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Abstract
Large collections of data are getting published and used more frequently, even by non-statisticians, a situation driven by the mainstreaming
      of big data, linked data, and open data. Often these datasets are in XML
      format, consisting of an unknown set of elements, attributes,
      namespaces, and content models. This paper describes an approach for
      quickly summarizing as well as guiding exploration into a non-indexed
      XML database. Finally, this paper demonstrates a statistical technique
      to approximate faceted search over large datasets, without the need of
      particular index configurations.
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   Exploring the Unknown
Understanding and navigating large XML datasets

More data than you know what to do with
It’s increasingly common for information workers to come in contact
    with unfamiliar datasets. Governments around the world are releasing more
    and bigger datasets. Corporations are collecting and releasing more data
    than ever, often in XML or another format easily convertible to XML. This
    trend, while welcomed by many, poses questions about how to come to
    understand large XML datasets.
In general, bulk analysis of large datasets gets done through an ad-hoc
    assortment of machine learning techniques. Few of these, however, are specifically
    targeted at the unique aspects of the XML data model, as examined in this paper.
One tool in particular that has come into widespread use for analyzing datasets is R,
    which has available a set of XML libraries R Language; Package 'XML'. However, while R is often useful for
    initial exploration, it lacks an upgrade path into an operational data store such
    as an XML database, and the XML capabilities provided are DOM and XPath-centric,
    which are less suited to bulk analysis.
The most common approach used by databases to deal with searching
    and navigating through large datasets is an index, trading space for time.
    Once an index is set up and occupying additional disk and/or memory space,
    certain kinds of queries run significantly faster.
With an unknown dataset, though, this presents a chicken-and-egg
    problem. Many database systems assume the availability of indexes to
    perform navigational functions such as faceted search. Without such features, it’s more
    difficult to get to know the data. And if the structure of the data is
    unknown, how can one create the necessary indexes in the first
    place?
One answer is that indexes should be arranged based on queries
    rather than data. This is a valid approach, although not of much help in
    the case of bootstrapping a truly unknown dataset.
Another approach, one explored in the remainder of this paper, is to
    rely on statistical sampling approaches rather than indexes. This presents
    tradeoffs in terms of size, speed, and accuracy. At the same time, it
    offers benefits: 	Rapid start
	The ability to run queries immediately, without
prior configuration.

	Productivity
	The ability to run queries before or during a lengthy indexing
            operation.

	Exploration
	An aid to identifying areas in the dataset that might
            requires some amount of cleanup before applying indexing.

	Cross-platform development
	None of the techniques here depend on proprietary index
            structures.

	Performance baselining
	These techniques can be used as a measuring stick to compare
            the size and speed tradeoffs of various index
            configurations.




Though the techniques shown here are universally applicable, for
    convenience, code samples in this paper are based on an early access release of MarkLogic 6 MarkLogic docs.

Random Sampling
A common approach to characterizing a large population
    involves taking a random sample. A simple XQuery expression fn:collection()[1]
 takes advantage of the implementation detail that many databases define document order across the entire database in an arbitrary order so that the "first" document is essentially a random choice. One common manual approach is to "eyeball" the first such document, and maybe a few others, to get an intuitive feel for the kinds of data and structures at hand. This approach has obvious scaling difficulties.
For larger samples, greater automation is needed for the analysis. We can define a process
    producing a sample of size N to be considered random if any particular
    collection of documents is equally likely to turn up as any other
    same-sized collection of documents. Randomness of a sample is important, because a non-random sample will lead to systematic errors not accounted for in statistical measures of probability.
Within a random sample it is possible to examine characteristics of
    the sample and make statistical inferences about the overall population. The more
    documents in the sample, the better the approximation. When the overall population is small, it is possible to sample most or even all of the documents. But with large collections of documents, the proportion of documents contained in a reasonably-sized sample will be very small. When dealing with a dataset of this size, certain simplifying assumptions become possible, as outlined in later sections of this paper.
Users of search
    interfaces have become accustomed to approximations, for example, a web
    search engine may report something like “Page 2 of about 415,000,000
    results”, but as users go deeper into the result set, the estimated number
    tends to converge on some actual value. Users have accepted this behavior,
    though it is less commonly used in finer-grained navigational situations. For example, if a sidebar
    on a retail site says, “New in last 90 days (328)”, quite often one will find that
    exactly 328 items will be available by clicking through all the pages of
    results.
This difference in user expectations can be exploited. In particular, in the case of first contact with a new XML dataset,
    exact results are far less important than overall trends and correlations,
    which makes a sampling approach ideal.
Sample size end error
Statistical estimates by definition are not completely reliable. For example, it's possible (though breathtakingly unlikely) that a random sample of 100 documents would happen to contain all 100 unusual instances out of database of a million documents. A surer bet, though, would be none of the unusual documents would turn up in a sample of 100. One measure of an estimate's  reliability, called a confidence interval is related to a chosen probability range. To put it another way, if the random experiment were repeated many times whereby it was found that 95.4% of the calculated confidence intervals included the true value, one could say that 95.4% was the confidence interval. (Note, however, that when speaking about a single experiment, the estimated range either contains the true value or it doesn't and one would need more complicated Bayesian techniques to delve deeper.)
For a large population, it is  convenient to use a confidence
interval of 95.4%, which encompasses values two standard deviations from the mean
      in either direction and makes the math come out easier later on. At that confidence level, and assuming a large overall population relative to the sample size, the maximum margin of
      error is simply (continuing to use XQuery notation) 
1 div math:sqrt($sample-size)
        
