that other JATSPacks, written by other authors, could
 declare a dependency on this package. This would simplify the installation and
 integration of those later packages. And this point makes a good segue to the next example.

EPub Transformation
 At the JATS-Con last year, Laura Kelly gave
 an excellent presentation
 on the EPUB format and a set of
 transformations for converting JATS documents into EPUB (Kelly 2010).

 She wrote the transformations in standards-conforming, system independent, XSLT 2.0 and
 XProc. The effort to repackage this as a JATSPack was quite minimal, and involved basically
 the same steps as above. The abbrev assigned to this JATSPack is
 "epub/jats-to-epub".
 This set of transformations uses the preview stylesheets described above. The original
 Zip file distribution of this library includes a copy of the XSLT files from the preview
 stylesheets that are used.
 In the JATSPack, those have been removed, and replaced with a
 dependency declaration in the package descriptor file. The advantage of this is
 that users can avoid having two copies of the same library (the preview stylesheets)
 on their system at the same time. In this simple example, it would not be
 a big problem. But the problem of multiple copies of the same resources
 can get severe as the number of packages and libraries increases.

Accessible Tables Stylesheet
 The next example is not a JATSPack at all; it is an EXPath-pkg.
 My colleague Martin Latterner wrote a very nice XSLT stylesheet which takes as
 input an XHTML table. The stylesheet computes, for each table cell, which horizontal and
 vertical headers correspond to that cell. The stylesheet then adds classes to the cells and
 headers to explicitly encode the associations.
 This is necessary so as to properly code tables for compliance with Section 508 of the
 U.S. Rehabilitation Act of 1973, providing for accessibility to the disabled, in particular
 the visually impaired. With tables marked up like this, screen readers can assist visually
 impaired users by reading, for any given table cell, the headers associated with that cell.
 Figure 1 illustrates the result of this transformation.

Figure 1: Accessible Table Illustration
[image:]
Example of a table marked up with accessibility classes.
 The data cell pointed to by the mouse pointer (the blue cell) has several header cells
 associated with it. Those header cells are highlighted in red.

 Given that tables can have very complicated structures, with multiple
 @colspan and
 @rowspan cells in different places, this is not a trivial algorithm.

 In addition to the XSLT, Martin also wrote a JavaScript module for testing. The
 JavaScript reacts to mouseover events, and causes the current cell and its associated
 header cells to be highlighted with a different background color, as shown in
 Figure 1.

 This stylesheet provides a very specific bit of functionality,
 and is something that other users could benefit from, so it is suitable for
 packaging and putting on a public repository.
 However, since it operates on XHTML tables, and is not JATS specific, it is more
 appropriate to package it as an EXPath-pkg and to put it on CXAN
 (the Comprehensive XML Archive Network),
 so that is what we did.
 The reason this is included as an example in this paper is to illustrate the
 important fact that JATSPack systems are backwards-compatible with EXPath-pkg.
 Any system set up to use JATSPacks will also be able to install and use any of the
 EXPath-pkgs on CXAN.
 To use this particular accessible tables stylesheet, one would install the EXPath-pkg,
 and then simply import the stylesheet using the import URI defined in the package
 descriptor. It could be wrapped in an XProc step, or the template could be invoked directly
 from another stylesheet.

TaxPub
 TaxPub is a customization of JATS in DTD form, which was described
 in a paper presented at last year's JATS-Con (Catapano 2010).
 The extension
 allows for the encoding of literature of biological taxonomy, and in particular, taxonomy
 treatments, which are blocks of well-structured markup with very specific semantics. It is
 maintained as
 an
 open-source project on SourceForge, with
 documentation on the
 project home page.
 The TaxPub customization comprises a set of DTD files, which defines a set of
 new element names with a "tp:" pseudo-namespace-prefix (e.g. "tp:taxon-treatment").
 This has been repackaged as a JATSPack and put on the JATSPAN website. The following is
 a summary of the steps involved:

 	
 Assigned a unique abbrev: "taxpub/schema",
 and version: "0.1".

	 Created the specified directory structure:
 taxpub/
 schema/
 0.1/
 dtd/
 doc/
 samples/

	 Moved the TaxPub DTD-specific .dtd and .ent files into the dtd directory. There
 are five of these.

	 Removed the no-namespace-prefix versions of the DTD. These have been deprecated.

	 Fixed the relative system identifiers in each of the TaxPub modules so that they
 reflect the fixed directory structure of a JATSPack installation. This is similar to
 what was done for the base JATS modules. It is not strictly necessary, but has the
 benefit that the same modules can be used on systems that don't support OASIS catalog
 files.

