Leveraging XML Technology
for Web Applications

Anne Bruggemann-Klein

Joint work with:

Jose Tomas Robles Hahn
Marouane Sayih

Technische Universitat Miinchen

Do-it-yourself: write, publish
IATREX
=

XML Y “.‘\A\'

<xml />

9 August 2012 Balisage 2012

My personal document saga. Pushing boundaries, evolving technology. Now boundaries
between documents and software are blurring.

Do-it-yourself: write, publish ...

* ... papers, books
° camera ready
* ... papers, books
° typographic quality, single format
> self-publishing, on the Web
e ... papers, books
> single source, multiple formats
> self-publishing, on the Web & other platforms
* ... interactive books ? Web apps!?

9 August 2012 Balisage 2012

My personal document saga. Pushing boundaries, evolving technology. Now boundaries
between documents and software are blurring.

Vision

* Empower authors to write and deploy
Web applications as easily as documents,
using widely available tools without
system lock-in

Leverage XML technology

* Open, accessible, well-supported,
capable

9 August 2012 Balisage 2012

We as authors have experience as programmers: Makros, transformations, stylesheets,
queries. Can we leverage our technology to target Web apps?

XML & REST for Web apps: XRX

REST XJAXstyle
for app data

REST style for
GUI, app state

9 August 2012 Balisage 2012 :

XForms as an application language, is that the right level of abstraction? As someone who
has experience with writing layout algorithms in TeX‘s makro language | would not trust in
Turing completeness alone. But if we can delegate the core programming to XQuery, XSLT
oder XProc, we are in business. This is where REST comes in.

XML & REST for Web apps: XRX

» Represent and manipulate information
with XML technology

> deploy data (XML, XML Schema etc.) and
programs (XSLT, XQuery, XProc) in an
XML database on a Web server

> access data and programs from XML-aware
Web client (XForms) via RESTful HTTP

~ Benefits of XRX architectural style
= zero translation, end-to-end XML technology
> platform-independent, no system lock-in

9 August 2012 Balisage 2012

XForms as an application language, is that the right level of abstraction? ... Zero translation,
end-to-end XML: Nice for your data if they can stay in the model that fits them best, but it
is also nice for you all who know how to program with XML languages, because you can use
your expertise. ... Platform-independence: Take claims with a grain of salt, for example
some protocol for XForms processor and possibly other tasks such as URI mapping.

Missing pieces

» Since XML technology is low-level
implementation technology

~ we still need: principles, patterns,
procedures, proven practices,
methodologies, reference architectures,
case studies

9 August 2012 Balisage 2012

| know | am going overboard with the ,,P“s here, even beyond the ,Triple-P“ paper we had
in EML 2007, whose title was inspired by the ,Triple-P“ parenting method. As to stealing,
or letting oneself be inspired, or relating different areas: Of course, none of the ideas
presented here are completely new. Software Engineering offers a rich source of
knowledge that can be adapted to this domain of Web applications with XML technology.
And these keywords have guided software development from the level of programming
skills to an engineering discipline.

Our approch to methodology

* Implement principles of
Domain-Driven Design (DDD)
> author / SME / domain expert to be involved
in implementation

* Explore Domain-Specific Languages (DSLs)
° as means to achieve right level of abstraction

¢ Explore Abstract State Machines (ASMs)
° to formally capture requirements in models
> to refine specification into implementation

9 August 2012 Balisage 2012

DDD originally to handle large and complex software projects. Here to empower domain
experts to write their own software. DSLs can be specified and even be implemented by
SMEs, e.g. schemas; or they serve as interface, a level of abstraction that encapsulates
technical aspects that require programming expertise. ASM for formally specify and step-
wise refine into implemenation, in contrast with Model-Driven Architecture (MDA).

Case study CalendarX

* Project must be suitable for student work
> students / supervisors double as SMEs

> small scale
> demonstrate value of XML approach:
own your data

9 August 2012 Balisage 2012

Problems with calendar system since Palm organizer gave up on me. It annoyed me no end
to have to rely on some kind of software magic to transfer data to a cheap mobile (LG) and
to deal with severe restrictions as to data space and functionality, for example not being

able to delete appointments.

Case study CalendarX

e ... with a twist: rich data model

» model these as a single, recurring event

that can be handled as a single unit:

> class EP meets Tuesdays from 10 to 12 am and
Fridays from 9 to || am during summer term
2012, but not on public holidays and not
during the week | am at a conference

> committee X has six meetings that are
irregularly scheduled at different times of day
and in different rooms

9 August 2012 Balisage 2012

10

Informal domain model

Limited functionality: day/week/month views
» Calendar data as UML class diagram
» Ul page types as UML class diagram

» Strategy: discover functionality from
navigation

9 August 2012 Balisage 2012

| am taking you step-by-step through analysis, design and implementation of CalendarX,
discussion points of methodology on the way. We are only doing this for a simple subset of

CalendarX functionality, namely to provide views of calendar data by day, week and month.

