[image: Balisage logo]Balisage: The Markup Conference

Exploring the Unknown
Understanding and navigating large XML datasets
Micah Dubinko
Lead Engineer
MarkLogic

<Micah.Dubinko@marklogic.com>

Balisage: The Markup Conference 2012
August 7 - 10, 2012

Copyright © 2012 Micah Dubinko

How to cite this paper
Dubinko, Micah. "Exploring the Unknown." Presented at: Balisage: The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012.
 Balisage Series on Markup Technologies vol. 8 (2012). https://doi.org/10.4242/BalisageVol8.Dubinko01.

Abstract
Large collections of data are getting published and used more frequently, even by non-statisticians, a situation driven by the mainstreaming
 of big data, linked data, and open data. Often these datasets are in XML
 format, consisting of an unknown set of elements, attributes,
 namespaces, and content models. This paper describes an approach for
 quickly summarizing as well as guiding exploration into a non-indexed
 XML database. Finally, this paper demonstrates a statistical technique
 to approximate faceted search over large datasets, without the need of
 particular index configurations.

Balisage: The Markup Conference

 Exploring the Unknown

 Understanding and navigating large XML datasets

 Table of Contents

 	Title Page

 	More data than you know what to do with

 	Random Sampling
 	Sample size end error

 	Performance

 	Dipping a toe into the database

 	Digging Deeper

 	Free-form faceting

 	How wrong can you get?

 	Conclusion

 	Code availability

 	Further topics to explore

 	About the Author

 Exploring the Unknown
Understanding and navigating large XML datasets

More data than you know what to do with
It’s increasingly common for information workers to come in contact
 with unfamiliar datasets. Governments around the world are releasing more
 and bigger datasets. Corporations are collecting and releasing more data
 than ever, often in XML or another format easily convertible to XML. This
 trend, while welcomed by many, poses questions about how to come to
 understand large XML datasets.
In general, bulk analysis of large datasets gets done through an ad-hoc
 assortment of machine learning techniques. Few of these, however, are specifically
 targeted at the unique aspects of the XML data model, as examined in this paper.
One tool in particular that has come into widespread use for analyzing datasets is R,
 which has available a set of XML libraries R Language; Package 'XML'. However, while R is often useful for
 initial exploration, it lacks an upgrade path into an operational data store such
 as an XML database, and the XML capabilities provided are DOM and XPath-centric,
 which are less suited to bulk analysis.
The most common approach used by databases to deal with searching
 and navigating through large datasets is an index, trading space for time.
 Once an index is set up and occupying additional disk and/or memory space,
 certain kinds of queries run significantly faster.
With an unknown dataset, though, this presents a chicken-and-egg
 problem. Many database systems assume the availability of indexes to
 perform navigational functions such as faceted search. Without such features, it’s more
 difficult to get to know the data. And if the structure of the data is
 unknown, how can one create the necessary indexes in the first
 place?
One answer is that indexes should be arranged based on queries
 rather than data. This is a valid approach, although not of much help in
 the case of bootstrapping a truly unknown dataset.
Another approach, one explored in the remainder of this paper, is to
 rely on statistical sampling approaches rather than indexes. This presents
 tradeoffs in terms of size, speed, and accuracy. At the same time, it
 offers benefits: 	Rapid start
	The ability to run queries immediately, without
prior configuration.

	Productivity
	The ability to run queries before or during a lengthy indexing
 operation.

	Exploration
	An aid to identifying areas in the dataset that might
 requires some amount of cleanup before applying indexing.

	Cross-platform development
	None of the techniques here depend on proprietary index
 structures.

	Performance baselining
	These techniques can be used as a measuring stick to compare
 the size and speed tradeoffs of various index
 configurations.

Though the techniques shown here are universally applicable, for
 convenience, code samples in this paper are based on an early access release of MarkLogic 6 MarkLogic docs.