	 Fixed the DOCTYPE declarations of the sample files. As downloaded, the included
 sample files' DOCTYPE declarations did not use formal public identifiers (FPIs),
 and used only relative system
 identifiers. For example:
 <!DOCTYPE article SYSTEM "../tax-treatment-NS0.dtd">

 These were changed to use FPIs, and the relative system identifier was changed to
 reflect the new directory structure. For example:
 <!DOCTYPE book PUBLIC
 "-//TaxonX//DTD Taxonomic Treatment Publishing DTD v0 20100105//EN"
 "../dtd/tax-treatment-NS0.dtd">

 This allows these sample files to be used in the automated tests. They also now serve
 as examples of the proper DOCTYPE declaration to use for instance documents of these
 types. If it is desired that documents of this type be easily exchangeable between
 systems, then it is crucial that document instances be properly self-identifying.

	 Created a catalog.xml file in the base "taxpub" directory. This cross references
 each of the defined FPIs in this customization to it's correct module in the
 package. For example:
 <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer='public'>
 <public publicId="-//TaxonX//DTD Taxonomic Treatment Publishing DTD v0 20100105//EN"
 uri="dtd/tax-treatment-NS0.dtd"/>
 ...
</catalog

	 Moved the documentation into the docs directory.

	 Created a new README.txt file, adapted from the existing one, and adding a bit of
 information about the new structure.

	 Zipped the result, gave it the name
 taxpub_schema-0.1.xar, and then uploaded it to the
 JATSPAN website.

 To see the advantages of this packaging format, let's consider a very specific
 use-case. Suppose that I am a user who works with the oXygen XML editor, and
 I find that I have a need to read, edit and validate TaxPub files.
 If TaxPub were not packaged in a JATSPack, the process of adding support to oXygen
 would not be difficult, but would require a little bit of expertise and some time. I would
 have to download the Zip file, unpack it, and read the README file to see if there are any
 specific instructions I needed to worry about. Then I would find a place for it to reside on
 my filesystem and move the files there. The tricky bit is then to set up oXygen to
 understand the public identifer, and have it retrieve the correct DTD. I could either add an entry to my
 own personal catalog file (if I have one), add it to oXygen's master catalog file,
 or set up a "document type association" inside oXygen.

 Now let's suppose instead that I will use the JATSPack version of TaxPub.
 Of course, there is a bit of
 up-front configuration required, to set up a JATSPAN repository and point
 oXygen to it. But that is a one-time operation, which then allows me instant access
 to any number of JATSPacks. Also, this one-time setup is
 actually quite trivial, and easier than installing the support for the single TaxPub
 document type as described above. The setup involves two steps:
 	 Installing the JATSPAN software, and running it for the first time.
 This establishes a JATSPAN repository on the local filesystem.

	 Telling oXygen where to find the master catalog file of the JATSPAN repository,
 by adding an entry in the "XML Catalog" preferences box. Note that
 any tool that is
 able to use OASIS catalog files could be pointed to this JATSPAN master catalog
 file, and would have the automatic ability to reference all of the schema files
 of all of the installed JATSPacks.

 After the initial setup is done, to install support for TaxPub as a JATSPack,
 I need to enter one command:
 jatspan install taxpub/schema

 That is it — everything else is done automatically. When the TaxPub JATSPack is
 downloaded, a <nextCatalog> entry is added to the JATSPAN repository master catalog
 file, so oXygen instantly resolves any public identifiers defined by TaxPub. After entering the above
 command, I can validate and process TaxPub documents in oXygen.

Customizations and Compatibility
 The original motivation for developing
 the JATSPack specification was to devise a means to package schema
 customizations together with software libraries that allow users to transform documents to and
 from the new schema. This is still, perhaps, the primary use-case.
 There is an ongoing sea change in the way that scientific research is published and
 presented. The lines between traditional definitions of media types, such as journal articles,
 books, wikis, blog posts, presentations, etc., are continually getting blurred
 (Owens 2010). This implies
 that the number of different types of content included with scientific publications is growing
 rapidly. Often it is most appropriate to include disparate types of data with the original
 source documents, and that means either customizing the JATS schema, or providing some other
 means of including it, such as (for example) using the flexible
 <named-content>
 elements, and adding appropriate layer validation.
 The TaxPub example illustrates that the JATSPack/JATSPAN infrastructure can facilitate
 interchange of documents and data between organizations. A common theme overheard at last
 year's JATS-Con was that often, individual publishers' versions of their JATS DTDs
 are not interchangeable. In other words, PMC's version of JATS is not the same as
 Highwire's, even if they nominally use the same flavor and version of the tag
 suite. With a small amount of up-front work to resolve discrepancies and repackage
 customizations, this interchange problem can be helped, if not solved.
 The TaxPub example also serves to illustrate that the cost of doing compatible
 customizations need not be high. This can lead to easier reuse of existing XML
 vocabularies. The XML
 landscape is vast, and vocabularies have been defined for wide array of specialized
 topic domains — biological taxonomy is just one example.
 As mentioned previously, and as TaxPub illustrates, often it is very
 appropriate and beneficial to mix markup from other vocabularies directly into
 the instance documents. If the customization is deployed as a JATSPack, then one
 could make the customization without having to worry quite so much about breaking
 compatibility with existing systems, and the ability to exchange documents.
 But often one wants to do more with a document than just validate it, and that
 is where the true power of EXPath-pkg, and by extension JATSPack, lies.
 Customizations can also be packaged
 with software libraries in XProc, XQuery, and XSLT, that allow users to transform documents to
 and from the new schema. This would facilitate making forwards-compatible schema
 customizations.