Since we have a rich model of events, this is not as trivial as it may seem. ... The domain
model is key in our approach. We start with an informal description.

11

Informal domain model

*» Cycle of navigation, under user control

> each page when visited builds itself from
nextCalendar: Calendar
nextDatelnfo: PartialDate

computing type-specific date info and events
> it then allows the user to specify
nextCalendar: Calendar

nextDatelnfo: PartialDate
nextPage: {dayView, weekView, monthView, quit}

and signal completion

9 August 2012 Balisage 2012

12

Informal domain model: functions

DayView, WeekView, MonthView

- events(): Event*
Calendar, SuperEvent, EventRule

o getEventsForDay (d:Date): Events™

o getEventsForWeek (firstD: Date): Events™

o getEventsForMonth (m:Month, y:Year): Events*
Pattern

> matches (d:Date): Boolean

9 August 2012 Balisage 2012

13

Informal domain model: functions

Global
- datesForWeek (fD:Date): Date*
- datesForMonth (m:Month, y:Year): Date™

9 August 2012 Balisage 2012

14

Formalize domain model as ASM

 Translate data model into mathematical
structure (algebra)
> set symbols for classes
> function symbols for attributes, associations
° constraints, e.g. for composition, inheritance
~ Lessons learnt
- straightforward, but tedious exercise
- tightens model by revealing ambiguities
- useless without visuals (UML diagrams)

9 August 2012 Balisage 2012

Useless without visuals: You cannot start with ASMs as a method of requirement
elicitation. Domain experts won’t buy it.

15

Formalize domain model as ASM

* Translate cycle of navigations into ASM
computation

~ Lessons learnt

- for this case study simple, straightforward

- very small ASM program that delegates

complex functionality to static functions that
have to be specified separately

- good basis for architecture

probably typical for Web applications

9 August 2012 Balisage 2012 L

16

Formalize domain model as ASM

» Specify static functions as pseudocode
programs or mathematical expressions
(out of scope for ASMs)

~ Lessons learnt
- straightforward, low complexity

- valuable basis for implementation in XQuery,
which is a straightforward translation

presumably the most useful part of this
exercise, yet outside the core of ASMs

9 August 2012 Balisage 2012

17

Implementation

* Translate conceptual model of calendar to

XML Schema, building on previous work
(EML 2007, Balisage 2009)

~ Lessons learnt

- systematic transformation prefered
over automation

- the schema is a useful DSL but could and
should be streamlined via a metamodel
(Balisage 2010) for domain experts that are
no XML Schema specialists

9 August 2012 Balisage 2012

18

Implementation

* Map domain model to XRX architecture

> main XForms page to mirror Page type, holds
type of view, calendar, datelnfo in instance

> once built, it requests page-specific data (date,
event information) from the XML database

> static functions are implemented in XQuery
and run by the XML database’s processor

» Lessons learnt

- implementation becomes straightforward
once domain model is worked out

9 August 2012 Balisage 2012

Also beneficial for student instructions. Takes the mystery out of student solutions. Am
even doing an implementationi myself.

19

Status

» Several implementations of CalendarX on
the basis of the informal Domain Model
exist (MTh Robles Hahn, several groups in
lab course XML Technology)

e Platform used: Firefox browser, Orbeon
Forms XForms processsor and eXist
XML database in Tomcat container

9 August 2012 Balisage 2012

20

Conclusion, future work

» The implementations are largely platform
independent (Orbeon Forms, XSLTForm:s),
due to exclusive use of XML technology

» Formal specification and systematic
derivation of implementation make
building CalendarX straightforward

» DDD principle has been fully validated

¢ ASMs have been useful but not mission-
critical: we will explore them further

9 August 2012 Balisage 2012

21

Conclusion, future work

¢ Further functionality
° editing calendar data
we expect this to be mostly an XForms challenge
o printing of calendar data

student solutions use SVG, generated with XSLT

can be made accessible to domain experts via a
higher-level graphics DSL

> access control, concurrent access, safety and
liveness requirements
Davis, Balisage 201 |

9 August 2012 Balisage 2012

Printing calendar data, such as monthly overviews: nice to have / carry around. And there is

the DSL challenge.

22

Conclusion, future work

* We consider the project, though small,
a success!

* Scope for methodology: small projects
OK, as expected for end-user computing

» Boundaries might be pushed further with
other case studies
(potential of XProc to be leveraged, too)

9 August 2012 Balisage 2012

Scale: digital edition of the Oxford English Dictionary OED has not been an exercise in
personal publishing either.

23