Random Sampling
A common approach to characterizing a large population
 involves taking a random sample. A simple XQuery expression fn:collection()[1]
 takes advantage of the implementation detail that many databases define document order across the entire database in an arbitrary order so that the "first" document is essentially a random choice. One common manual approach is to "eyeball" the first such document, and maybe a few others, to get an intuitive feel for the kinds of data and structures at hand. This approach has obvious scaling difficulties.
For larger samples, greater automation is needed for the analysis. We can define a process
 producing a sample of size N to be considered random if any particular
 collection of documents is equally likely to turn up as any other
 same-sized collection of documents. Randomness of a sample is important, because a non-random sample will lead to systematic errors not accounted for in statistical measures of probability.
Within a random sample it is possible to examine characteristics of
 the sample and make statistical inferences about the overall population. The more
 documents in the sample, the better the approximation. When the overall population is small, it is possible to sample most or even all of the documents. But with large collections of documents, the proportion of documents contained in a reasonably-sized sample will be very small. When dealing with a dataset of this size, certain simplifying assumptions become possible, as outlined in later sections of this paper.
Users of search
 interfaces have become accustomed to approximations, for example, a web
 search engine may report something like “Page 2 of about 415,000,000
 results”, but as users go deeper into the result set, the estimated number
 tends to converge on some actual value. Users have accepted this behavior,
 though it is less commonly used in finer-grained navigational situations. For example, if a sidebar
 on a retail site says, “New in last 90 days (328)”, quite often one will find that
 exactly 328 items will be available by clicking through all the pages of
 results.
This difference in user expectations can be exploited. In particular, in the case of first contact with a new XML dataset,
 exact results are far less important than overall trends and correlations,
 which makes a sampling approach ideal.
Sample size end error
Statistical estimates by definition are not completely reliable. For example, it's possible (though breathtakingly unlikely) that a random sample of 100 documents would happen to contain all 100 unusual instances out of database of a million documents. A surer bet, though, would be none of the unusual documents would turn up in a sample of 100. One measure of an estimate's reliability, called a confidence interval is related to a chosen probability range. To put it another way, if the random experiment were repeated many times whereby it was found that 95.4% of the calculated confidence intervals included the true value, one could say that 95.4% was the confidence interval. (Note, however, that when speaking about a single experiment, the estimated range either contains the true value or it doesn't and one would need more complicated Bayesian techniques to delve deeper.)
For a large population, it is convenient to use a confidence
interval of 95.4%, which encompasses values two standard deviations from the mean
 in either direction and makes the math come out easier later on. At that confidence level, and assuming a large overall population relative to the sample size, the maximum margin of
 error is simply (continuing to use XQuery notation)
1 div math:sqrt($sample-size)

 although in particular cases, the observed error can
 be somewhat less.
For example, a sample size of 1000, likely to be conveniently held
 in memory, the maximum margin of error comes out to about 3.16%, which
 is good enough for many purposes.
A key weakness in sampling is that rare values are
 likely to be missed. A doctype that appears only 100 times out of a
 million is unlikely to show up in a sample of 100 documents, and on rare
 occasions when it does show up exactly once, straightforward extrapolation would infer that it occurs in 1% of all documents, a gross overestimation.

Performance
The approaches in this paper assume that an entire sample of documents can comfortably fit into main memory. To fulfill a random-sampling query without indexes, each document
 needs to be read from disk. Therefore, overall the performance of the query will be roughly
 linear in the sample size, plus time for local processing. Details will vary depending on the database
 system, but in general there will be some amount of data locality making
 for shorter document-to-document disk seeks. A back-of-the-envelope estimate is about 1
 second per 200 documents in the sample, ignoring the prospect of documents cached in memory, perhaps somewhat higher with high-performance disks such as SSD or RAID configurations that stripe data across multiple disks.[1].

Dipping a toe into the database
Getting familiar with an XML dataset requires a combination of automated and hands-on approaches. While writing this paper, I had on hand a dataset of over 5 million documents, crawled from an assortment of public social media sources,
 of which I knew very little in advance.
The first-document-in-the-collection approach mentioned above yields this
 [2]:

<sl:streamlet
xmlns:sl="http://example.com/ns/social-media/streamlet">
 <sl:vid>13067505336836346999</sl:vid>
 <sl:tweet>#Jerusalem #News 'Iran cuts funding for
 Hamas due to Syria unrest'
 http://t.co/ARRqabU</sl:tweet>
</sl:streamlet>