 First, let's review what is meant by backwards and forwards compatibility, in the
 context of document schemas. For this, I highly recommend
 Orchard 2004. In a nutshell, backwards compatibility means that existing
 (version A) documents can be used by new XML processing systems, and forwards
 compatibility means that newer documents (version B) can be
 used by existing processing systems.

 A very successful model of forwards compatibility, that we are
 all familiar with, is the "must ignore" pattern of extensibility of HTML.
 This stipulates that HTML renderers must ignore any tags that they don't understand. In
 effect, this is a forwards-compatibility extension substitution rule. It allows future
 designers to customize the HTML schema, adding elements and attributes, while being able to
 predict how document instances in the new schema will be processed by old systems. The "must
 ignore" rule is one substitution rule, but it is very limited. If designers could include a
 set of transformations with the new schema, then those designers could define their own
 substitution rules.
TaxPub as an example of customization
 TaxPub serves as a good example of this type of customization. It includes many new
 elements that deal specifically with taxonomy treatments, and thus introduces
 the problem of forwards compatibility:

 TaxPub, as an
 extension, provides semantics beyond what is available in the base DTD through creating
 newly named elements - thus lending itself to domain-specific application. However, TaxPub
 instances may not be easily processed by applications already familiar with the Publishing
 DTD.

— Catapano 2010

 This problem could be addressed by writing a set of XSLT stylesheets and including them
 with the TaxPub JATSPack. These stylesheets would transform the new elements into
 plain-old-JATS. This would make it easier for third-party systems to install meaningful and
 useful support for TaxPub documents. Unlike the "must ignore" rule, the substitution rules
 written in XSLT could provide for richer markup in the result document, displaying the new
 content in visually distinctive ways, and perhaps even preserving the semantic content by
 means of special attribute keywords (for example).
 Designing a customization that is both forwards and backwards compatible, and
 compatible with other already-existing schema, is not trivial.
 With the JATSPack format, and a set of examples and detailed how-to
 instructions, some of the work required can be made
 easier.

Style checkers
 The definition of "customization" can be
 broad. A customization does not necessarily include a new DTD (or Relax NG or XSD schema).
 Customizations are often implemented as the addition of layered validation implemented
 in, for example, Schematron, that imposes a set of style rules that are more specific to a
 particular organization's use of the JATS. Sometimes these validation rules are coded
 simply as XSLT stylesheets that are applied to instance documents, and return a predefined
 report format.
 According to Beck 2010, the results of a survey of publishers indicated that,
 "Half of the respondents said that they impose rules other than schema validation on their
 content."
 Since JATSPack supports Schematron, XSLT, and other formats, there is no reason that
 these sorts of style checkers couldn't also be packaged as JATSPacks and made available
 to third parties. Since JATSPack/JATSPAN imposes rules on versioning and the uniqueness
 of identifiers, it can help to safeguard against incompatibilities that can result
 from ad-hoc sharing of these sorts of libraries.

Namespaces and Relax NG
 JATSPack can also ease the migration away from DTDs and
 towards Relax NG for JATS schema. There are several reasons why this
 is desirable. DTDs do not properly support XML namespaces, and so hamper
 interoperability. Using namespaces will allow third parties to create customizations without
 having to worry so much about name clashes that can result from mixing vocabularies.

 "The major design point of XML namespaces is to allow decentralized extensions."
— Orchard 2004

 That decentralized customizations and extensions occur is a fact.
 I don't think anyone would argue that
 decentralized customizations is a bad thing, or should be prohibited (even
 if that were possible).
 Yet, an inherent problem is that
 they can be difficult to manage and control.
 The JATSPAN infrastructure is designed to adapt to
 this decentralization, while at the same time providing specifications and imposing
 requirements, such that the proliferation of new schema doesn't become a problem.
 It does this by requiring that the formal public identifiers (FPIs) and URIs used to identify resources are
 well defined and unique, and also by virtue of its fixed directory structure, ensuring
 that separate individual JATSPacks fit together on the same system without clashing.

