[image: Balisage logo]Balisage: The Markup Conference

Encoding Transparency: Literate Programming and Test Generation for Scientific Function Libraries
Mark D. Flood
Senior Policy Advior
Office of Financial Research

<mark.flood@treasury.gov>

Matthew McCormick
Researcher
Office of Financial Research

<matthew.mccormick@treasury.gov>

Nathan Palmer
Researcher
Office of Financial Research

<nathan.palmer@treasury.gov>

Balisage: The Markup Conference 2012
August 7 - 10, 2012

This is a work of the United States Government and is in the public domain.

How to cite this paper
Flood, Mark D., Matthew McCormick and Nathan Palmer. "Encoding Transparency: Literate Programming and Test Generation for Scientific Function Libraries." Presented at: Balisage: The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012.
 Balisage Series on Markup Technologies vol. 8 (2012). https://doi.org/10.4242/BalisageVol8.Flood01.

Abstract
We present a variation on literate programming (see Knuth: 1984, 1992) targeting
 multiple simultaneous readerships, both human (e.g., coders, testers, analysts,
 etc.) and compilers/interpreters (e.g., C++, Python, Fortran, etc.). The technique
 exploits existing commenting syntax available in all common programming languages to
 provide inline documentation and other semantic markup, which can then be used in
 test generation and code translation. To keep the problem manageable, we restrict
 attention to scientific function libraries (i.e., libraries of numerical routines
 adhering to the functional programming rule of no side effects). We offer a
 prototype implementation in XSLT and DocBook.

Balisage: The Markup Conference

 Encoding Transparency: Literate Programming and Test Generation for Scientific Function
 Libraries

 Table of Contents

 	Title Page

 	Introduction

 	Context and objectives

 	Usage scenarios
 	End-user documentation

 	Unit testing

 	Source code portability

 	Conclusions

 	About the Authors

 Encoding Transparency: Literate Programming and Test Generation for Scientific Function Libraries

Introduction
We outline a (nearly) language-neutral approach to embedding in ordinary source code
 semantic information that we use to generate documentation for multiple audiences, unit
 tests, and code translation templates. Our approach is within the literate programming
 tradition for enhancing the usability of software documentation, specifically the
 variants that focus on inline documentation. Accordingly, we embed the structured
 documentation within the ordinary comment syntax available in all common programming
 languages.[1]
Knuth (1984, 1992) introduced literate programming to negotiate the fundamental
 tension between the needs of two readerships for computer programs: humans and
 compilers. Knuth’s original recommendation and most implementations work from a hybrid
 literate document containing the information needed to generate both machine-readable
 code and human-readable documentation.[2]For example, Knuth’s (1984) first implementation, called WEB, provided two
 toolchains to export information from the literate source file: (a) TANGLE extracted
 executable source code for delivery to a Pascal compiler; and (b) WEAVE extracted
 documentation for delivery to a TeX interpreter.
Despite its impeccable pedigree and a devoted community of supporters, literate
 programming as originally envisioned has not gained widespread acceptance. Wilson (2011)
 even calls it a beautiful idea that failed. The psychological
 order requirement that literate source documents be arranged to best serve
 the human reader implicitly places a heavy burden on the programmer, whose human-facing
 literate document must simultaneously satisfy an error-intolerant compiler. The
 programmer must have fluency in both the literate syntax and the compiler syntax. Even
 for coders with both skills, there is a cognitive cost to switching repeatedly between
 the two commingled dialects-- one unwoven and the other untangled. As a result, the
 original literate programming paradigm is perhaps best suited to applications where the
 emphasis is inverted: pretty printing is indispensable and the code itself is in a sense
 secondary, as in Leisch’s (2002) Sweave, which allows statistical code to be embedded in
 scientific source documents to enable reproducible research.
 On the other hand, less orthodox technologies in the literate tradition (i.e.,
 combining executable source code with structured documentation) have been quite
 successful. Javadoc and its generalized peer Doxygen, which rely on structured comments
 embedded in source code to generate documentation, are among the most prominent
 examples. Similarly, tools like Python’s pydoc generate documentation from docstrings,
 string literals that are retained and accessible at runtime as special properties of
 objects. Under both approaches, the comparison to orthodox literate programming is
 instructive: structured documentation is still embedded with executable source code, but
 the requirement of psychological ordering is dropped. The compiler, by being stubbornly
 inflexible, has won the battle over how to order the statements in the source
 file.
Orthogonal to the literate programming paradigm, but still important for our project,
 is the realization by Peters (1999) that the usefulness of docstrings for documentation
 purposes could be harnessed to provide users with a simple, inline method for generating
 unit tests. This realization led to his creation of doctest.
Our approach, outlined in the following sections, follows in the tradition of
 Javadoc-style inline documentation, but we use XML intermediates with XSLT not only to
 allow for the generation of documentation for multiple audiences, but additionally to
 define and generate unit tests, as in doctest, and to generate templates for code
 translation. Section 2 provides further context for our project, section 3 describes the
 targeted use cases, and section 4 concludes.