The choice of the "first" document, is, of course, completely arbitrary. The second document has something completely different:

<person:person
xmlns:person="http://example.com/ns/social-media/person">
 <person:id>8999631448253261463</person:id>
 <person:follower-count>0</person:follower-count>
 <person:influence>0</person:influence>
 <person:name>Borana Mukesh</person:name>
 ...
</person:person>

There's only so much one can learn from picking through individual documents.
The following XQuery 3.0 XQuery 3.0 code
 demonstrates this approach by examining a sample of documents in order to extract potentially interesting features, which a human operator can use to make decisions about where to dive deeper. The code assembles the following:
	Root elements

	Commonly-occurring elements

	Commonly-occurring namespaces

	Elements that tend to have a lot (or a little) text
 content

	Text nodes that look like dates

	Text nodes that almost look like dates

	Text nodes that look like numeric data, for example years

 let $dv := distinct-values#1
 let $n := ($sample-size, 1000)[1]
 let $xml-docs := spx:est-docs()
 let $text-docs := spx:est-text-docs()

 let $samp := spx:random-sample($n)
 let $cnames := $dv($samp/*/spx:name(.))
 let $all-ns := $dv($samp//namespace::*)
 let $leafe := $samp//*[empty(*)]
 let $leafetxt := $leafe[text()]
 let $leafe-long := $leafetxt
 [string-length(.) ge 10]
 let $leafe-short := $leafetxt
 [string-length(.) le 4]
 let $dates := $dv($leafe-long
 [. castable as xs:dateTime]/spx:name(.))
 let $near-dates := $dv($leafe-long
 [matches(local-name(.), '[Dd]ate')]
 [not(. castable as xs:dateTime)]/spx:name(.))
 let $all-years := $dv($leafe-short
 [matches(., "^(19|20)\d\d$")]/spx:name(.))
 let $all-smallnum := $dv($leafe-short
 [. castable as xs:double]/spx:name(.))
 let $epd := count($samp//*) div count($samp/*)
 return
 <spx:data-sketch
 xml-doc-count="{$xml-docs}"
 text-doc-count="{$text-docs}"
 binary-doc-count="{$binary-docs}"
 elements-per-doc="{$epd}">
 {$cnames!<spx:root-elem
 name="{.}"
 count="{spx:est-by-QName(spx:QName(.))}"/>
 }
 {$all-ns!<spx:ns-seen>{.}</spx:ns-seen>}
 {$dates!<spx:date>{.}</spx:date>}
 {$near-dates!<spx:almost-date>{.}</spx:almost-date>}
 {$all-years!<spx:year>{.}</spx:year>}
 {$all-smallnum!<spx:small-num>{.}</spx:small-num>}
 </spx:data-sketch>

This code and the following listings make use of the following helper functions which
 contain vendor-specific implementations, which are not important here (see the Code section
 later for details):	spx:est-docs()
	A function that quickly estimates the total number of documents in the database.

	spx:est-test-docs()
	A function that quickly estimates the total number of documents in the database that consist of a single text node.

	spx:random-sample()
	A function that returns a random sample of documents from the database.

	spx:name()
	Returns a Clark name of a given node.

	spx:formatq()
	Returns a Clark name from a given QName.

	spx:node-path()
	Returns an XPath expression that uniquely identifies a node.

This code
 produced the following (with adjustments for line length):
<spx:data-sketch
xmlns:spx="http://dubinko.info/spelunx"
 xml-doc-count="5789128"
 text-doc-count="0"
 binary-doc-count="0"
 elements-per-doc="12.88" >
 <spx:root-elem name="{...}person" count="1248848"/>
 <spx:root-elem name="{...}media" count="2117625"/>
 <spx:root-elem name="{...}streamlet" count="1173545"/>
 <spx:root-elem name="{...}author" count="1248815"/>
 <spx:ns-seen>
 http://example.com/ns/social-media/person
 </spx:ns-seen>
 <spx:ns-seen>
 http://example.com/ns/social-media/media
 </spx:ns-seen>
 <spx:ns-seen>
 http://example.com/ns/social-media/streamlet
 </spx:ns-seen>
 <spx:ns-seen>
 http://example.com/ns/social-media/author
 </spx:ns-seen>
 <spx:ns-seen>
 http://www.w3.org/XML/1998/namespace
 </spx:ns-seen>
 <spx:date>{...}ingested</spx:date>
 <spx:date>{...}published</spx:date>
 <spx:date>{...}canonical</spx:date>
 <spx:date>{...}inserted</spx:date>
 <spx:small-num>{...}follower-count</spx:small-num>
 <spx:small-num>{...}influence</spx:small-num>
 <spx:small-num>{...}follower-count</spx:small-num>
</spx:data-sketch>