 although in particular cases, the observed error can
      be somewhat less.
For example, a sample size of 1000, likely to be conveniently held
      in memory, the maximum margin of error comes out to about 3.16%, which
      is good enough for many purposes.
A key weakness in sampling  is that rare values are
      likely to be missed. A doctype that appears only 100 times out of a
      million is unlikely to show up in a sample of 100 documents, and on rare
      occasions when it does show up exactly once, straightforward extrapolation would infer that it occurs in 1% of all documents, a gross overestimation.

Performance
The approaches in this paper assume that an entire sample of documents can comfortably fit into main memory. To fulfill a random-sampling query without indexes, each document
      needs to be read from disk. Therefore, overall the performance of the query will be roughly
      linear in the sample size, plus time for local processing. Details will vary depending on the database
      system, but in general there will be some amount of data locality making
      for shorter document-to-document disk seeks. A back-of-the-envelope estimate is about 1
      second per 200 documents in the sample, ignoring the prospect of documents cached in memory, perhaps somewhat higher with high-performance disks such as SSD or RAID configurations that stripe data across multiple disks.[1].


Dipping a toe into the database
Getting familiar with an XML dataset requires a combination of automated and hands-on approaches. While writing this paper, I had on hand a dataset of over 5 million documents, crawled from an assortment of public social media sources,
    of which I knew very little in advance.
The first-document-in-the-collection approach mentioned above yields this
    [2]:

<sl:streamlet
xmlns:sl="http://example.com/ns/social-media/streamlet">
  <sl:vid>13067505336836346999</sl:vid>
  <sl:tweet>#Jerusalem #News 'Iran cuts funding for
  Hamas due to Syria unrest'
  http://t.co/ARRqabU</sl:tweet>
</sl:streamlet>
        

The choice of the "first" document, is, of course, completely arbitrary. The second document has something completely different:

<person:person
xmlns:person="http://example.com/ns/social-media/person">  
  <person:id>8999631448253261463</person:id>
  <person:follower-count>0</person:follower-count>
  <person:influence>0</person:influence>
  <person:name>Borana Mukesh</person:name>
  ...
</person:person>
        

There's only so much one can learn from picking through individual documents.
The following XQuery 3.0 XQuery 3.0 code
    demonstrates this approach by examining a sample of documents in order to extract potentially interesting features, which a human operator can use to make decisions about where to dive deeper. The code assembles the following:
	Root elements

	Commonly-occurring elements

	Commonly-occurring namespaces

	Elements that tend to have a lot (or a little) text
        content

	Text nodes that look like dates

	Text nodes that almost look like dates

	Text nodes that look like numeric data, for example years



  let $dv := distinct-values#1
  let $n := ($sample-size, 1000)[1]
  let $xml-docs := spx:est-docs()
  let $text-docs := spx:est-text-docs()