 Invoking the TaxPub customization as an example again, in the paper given at JATS-Con
 last year, the author describes some of the inherent difficulty of working with DTDs:

 The lack of robust namespace support in DTD removed the option of importing external
 schemas into TaxPub. This would make synchronization less onerous, for example, were it
 decided to include Darwin Core elements in TaxPub. It also would enable the inclusion of XML
 data in TaxPub instances themselves rather than on linking to them as external documents.

— Catapano 2010

 There are other reasons for recommending the use of Relax NG over DTDs, and an
 entire paper could be written on just that topic.

 However, there are two problems that must be overcome before Relax NG schemas
 can be used easily for JATS documents.
 The first is the lack of URI names for these
 Relax NG resources, and the second is that there is no standard way for documents to
 identify the Relax NG schema to which they conform.

 The first problem, the lack of URI names, is inherent in the current JATS
 infrastructure. Relax NG schema are identified by URIs,
 and not FPIs. In other words, URIs are used as the names of
 these resources, and there is no other name. That this is a problem was
 eloquently described by Norman Walsh in his blog post from 2004 titled,
 "On the Web, My Name
 is 266 North Pleasant Street" (Walsh 2004). The current
 recommendations
 of the W3C lead inexorably to the choice that new resources, such
 as Relax NG files, should be identified by absolute, canonical, persistent,
 and stable HTTP URIs.

 NLM has declined to issue such URIs for these resources. They are worried about
 the potential for excessive server traffic driven by automated tools that
 process these URIs, similar to the
 experience of the W3C.

 Without these URI identifiers, the Relax NG schema cannot be referenced in the
 instance documents in a clear, unambiguous way. And as mentioned before,
 crucial to interchange of document instances is that they identify themselves.

 With the JATSPack/JATSPAN architecture, I have attempted to address this problem
 in the following ways.

	
 First of all, JATSPack, since it is based on EXPath-pkg, supports the
 inclusion of Relax NG XML and compact-notation files. These should reside
 in the "rng" and "rnc" subdirectories of the package root, respectively.

	
 Every JATSPack is assigned a name, which is an absolute URI. This includes
 the base JATS packages. For these, I assigned HTTP URI names that use the
 "jatspan.org" domain. For example, the JATSPack implementation of the NISO
 trial version of the Article Authoring schema, version 0.4, has the name
 "http://jatspan.org/jatspacks/nisojats/articleauthoring/0.4".

	
 The OASIS catalog files included with each JATSPack includes a
 <rewriteURI> entry which allows the identification of
 any resource within the JATSPack by using an absolute URI starting with
 the URI of the JATSPack.

	
 This provides a de facto canonical absolute URI
 name for each of these resources.

	
 JATSPAN may serve these resources from these absolute URIs, but may not.
 That decision is TBD.

	
 Regardless, that URI can be safely used to identify these resources
 within instance documents.

 An example should make this clear. The NISO-JATS
 0.4 version of the Article Authoring Relax NG schema is
 downloadable from the NLM FTP
 site. The Zip file does not include an OASIS catalog file. The schema
 resource itself does not have a canonical URI name.

 While repackaging this as a JATSPack, I assigned a URI name to this package
 of "http://jatspan.org/jatspacks/nisojats/articleauthoring/0.4". I added the following
 <rewriteURI> entry to the OASIS catalog
 file for this package.
 <rewriteURI uriStartString="http://jatspan.org/jatspacks/nisojats/articleauthoring/0.4/"
 rewritePrefix="/"/>

 In effect, this assigns a URI name to the master Relax NG schema
 file of this package, and that name is
 "http://jatspan.org/jatspacks/nisojats/articleauthoring/0.4/rng/JATS-articleauthoring0.rng".
 Please feel free to use this name in any context, to refer to this resource.
 As mentioned above, JATSPAN might serve this resource at that URL, but might not;
 it is not guaranteed.

 The second problem is that there is no standard, agreed upon way for instance
 documents to identify themselves as conforming to a particular Relax NG
 schema. The philosophy behind this fact is that schema validation should
 be a separate process that is not specified by the instance documents. In
 other words, the idea is that the system, and not the document, should
 decide what schema to apply, and that for a given document, any of a number
 of schema might be applied, depending on the context.

 This is a nice theory, but in practice it has impeded the adoption of
 Relax NG in this particular domain.