This dataset appears fairly homogeneous: only four different root element
 QNames, were observed over 1,000 samples. Additionally, these documents
 contain a number of elements that seem date-like, but would require some
 cleanup in order to be represented in as the Schema datatype xs:dateTime.
 For purposes of this paper, one particular element, influence,
 as seen earlier, seems particularly
 interesting. Is there a way to learn more about it?

Digging Deeper
It’s possible to perform similar kinds of analysis on specific nodes
 in the database. Given a starting node, the system of XPath axes provides
 a number of different ways in which to characterize that element’s use in
 a larger dataset. Some care must be taken to handle edge cases, assuming
 nothing in an unknown environment. The following code listing
 characterizes a given element node (named with a QName) along several
 important axes:
 let $dv := distinct-values#1
 let $n := ($sample-size, 1000)[1]
 let $samp := spx:random-sample($n)

 let $ocrs := $samp//*[node-name(.) eq $e]
 let $vals := data($ocrs)
 let $number-vals := $vals
 [. castable as xs:double]
 let $nv := $number-vals
 let $date-values := $vals
 [. castable as xs:dateTime]
 let $blank-vals := $vals[matches(., "^\s*$")]
 let $parents := $dv(
 $ocrs/node-name(..)!spx:formatq(.))
 let $children := $dv($ocrs/*!spx:name(.))
 let $attrs := $dv($ocrs/@*!spx:name(.))
 let $roots := $dv($ocrs/root()/*!spx:name(.))
 let $paths := $dv($ocrs/spx:node-path(.))
 return
 <spx:node-report
 estimate-count="{spx:est-by-QName($e)}"
 sample-count="{count($ocrs)}"
 number-count="{count($number-vals)}"
 date-count="{count($date-values)}"
 blank-count="{count($blank-vals)}">
 {$parents!<spx:parent>{.}</spx:parent>}
 {$roots!<spx:root>{.}</spx:root>}
 {$paths!<spx:path>{.}</spx:path>}
 <spx:min>{min($number-vals)}</spx:min>
 <spx:max>{max($number-vals)}</spx:max>
 {if (exists($vals)) then
 <spx:mean>
 {sum($nv) div count($nv)}
 </spx:mean>
 else ()
 }
 </spx:node-report>

These two techniques combine to provide a powerful tool for picking
 through an unknown dataset. First identify ‘interesting’ element nodes,
 then dig into each one to see how it is used in the data. While the sample
 documents are in memory, it is possible to infer datatype information, and
 for values that look numeric, to calculate the sample min, max, mean,
 median, standard deviation, and other useful statistics.
These techniques can be readily expanded to include statistics for
 other node types, notably attribute and processing-instruction
 nodes.