  let $samp := spx:random-sample($n)
  let $cnames := $dv($samp/*/spx:name(.))
  let $all-ns := $dv($samp//namespace::*)
  let $leafe := $samp//*[empty(*)]
  let $leafetxt := $leafe[text()]
  let $leafe-long := $leafetxt
    [string-length(.) ge 10]
  let $leafe-short := $leafetxt
    [string-length(.) le 4]
  let $dates := $dv($leafe-long
    [. castable as xs:dateTime]/spx:name(.))
  let $near-dates := $dv($leafe-long
    [matches(local-name(.), '[Dd]ate')]
    [not(. castable as xs:dateTime)]/spx:name(.))
  let $all-years := $dv($leafe-short
    [matches(., "^(19|20)\d\d$")]/spx:name(.))
  let $all-smallnum := $dv($leafe-short
    [. castable as xs:double]/spx:name(.))
  let $epd := count($samp//*) div count($samp/*)
  return
    <spx:data-sketch
      xml-doc-count="{$xml-docs}"
      text-doc-count="{$text-docs}"
      binary-doc-count="{$binary-docs}"
      elements-per-doc="{$epd}">
      {$cnames!<spx:root-elem
        name="{.}"
        count="{spx:est-by-QName(spx:QName(.))}"/>
      }
      {$all-ns!<spx:ns-seen>{.}</spx:ns-seen>}
      {$dates!<spx:date>{.}</spx:date>}
      {$near-dates!<spx:almost-date>{.}</spx:almost-date>}
      {$all-years!<spx:year>{.}</spx:year>}
      {$all-smallnum!<spx:small-num>{.}</spx:small-num>}
    </spx:data-sketch>
    
This code and the following listings make use of the following helper functions which
    contain vendor-specific implementations, which are not important here (see the Code section
    later for details):	spx:est-docs()
	A function that quickly estimates the total number of documents in the database.

	spx:est-test-docs()
	A function that quickly estimates the total number of documents in the database that consist of a single text node.

	spx:random-sample()
	A function that returns a random sample of documents from the database.

	spx:name()
	Returns a Clark name of a given node.

	spx:formatq()
	Returns a Clark name from a given QName.

	spx:node-path()
	Returns an XPath expression that uniquely identifies a node.




This code
    produced the following (with adjustments for line length):
<spx:data-sketch
xmlns:spx="http://dubinko.info/spelunx"
  xml-doc-count="5789128"
  text-doc-count="0"
  binary-doc-count="0"
  elements-per-doc="12.88" >
  <spx:root-elem name="{...}person" count="1248848"/>
  <spx:root-elem name="{...}media" count="2117625"/>
  <spx:root-elem name="{...}streamlet" count="1173545"/>
  <spx:root-elem name="{...}author" count="1248815"/>
  <spx:ns-seen>
    http://example.com/ns/social-media/person
  </spx:ns-seen>
  <spx:ns-seen>
    http://example.com/ns/social-media/media
  </spx:ns-seen>
  <spx:ns-seen>
    http://example.com/ns/social-media/streamlet
  </spx:ns-seen>
  <spx:ns-seen>
    http://example.com/ns/social-media/author
  </spx:ns-seen>
  <spx:ns-seen>
    http://www.w3.org/XML/1998/namespace
  </spx:ns-seen>
  <spx:date>{...}ingested</spx:date>
  <spx:date>{...}published</spx:date>
  <spx:date>{...}canonical</spx:date>
  <spx:date>{...}inserted</spx:date>
  <spx:small-num>{...}follower-count</spx:small-num>
  <spx:small-num>{...}influence</spx:small-num>
  <spx:small-num>{...}follower-count</spx:small-num>
</spx:data-sketch>
    

This dataset appears fairly homogeneous: only four different root element
    QNames, were observed over 1,000 samples. Additionally, these documents
    contain a number of elements that seem date-like, but would require some
    cleanup in order to be represented in as the Schema datatype xs:dateTime.
    For purposes of this paper, one particular element, influence, 
    as seen earlier, seems particularly
    interesting. Is there a way to learn more about it?

Digging Deeper
It’s possible to perform similar kinds of analysis on specific nodes
    in the database. Given a starting node, the system of XPath axes provides
    a number of different ways in which to characterize that element’s use in
    a larger dataset. Some care must be taken to handle edge cases, assuming
    nothing in an unknown environment. The following code listing
    characterizes a given element node (named with a QName) along several
    important axes:
  let $dv := distinct-values#1
  let $n := ($sample-size, 1000)[1]
  let $samp := spx:random-sample($n)