 The oXygen XML editor defines a processing instruction (PI) that can be used
 within an instance document. For example, given the URI described above,
 an instance documents could now use this PI to identify itself as a document
 conforming to this Relax NG schema:
 <?oxygen RNGSchema="http://jatspan.org/jatspacks/niso-authoring/0.4/rng/JATS-articleauthoring0.rng"
 type="xml"?>

 This is very processor-specific, and therefore is not a good general solution.

 Perhaps the most straightforward way of making the association is by using
 a namespace on the root node of the document. But the immediate problem
 with this is that the NISO-JATS Relax NG schemas will fail if any non-null
 namespace is given on the root node of any document.

 Solving this particular problem is out of the scope of this paper, but I
 would like to suggest that the Relax NG schema files delivered with JATS
 be modified to specify a canonical namespace for each of the document types.
 Failing that, this could always be done as an independent customization, in
 a separate JATSPack.

More JATSPack features and recommendations
Documentation
 It is recommended that each JATSPack includes documentation, including structured
 documentation of any schema extensions. The exact format of this documentation is
 TBD, but the goal is that it should seamlessly integrate with existing JATS
 documentation. That is, the documentation should simply "plug in" to the documentation
 provided by the JATSPacks that come before it in the dependency tree. For example,
 hyperlinks to element or attribute descriptions, between the documentation for the various
 packs and between packs and the base JATS documentation, should resolve correctly. This
 aspect of the format is still under exploration.

Code libraries in XSLT, XQuery, and XProc
 JATSPacks can include library functions that pull out specific data from instance
 documents, so that the data is easily accessible from any JATSPack-enabled system. This is a
 way to provide different "views" on instance documents that could be appropriate for
 different purposes. JATSPacks that import and customize others could also extend the library
 functions defined in the imported packages. This is analogous to the object-oriented
 programming paradyme of creating a derived class from a parent class, and overriding or
 extending certain methods.
 As described above under "Customizations and Compatibility", in order to facilitate
 interchange of document instances, authors of JATSPacks that customize the schema are
 encouraged to provide a stylesheet for conversion to and from the "standard JATS".
 Also, for these customization JATSPacks, authors are encouraged to supply XSLT
 stylesheets that import and extend the Journal Publishing Preview Stylesheets. In this way,
 a complete preview stylesheet for the new JATS customization would be available for use,
 instantly upon installation of the new JATSPack. If the stylesheet which converts to
 "standard JATS" is provided, then the implementation of this preview stylesheet is trivial
 — it is just the baseline preview stylesheet applied to the output of the "standard JATS"
 stylesheet.

Sample files and automated tests
 In order to enable interchange of documents and of the software that processes them,
 instance documents must be self-identifying. Among the recommendations for proper JATSPacks
 which supply DTD customizations, sample files should be included which have the appropriate
 DOCTYPE declaration for that customization, which use the correct formal public identifer
 (FPI). The jatspan client
 utility, when installing a new JATSPack, performs automatic tests, which include validation
 of each of the sample files. In addition to validating them in place, this step includes a
 test in which each sample file is copied to a separate temporary directory and then
 validated. This ensures that the FPI is used to resolve the DTD, not the system identifier,
 and guarantees that instance documents modeled after the JATSPack sample files can be
 exchanged between different systems.
 Additionally, any type of JATSPack can include its own predefined test in the form of
 an XQuery function which returns a boolean true (pass) or false (fail). Since all of the
 resources inside a JATSPack are addressable by using URIs relative to the "name" URI of the
 JATSPack itself (given in the package descriptor), these test could operate on the included
 sample files, to verify the integrity of the package as a whole, and that the software
 library operates correctly on the target system.

JATSPAN
 As mentioned in the introduction, JATSPAN is a website at
 jatspan.org, and is based on the
 concept of the CPAN website,
 providing a place where users can upload and share JATSPacks.
 There are three complementary, interlocking faces of the JATSPAN site.
 	A repository of JATSPacks, and a website allowing users to upload and
 download from that repository.

	A client application jatspan, which enables users to
 maintain a local installation of JATSPacks.

	A set of RESTful web services (these are envisioned for the future).

 The initial implementation of this site is in Perl, and is being developed
 on the jatspan
 open-source project on
 SourceForge.
 The "phase 2" implementation of JATSPAN will copy the Servlex/eXist architecture
 of the CXAN site as described in Georges 2011.

jatspan.org web site
 Here is a list of some of the features of the JATSPAN website: 	 Anyone can browse the list of JATSPacks, see their descriptions (which are
 extracted automatically from the package descriptors) and download those of interest.
 JATSPacks can be downloaded in one of two forms (that differ only in the filename
 extension): XAR files (which have the .xar extension) or Zip files (which have the
 .zip extension).