Free-form faceting
Index-backed approaches make it possible to produce a histogram of values,
 often called "facets", for example all the prices in a product database,
 arranged into buckets of values like 'less than $10' or '$10 to $50'
 and so on.
It’s possible to combine the concepts introduced thus far by breaking down a random sample into faceted data.
 With no advance knowledge of the range of values, it’s difficult to arrange values into
 reasonable buckets, but with some spelunking, as in the preceding section,
 it’s possible to construct reasonable bucketing. Based on the exploration
 from the preceding sections, the influence element looks
 worth further investigation.
The following XQuery function plots out the values of a given
 element as xs:double values in specified ranges.
declare function spx:histogram(
 $e as xs:QName,
 $sample-size as xs:unsignedInt?,
 $bounds as xs:double+
) {
 let $n := ($sample-size, 1000)[1]
 let $samp := spx:random-sample($n)
 let $full-population := spx:est-docs()
 let $multiplier := ($full-population div $n)
 let $ocrs := $samp//*[node-name(.) eq $e]
 let $vals := data($ocrs)
 let $number-vals := $vals
 [. castable as xs:double]!xs:double(.)
 let $bucket-tops := ($bounds, xs:float("INF"))
 for $bucket-top at $idx in $bucket-tops
 let $bucket-bottom :=
 if ($idx eq 1)
 then xs:float("-INF")
 else $bucket-tops[position() eq $idx - 1]
 let $samp-count := count($number-vals
 [. lt $bucket-top][. ge $bucket-bottom])
 let $p := $samp-count div $n
 let $moe := 1 div math:sqrt($sample-size)
 let $SE := math:sqrt(($p * (1 - $p)) div $n)
 let $est-count := $samp-count * $multiplier
 let $error := $SE * $full-population
 let $est-top := $est-count + $error
 let $est-bot := $est-count - $error
 return
 <histogram-value
 ge="{$bucket-bottom}"
 lt="{$bucket-top}"
 sample-count="{$samp-count}"
 est-count="{$est-count}"
 est-range="{$est-bot} to {$est-top}"
 error="{$error}"/>
};

This code accepts a particular QName referring to an element, a
 sample size, and an ordered set of numeric bounds, and returns the
 approximate count of values that occur in between each boundary. The first
 bucket includes values down to -INF, and the last bucket
 includes all values up to INF. Selecting values to partition
 the values into order-of-magnitude buckets will give a broad first
 approximation of the distribution.
For comparison, the following vendor-specific code, which requires a
 pre-existing in-memory index, resolves the exact counts of different
 values occurring in the database.

for $bucket in cts:element-value-ranges(
 QName("http://example.com/ns/social-media/person", "influence"),
 (1,10,100,1000), "empties")
return
 <histogram-value
 ge="{($bucket/cts:lower-bound, '-INF')[1]}"
 lt="{($bucket/cts:upper-bound, 'INF')[1]}"
 count="{cts:frequency($bucket)}"/>

The results of calling these function on the test database are given
 below in table format.

How wrong can you get?
As the book Statistics Hacks Statistics Hacks states,
 Anytime you have used statistics to summarize observations, you’ve probably been wrong. This technique is no exception.
As mentioned earlier, if we assume that the sample is of a small
 proportion of the overall population and is randomly selected, the maximum
 margin of error is a simple function of sample size. However, against
 particular values we can usually find a more accurate estimate.
To estimate the overall proportion, the standard error of the
 proportion must be computed, using the following formula.math:sqrt(($p - $p * $p) div $sample-size)
The
 maximum error, which occurs when the proportion is exactly 50%, is exactly
 half of the margin of error calculation earlier[3].
The following table illustrates the tradeoffs in accuracy, run-time,
 and necessity of a preconfigured index. The columns on the left represent histogram buckets of values of various ranges,
 while the rows across the top represent different sample sizes, or in the case of the final column, exact index resolution.
 The hardware under test consisted of a 2.4Ghz Dual-core 64-bit Intel machine with two 15k rpm disks
 in a RAID O configuration.
Table I
Comparison of run-time and accuracy

		estimate, n=10	estimate, n=100	estimate, n=1000	estimate, n=10000	exact index resolution
	values < 1	115,7825	810,477	897,314	782,111	807,284
	1 <= values < 10	0	0	17,367	25,472	28,414
	10 <= values < 100	578,912	115,782	208,408	164,990	161,734
	100 <= values < 1000	578,912	347,347	219,986	208,408	204,298
	values >= 1000	0	0	28,945	36,471	47,070
	Run time	0.35 sec	0.48 sec	1.9 sec	19.4 sec	0.19 sec

Unsurprisingly, at smaller sample sizes, it is probable that
 infequently-occurring data will be completely excluded from the random
 sample. Even the most frequently-occurring values, in this case the bucket
 of values less than one, occurs in less than 14% of the 5.7M documents.
 Given this, the accuracy of the random sampling technique, even at the
 lower sample counts, is more than enough to give a general impression of
 the distribution of the data values.
To visulaize this, it is possible to export these values into a
 desktop spreadsheet program and produce a graph, including error bars, as
 shown in the following figure.
Figure 1: Graphical representation of data distribution (by percentage)
[image:]