  let $ocrs := $samp//*[node-name(.) eq $e]
  let $vals := data($ocrs)
  let $number-vals := $vals
    [. castable as xs:double]
  let $nv := $number-vals
  let $date-values := $vals
    [. castable as xs:dateTime]
  let $blank-vals := $vals[matches(., "^\s*$")]
  let $parents := $dv(
    $ocrs/node-name(..)!spx:formatq(.))
  let $children := $dv($ocrs/*!spx:name(.))
  let $attrs := $dv($ocrs/@*!spx:name(.))
  let $roots := $dv($ocrs/root()/*!spx:name(.))
  let $paths := $dv($ocrs/spx:node-path(.))
  return
    <spx:node-report
      estimate-count="{spx:est-by-QName($e)}"
      sample-count="{count($ocrs)}"
      number-count="{count($number-vals)}"
      date-count="{count($date-values)}"
      blank-count="{count($blank-vals)}">
      {$parents!<spx:parent>{.}</spx:parent>}
      {$roots!<spx:root>{.}</spx:root>}
      {$paths!<spx:path>{.}</spx:path>}
      <spx:min>{min($number-vals)}</spx:min>
      <spx:max>{max($number-vals)}</spx:max>
      {if (exists($vals)) then
      <spx:mean>
        {sum($nv) div count($nv)}
      </spx:mean>
      else ()
      }
    </spx:node-report>
    

These two techniques combine to provide a powerful tool for picking
    through an unknown dataset. First identify ‘interesting’ element nodes,
    then dig into each one to see how it is used in the data. While the sample
    documents are in memory, it is possible to infer datatype information, and
    for values that look numeric, to calculate the sample min, max, mean,
    median, standard deviation, and other useful statistics.
These techniques can be readily expanded to include statistics for
    other node types, notably attribute and processing-instruction
    nodes.

Free-form faceting
Index-backed approaches make it possible to produce a histogram of values,
    often called "facets", for example all the prices in a product database,
    arranged into buckets of values like 'less than $10' or '$10 to $50'
    and so on.
It’s possible to combine the concepts introduced thus far by breaking down a random sample into faceted data.
    With no advance knowledge of the range of values, it’s difficult to arrange values into
    reasonable buckets, but with some spelunking, as in the preceding section,
    it’s possible to construct reasonable bucketing. Based on the exploration
    from the preceding sections, the influence element looks
    worth further investigation.
The following XQuery function plots out the values of a given
    element as xs:double values in specified ranges.
declare function spx:histogram(
  $e as xs:QName,
  $sample-size as  xs:unsignedInt?,
  $bounds as xs:double+
) {
  let $n := ($sample-size, 1000)[1]
  let $samp := spx:random-sample($n)
  let $full-population := spx:est-docs()
  let $multiplier := ($full-population div $n)
  let $ocrs := $samp//*[node-name(.) eq $e]
  let $vals := data($ocrs)
  let $number-vals := $vals
    [. castable as xs:double]!xs:double(.)
  let $bucket-tops := ($bounds, xs:float("INF"))
  for $bucket-top at $idx in $bucket-tops
  let $bucket-bottom :=
    if ($idx eq 1)
    then xs:float("-INF")
    else $bucket-tops[position() eq $idx - 1]
  let $samp-count := count($number-vals
    [. lt $bucket-top][. ge $bucket-bottom])
  let $p := $samp-count div $n
  let $moe := 1 div math:sqrt($sample-size)
  let $SE := math:sqrt(($p * (1 - $p)) div $n)
  let $est-count := $samp-count * $multiplier
  let $error := $SE * $full-population
  let $est-top := $est-count + $error
  let $est-bot := $est-count - $error
  return
    <histogram-value
      ge="{$bucket-bottom}"
      lt="{$bucket-top}"
      sample-count="{$samp-count}"
      est-count="{$est-count}"
      est-range="{$est-bot} to {$est-top}"
      error="{$error}"/>
};
    

This code accepts a particular QName referring to an element, a
    sample size, and an ordered set of numeric bounds, and returns the
    approximate count of values that occur in between each boundary. The first
    bucket includes values down to -INF, and the last bucket
    includes all values up to INF. Selecting values to partition
    the values into order-of-magnitude buckets will give a broad first
    approximation of the distribution.
For comparison, the following vendor-specific code, which requires a
    pre-existing in-memory index, resolves the exact counts of different
    values occurring in the database.

for $bucket in cts:element-value-ranges(
  QName("http://example.com/ns/social-media/person", "influence"),
  (1,10,100,1000), "empties")
return
    <histogram-value
        ge="{($bucket/cts:lower-bound, '-INF')[1]}"
        lt="{($bucket/cts:upper-bound, 'INF')[1]}"
        count="{cts:frequency($bucket)}"/>
    
The results of calling these function on the test database are given
    below in table format.