	 Users can also browse the JATSPack documentation on the JATSPAN site, without
 having to download the package.

	 Authors of JATSPacks can use the JATSPAN site to check that their preferred
 abbrev is not already in use.

	 Registered users can upload JATSPacks. These are unpacked on the server,
 automatically checked for consistency (for example, that the package descriptor file
 is valid) and instantly made available to other users for browsing and download.

	 The site automatically runs the automated document-generation tools XSLStyle and
 xqDoc over the XSLT and XQuery JATSPack components, respectively, and makes the
 generated documentation instantly available on the site.

 The site, in its alpha incarnation, is implemented as a set of Perl CGI scripts
 based on the Catalyst web
 framework.

jatspan client program
 I would like emphasize again that JATSPacks are usable on any system without any
 special infrastructure. Downloading the package as a Zip file and extracting it to the local
 filesystem could be done exactly the way it is done now, and the included schema,
 documentation, and library files are just as usable.
 However, there are additional advantages to setting up a local repository and using the
 jatspan client program to manage it.
 The jatspan client is a simple program that users can download
 and install. The interface is through the command line, and it is
 implemented as a Perl script.

 When it is run for the first time, it will ask for a location to create the local
 jatspan repository. This is a directory on the local filesystem, which is the root directory
 to which downloaded JATSPacks are extracted. The client program then creates this directory
 and writes a jatspan master OASIS catalog file to it, as well as performing
 a few other setup tasks.
 The master OASIS catalog file can be used by tools, such as oXygen, to resolve
 identifiers defined within JATSPacks. These XML tools should be set up to point to this
 catalog file. As described above, this only needs to be done once, and from that point on,
 those tools will be able to resolve any identifiers defined by any JATSPack that is
 installed on the local system.
 Also as part of setup, the user can choose whether or not to download and install the
 repackaged base JATS bundle, described in
 Existing JATS DTDs are available as JATSPacks above.
 The advantage to choosing to install it is
 that all of the flavors and versions of JATS will then be available immediately.
 But it is
 also possible to use the system without installing the base JATSPacks.
 Because of the system of
 resolving dependencies automatically, the required base JATS DTD files will be available as
 soon as the first JATSPack is installed. In other words, they could also be installed
 one-by-one, as the need arises.
 After setup, the client can install any desired JATSPack by entering the command
 jatspan install abbrev

 This will install the
 latest version of the JATSPack indicated, along with all of its dependencies. It will also
 update the master catalog file with <nextCatalog> entries,
 pointing to the catalog
 file provided with each new installed JATSPack.
 As an implementation detail, note that the JATSPAN server uses many of the same Perl
 functions as the jatspan client, to perform many of the same sorts of tasks.
 For example,
 when a user uploads a JATSPack to the server, the server "installs" this JATSPack in its
 repository, in a manner quite complementary to the operation performed when users download
 JATSPacks to their client machine.

Future possibilities
 The next-phase implementation of JATSPAN will copy the Servlex/eXist architecture of
 the CXAN site as described in Georges 2011.
 Besides the obvious
 advantage that this is a more flexible architecture, it can take advantage of the XML
 resources that the site is designed to serve, it can also provide a model for how to set up
 a flexible, extensible XML processing toolchain for organizations that need to develop one.
 This architecture is dubbed the JATSPack Application Framework, or JATSPAF. The following
 figure shows the relationships among all of these entities.
Figure 2: Relationships among software and systems
[image:]
The architecture for the JATSPack / JATSPAN systems borrows heavily
 from the work already done by Florent Georges.

 The following is a list of features that could be implemented in a future release of
 the JATSPAN website, that would enhance its usefulness. These are listed primarily to
 illustrate the benefits that this architecture and this infrastructure could provide.
 	 Faceted search on uploaded JATSPacks, with facets defined for element and
 attribute names, authors, dependencies, documentation, etc. When JATSPAN is
 implemented in eXist, this is a logical next step.

	 JATSPacks could be usable directly off of JATSPAN, without installing them to a
 local machine. This would involve pointing an XML tool at the master OASIS catalog
 file on JATSPAN, which includes <nextCatalog> entries for all
 of the JATSPacks
 uploaded to date. This would allow users to run tests and use a JATSPack without
 installing it locally, for evaluation purposes, in the same way that they now can
 browse the JATSPack documentation before downloading the package.