Conclusion
The techniques shown in the paper offer a useful framework within which to
 make the initial foray into an unknown XML dataset. Starting with an automated
 run-down of high-level features in the dataset, particular QNames chosen by the
 user can be drilled down into deeper analysis. The dataset can even be summarized
 through histogram facets, much like those available to significantly more
 resource-intensive indexed databases.
The techniques shown here do not rely on proprietary features and are
 applicable to a wide range of available XQuery processors.
The book How to Lie with Statistics How to Lie with Statistics
 concludes with advice on how to be properly skeptical of statistics, and
 the guidelines apply to the techniques in this paper as much as in any
 other area.
	What's missing?
	Be on the lookout for areas where summarization may be
 obscuring important facts.

	Did somebody change the subject?
	Beware of an unfounded jump from raw figures to
 conclusions.

	Does it make sense?
	Any results that come from these techniques need to be
 eyeballed. Anything that seems wildly out of proportion needs to be
 more closely examined.

With those caveats, the techniques in this paper can provide a
 useful lever by which to pry open a large, unkonwn XML data set.

Code availability
The code samples mentioned in this paper are in available in a
 project named Spelunx available at GitHub Spelunx.

Further topics to explore
	Correlation and co-existence between given nodes

	Multi-dimensional sampling, as in geographic data

	Searching for correlated latitude and longitude pairs

	Hypothesis testing and type I vs type II errors

	Markov chain analysis for element and attribute
 containership

	Comparison and contrast with machine learning techniques

	Exploring the availability of random-sampling extension
 functions from different database vendors

	Ways to summarize mixed content

Bibliography
[R Language; Package 'XML'] Duncan Temple Lang (editor), Package 'XML', version 3.9-4 [online]. [cited 13th July, 2012]. http://cran.r-project.org/web/packages/XML/XML.pdf
[XQuery 3.0] Jonathan Robie, Don Chamberlin, Michael Dyck, and John Snelson (editors), XQuery 3.0: An XML Query Language [online]. [cited 13th July 2012]. http://www.w3.org/TR/2011/WD-xquery-30-20111213/
[MarkLogic docs] MarkLogic Corporation, MarkLogic Server Search Developer's Guide [online]. © 2012 [cited 13th July 2012]. http://developer.marklogic.com/pubs/5.0/books/search-dev-guide.pdf
[Clark notation] James Clark, XML Namespaces [online]. [cited 13th July, 2012]. James describes "universal names written as a URI in curly brackets followed by the local name" which have proved to be a useful construction in more contexts than explaining namespaces. http://www.jclark.com/xml/xmlns.htm
[Statistics Hacks] Bruce Frey, Statistics Hacks: Tips & Tools for Measuring the World and Beating the Odds (O'Reilly Media, 2006). Despite the name, includes a great deal of basic information on statistics and the math behind it.
[How to Lie with Statistics] Darrell Huff, How to Lie with Statistics (W. W. Norton & Company, 1993 reprint). To appreciate the power of statistics, you must understand how it can be used as a weapon.
[Spelunx] Micah Dubinko, Spelunx open source project [online] https://github.com/mdubinko/spelunx

[1] In general, document-level caching provides little benefit for
 random-sampling based approaches, as a different random set of
 documents gets selected on each run of the experiment.
[2] Namespace URIs have been anonymized.
[3] Half because margin of error already accounts for error in the
 plus or minus direction, i.e. a diameter, while standard error or the
 proportion does not, i.e. a radius.

Balisage: The Markup Conference

Exploring the Unknown
Understanding and navigating large XML datasets
Micah Dubinko
Lead Engineer
MarkLogic

<Micah.Dubinko@marklogic.com>
Micah Dubinko has worked on diverse projects, from portable
 heart monitors to mobile applications to search engines. He is
 currently Lead Engineer in the Applications group at MarkLogic.

Balisage: The Markup Conference

content/images/Dubinko01-001.png
| 109001000

1010100

1010

<

200%

1000%

1600%

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