How wrong can you get?
As the book Statistics Hacks Statistics Hacks states,
    Anytime you have used statistics to summarize observations, you’ve probably been wrong. This technique is no exception.
As mentioned earlier, if we assume that the sample is of a small
    proportion of the overall population and is randomly selected, the maximum
    margin of error is a simple function of sample size. However, against
    particular values we can usually find a more accurate estimate.
To estimate the overall proportion, the standard error of the
    proportion must be computed, using the following formula.math:sqrt(($p - $p * $p) div $sample-size )
The
    maximum error, which occurs when the proportion is exactly 50%, is exactly
    half of the margin of error calculation earlier[3].
The following table illustrates the tradeoffs in accuracy, run-time,
    and necessity of a preconfigured index. The columns on the left represent histogram buckets of values of various ranges,
    while the rows across the top represent different sample sizes, or in the case of the final column, exact index resolution.
    The hardware under test consisted of a 2.4Ghz Dual-core 64-bit Intel machine with two 15k rpm disks
    in a RAID O configuration.
Table I
Comparison of run-time and accuracy

		estimate, n=10	estimate, n=100	estimate, n=1000	estimate, n=10000	exact index resolution
	values < 1	115,7825	810,477	897,314	782,111	807,284
	1 <= values < 10	0	0	17,367	25,472	28,414
	10 <= values < 100	578,912	115,782	208,408	164,990	161,734
	100 <= values < 1000	578,912	347,347	219,986	208,408	204,298
	values >= 1000	0	0	28,945	36,471	47,070
	Run time	0.35 sec	0.48 sec	1.9 sec	19.4 sec	0.19 sec

Unsurprisingly, at smaller sample sizes, it is probable that
    infequently-occurring data will be completely excluded from the random
    sample. Even the most frequently-occurring values, in this case the bucket
    of values less than one, occurs in less than 14% of the 5.7M documents.
    Given this, the accuracy of the random sampling technique, even at the
    lower sample counts, is more than enough to give a general impression of
    the distribution of the data values.
To visulaize this, it is possible to export these values into a
    desktop spreadsheet program and produce a graph, including error bars, as
    shown in the following figure.
Figure 1: Graphical representation of data distribution (by percentage)
[image: ]



Conclusion
The techniques shown in the paper offer a useful framework within which to
    make the initial foray into an unknown XML dataset. Starting with an automated
    run-down of high-level features in the dataset, particular QNames chosen by the
    user can be drilled down into deeper analysis. The dataset can even be summarized
    through histogram facets, much like those available to significantly more
    resource-intensive indexed databases.
The techniques shown here do not rely on proprietary features and are
    applicable to a wide range of available XQuery processors.
The book How to Lie with Statistics How to Lie with Statistics
    concludes with advice on how to be properly skeptical of statistics, and
    the guidelines apply to the techniques in this paper as much as in any
    other area.
	What's missing?
	Be on the lookout for areas where summarization may be
          obscuring important facts.

	Did somebody change the subject?
	Beware of an unfounded jump from raw figures to
          conclusions.

	Does it make sense?
	Any results that come from these techniques need to be
          eyeballed. Anything that seems wildly out of proportion needs to be
          more closely examined.



With those caveats, the techniques in this paper can provide a
    useful lever by which to pry open a large, unkonwn XML data set.

Code availability
The code samples mentioned in this paper are in available in a 
    project named Spelunx available at GitHub Spelunx.

Further topics to explore
	Correlation and co-existence between given nodes

	Multi-dimensional sampling, as in geographic data

	Searching for correlated latitude and longitude pairs

	Hypothesis testing and type I vs type II errors

	Markov chain analysis for element and attribute
        containership

	Comparison and contrast with machine learning techniques

	Exploring the availability of random-sampling extension
        functions from different database vendors

	Ways to summarize mixed content
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[1] In general, document-level caching provides little benefit for
          random-sampling based approaches, as a different random set of
          documents gets selected on each run of the experiment.
[2] Namespace URIs have been anonymized.
[3] Half because margin of error already accounts for error in the
        plus or minus direction, i.e. a diameter, while standard error or the
        proportion does not, i.e. a radius.
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