	 JATSPAN could provide instance document tools, such as a validator and document
 previewer. This would let anybody upload a document that purports to conform to any of
 the JATS schema (including any customized version implemented as a JATSPack), and
 validate it and/or preview it. These are similar to the services
 provided by the PMC style
 checker and article
 previewer.

	 JATSPAN can be configured to do more thorough checking of uploaded JATSPacks. For
 example, when a new pack is uploaded, checking that system ids and public ids are
 unique, and that resources identified by system ids and/or public ids are not changed
 (it could issue warnings if they are). Also verifying that there are no circular
 dependencies.

	 JATSPAN could implement RSS feeds, allowing users to subscribe to see when new
 JATSPacks, or new versions of JATSPacks of interest, are uploaded, for example.

	 JATSPAN could be configured with a discussion forum, or an issue tracker, such
 that users could comment on, rate ("like"), or issue trouble tickets about uploaded
 JATSPacks.

	 A "Roma for JATS" could be developed and served from JATSPAN.
 Roma is a web-based GUI tool
 for building customizations to the TEI schema. The output of the "Roma for JATS" would
 be a complete JATSPack.

Conclusions
 Throughout this paper, I have touted the potential benefits of the JATSPack format
 and the JATSPAN site. These benefits include:

	 making it easier to deploy
 systems that support a wide variety of XML formats;

	 facilitating the creation,
 distribution, and maintenance of schema customizations and libraries of code that
 would be associated with them;

	 allowing developers to easily exchange these customizations and libraries; and
 thereby

	 facilitating the exchange of scientific documents and data, while preserving their
 rich semantic content.

 To fully realize the possible benefits, much more work would
 be required. However, I
 believe that establishing this specification and web site is a good step in the
 right direction.

 One of the goals of this proposal is to help publishers and digital repositories
 to produce XML systems that are more open. Sharing of schema customizations and
 libraries would reduce the amount of duplicated
 effort that is expended when adapting systems to different XML document types.
 In order to acheive this goal,
 this format will have to obtain some measure of support within the publishing
 community.
 The challenge lies in persuading
 systems architects that this format would benefit them,
 so that they will expend the effort to adapt their systems to support it.
 By providing a "starter set" of JATSPacks, as described in the examples section,
 I hope that I've shown that: A) creating JATSPacks is easy, and B) sharing JATSPacks
 will benefit everybody.

 Of course, there is nothing inherently JATS-specific in the JATSPack format.
 The ways in which JATSPack extends EXPath-pkg, as described
 above, are primarily to add schema of various formats,
 sample documents, documentation, and OASIS catalog files. It would be nice if
 these extensions could be rolled into the EXPath-pkg specification itself. That might
 eventually obviate the need for the JATSPAN website; it could be merged with CXAN.
 Whether that would help or hurt the cause of getting the format adopted is
 anybody's guess.

 Comments, suggestions, and help are all very welcome. Please visit the
 project page on
 Sourceforge.

Acknowledgements

 I would like to thank Kim Tryka, Florent Georges, Abe Becker, and Rebecca Orris
 for valuable feedback on this paper. Also, thanks to the anonymous reviewers who provided
 useful suggestions.

 This research was supported in part by the Intramural Research Program of the NIH,
 National Library of Medicine.

 I'd also like to thank you, the reader. If you've gotten this far, and are even reading
 the acknowledgements, that is quite impressive! As a small lagniappe, here is a nice
 Unicode snowman for you:
 ☃!

Bibliography
[Beck 2010]
 Beck, Jeff. (2010).
 Are We There Yet? An introduction to the first Journal Article Tag Suite Conference
 [Presentation slides].
 http://jats.nlm.nih.gov/jats-con/program/2010/presentations/beck.pptx

[Lou Burnard et al 2005]
 Burnard, Lou, & Rahtz, Sebastian. (2005).
 One Document Does It All
 [Presentation slides].
 http://www.tei-c.org/Talks/2005/Sofia/odds.pdf

[Catapano 2010]
 Catapano, Terry. (2010).
 TaxPub: An Extension of the
 NLM/NCBI Journal Publishing DTD for Taxonomic Descriptions.
 Proceedings of the Journal Article Tag Suite Conference.
 http://www.ncbi.nlm.nih.gov/books/NBK47081/

[Georges 2010]
 Georges, Florent. (2010).
 Packaging System, EXPath
 Candidate Module 11 November 2010
 [Specification].
 http://expath.org/spec/pkg/20101111

[Georges 2011]
 Georges, Florent. (2011).
 CXAN: a case-study for Servlex, an XML web framework.
 XML Prague 2011 Conference Proceedings.
 http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf

[Kelly 2010]
 Kelly, Laura. (2010).
 JATS to EPUB: Unraveling the Mystery.
 Proceedings of the Journal Article Tag Suite Conference.
 http://www.ncbi.nlm.nih.gov/books/NBK47314/

[Orchard 2004]
 Orchard, David. (2004, October).
 Extensibility, XML Vocabularies, and XML Schema.
 XML.com.
 http://www.xml.com/pub/a/2004/10/27/extend.html

[Owens 2010]
 Owens, Evan. (2010).
 The Evolving Information Ecostructure of Publishing.
 Journal Article Tag Suite Conference.
 [Presentation].
 http://videocast.nih.gov/summary.asp?Live=9729&start=18474 (video);
 http://jats.nlm.nih.gov/jats-con/program/2010/presentations/owens.pptx (slides).

[Piez 2010]
 Piez, Wendell. (2010).
 Fitting the Journal Publishing 3.0 Preview Stylesheets to
 Your Needs: Capabilities and Customizations.
 Proceedings of the Journal Article Tag Suite Conference.
 http://www.ncbi.nlm.nih.gov/books/NBK47104/

[Rosenblum 2010]
 Rosenblum, Bruce. (2010).
 NLM Journal Publishing DTD Flexibility: How and Why Applications of the NLM DTD Vary
 Based on Publisher-Specific Requirements.
 Proceedings of the Journal Article Tag Suite Conference.
 http://www.ncbi.nlm.nih.gov/books/NBK47101/

[Walsh 2004]
 Walsh, Norman. (2004, March).
 On the Web, My Name is 266 North Pleasant Street
 [Blog post].
 http://norman.walsh.name/2004/03/03/266NorthPleasant

[1]
 "Flavor" is my term, which I haven't heard used anywhere else. I will use it throughout
 this paper to describe one of the main categories of JATS. One "flavor" roughly corresponds
 to one top-level DTD file, which might itself have several versions. In a detailed accounting,
 there are currently seven flavors:
 	archiving
	Archiving and Interchange Tag Set - green

	archive-oasis
	Same as archiving but with the OASIS table model

	authoring
	Article Authoring Tag Set - pumpkin

	books
	NCBI Book Tag Set - purple

	historical
	A historical version of the books DTD

	publishing
	Journal Publishing Tag Set - blue

	publishing-oasis
	Same as publishing but with the OASIS table model

 This is somewhat complicated by the fact that the NISO standard versions of JATS
 use a different version numbering scheme, and so should also be considered
 separate flavors, even though they are really just newer versions of the existing
 NLM DTDs.

[2] At the time of this writing, there are a few areas of incompatibility between
 the JATSPack format and EXPath-pkg. Effort is underway to reconcile these.
 The specific incompatibilities are called out in footnotes which follow.
[3] JATSPack two-part abbreviations are incompatible with the existing
 EXPath-pkg format.
[4] As described above, some of the
 requirements for the JATSPack format derive from the fact that it is an extension
 of EXPath-pkg, and some are JATSPack-specific.
[5] The internal directory structure of JATSPack differs from that specified
 for EXPath-pkg, and is another area of incompatibility. The main difference is the
 location of the package descriptor file, which is in the root directory for
 EXPath-pkg packages. In JATSPack, it was moved to the package's content directory.
 This way, it is possible to unzip the packages directly onto the filesystem, without requiring any
 shuffling of the file locations.
[6] Note that the conventions for the abbreviated names have yet to be worked out.
[7] When doing this work, I faced a question, and reached a conclusion, which
 might be controversial.
 Because I moved files into a different directory structure,
 but I wanted them to remain usable by systems without OASIS catalog files,
 using the relative system identifiers, I had to change these identifiers in the
 modules that reference the moved files. I also made other minor edits to reconcile
 cases where, for example, two different instances of a document were referred to by
 the same public identifier (FPI). I made these changes,
 without changing the FPIs, for those files that
 were changed. I think this is the right decision, for the following reason. The
 significance of an FPI is that any tool that resolves it correctly will get
 identical results. The FPI specifies a logical resource –- a
 DTD or an external parsed entity — not a specific byte
 sequence. With this change, the resolution of any given FPI will still
 result in the exact same entity replacement text,
 when all of the sub-entities are correctly resolved.

Balisage: The Markup Conference

JATSPack and JATSPAN, a packaging format and infrastructure for the NLM/NISO
 Journal Archiving Tag Suite (JATS)
Chris Maloney
NCBI / NLM / NIH (Contractor)

Chris Maloney works as a contractor for NLM/NCBI, on the PubMed Central and Bookshelf
 projects.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Maloney01-001.png
Head Head Head

Head Data Data

Head Data Head Head
Head Data Data

content/images/Maloney01-002.png