Context and objectives
Function libraries play a prominent role in scientific computing.[3]A function library is a collection of well documented, callable
 routines of the form y = f(x), where each function takes some argument list, x, executes
 one or more statements depending only on x, and returns a list of values, y. Scientific
 functions tend to involve specialized, technical logic that can be obscure to
 non-experts. As a result, there is a greater-than-usual need for good documentation and
 extensive testing. At the same time, scientific routines typically adhere to the
 functional-programming convention of exhibiting no side effects. Routines without side
 effects are especially amenable to unit testing, and we restrict attention to this class
 of functions to contain the scope of this exercise. Lastly, scientific libraries are more
 likely than most to address technical issues that are abstract to the implementation
 context. For example, an invocation of a quadratic programming routine will have
 essentially the same meaning (execution logic) regardless of the language in which it is
 written; the same is not true for a resize_frame routine in a GUI windowing toolkit.
 Because of this, scientific routines are more amenable to porting from one programming
 language to another.
Our technique is at once more and less ambitious than orthodox literate programming. We
 similarly target multiple simultaneous readerships, both human (e.g., coders, testers,
 analysts, etc.) and compilers/interpreters (e.g., C++, Python, Fortran, etc.). However,
 like Javadoc, and in keeping with Dijkstra’s (1972) admonition that, brainpower
 is by far our scarcest resource, we concede the impracticality of
 psychological ordering. In particular, there is no tangling to extract
 executable statements; instead we work with valid source files that can be delivered to
 the compiler as is. We also hesitate to propose our method as broadly applicable to any
 programming paradigm. For example, our source-code portability proposal would likely be
 more complicated in an object-oriented environment, due to the possible presence of
 state-altering side effects and the (typically) fragmented sequence of control.
Since we use a form of inline documentation that, like Javadoc and others, exploits
 the existing commenting syntax available in some form in all common programming
 dialects, ours is highly versatile with respect to the choice of source language, to the
 point of being nearly language-neutral. This provides significant benefits when
 developing parallel implementations of scientific function libraries in a number of
 languages.
On the ambitious side of the ledger, we are interested in more than simply
 weaving handsome end-user documentation from embedded, structured
 documentation, although pretty printing is very much in scope. We also extend the basic
 methodology to encompass basic unit testing of functional logic. In the absence of side
 effects, it becomes straightforward to state the most common unit-test assertions
 declaratively and embed these declarations within comments in the source code. Due to
 the desire to be language-neutral, ours is not as straightforward or elegant as doctest,
 but it does provide many of the same benefits. Lastly, we use the template processor
 required by our documentation generation toolchain to offer a method for creating
 function prototypes-- including pseudocode-- for ports of an existing program to
 essentially an arbitrary target programming language.
While none of the individual components of this approach is by itself novel, we find
 that at least within the restricted scope of scientific function libraries without side
 effects, significant benefits are provided by the flexibility of our approach and the
 synergistic effects of using all of the individual elements of inline
 documentation, unit test generation, and code translation in concert.
Specifically, we note that the problem of code translation consists of three
 sub-problems: ensuring that the logic of a particular function is consistent across
 languages, performing the syntactic translation between languages, and optimizing the
 implementation within each language. Of these, the implementation is where a good
 programmer is needed most, both to write code that makes use of the appropriate idioms
 provided by a language, and to optimize the implementation of a particular set of logic.
 Thus, by providing a programmer with a template for a function that both defines the
 function signature and provides ready-made documentation from another language, we
 reduce unnecessary burdens on programmers porting the original source code. Additionally, by
 providing unit test routines, we enable easier verification of ported code. Finally, by
 examining discrepancies between implementations, we reduce the model risk inherent in
 any single implementation.
We consider our approach to be a simplified variation of the literate programming
 paradigm, targeting multiple simultaneous readerships, both human (e.g., coders,
 testers, analysts, etc.) and compilers/interpreters (e.g., C++, Python, Fortran, etc.).
 We offer a prototype implementation in XSLT and DocBook.

Usage scenarios
In this section, we describe the process in somewhat greater detail. As indicated
 above, the techniques cover three important usage scenarios for managing source code in
 function libraries.
End-user documentation
Knuth’s (1984, 1992) original vision for literate programming emphasized the need
 for source code to communicate with human programmers as well as with compilers or
 interpreters. A well documented program should speak clearly to the coder about what
 the code is doing, and the programmer should speak back by enhancing and refining
 the documentation. Knuth quotes a well known passage from Hoare (1973, 3),
documentation must be regarded as an integral part of the process of design
 and coding. A good programming language will encourage and assist the programmer
 to write clear self-documenting code, and even perhaps to develop and display a
 pleasant style of writing. The readability of programs is immeasurably more
 important than their writeablility.
Knuth’s (1984) initial implementation, called WEB, mixed discussion and logic in a
 single source file, which is then pulled apart to create both executable code and
 typographic source for onward processing by Pascal and TeX, respectively. Figure 1
 depicts the basic structure of the workflow in WEB (adapted from Figure 1 in
 Pieterse, Kourie and Boake, 2004, 113):
Figure 1: Figure 1
[image:]
Literate programming workflow in WEB

A key design decision here is to mix documentation and logic as co-equals in the
 source. Because the source document adheres to psychological ordering rather than
 executable ordering, a burden falls on the programmer to think
 bilingually (see Wilson, 2011) to understand how the source document
 will be simultaneously tangled and woven to the executable and typographic
 dialects.
We adopt a variation on this basic workflow, similarly mixing documentation and
 logic in a single source file, depicted in Figure 2 (a familiar example of this same
 workflow is Javadoc):
Figure 2: Figure 2
[image:]
Documentation and logic in Javadoc

An important difference in this architecture relative to orthodox literate
 programming is the use of a compiler-valid source document. Because compilers impose
 rigid validation rules on executable code, this relationship can be and is typically
 managed by programming IDEs with facilities such as real-time validation, syntax
 highlighting, debuggers, profilers, etc., sharply reducing the bilingual
 burden.
As described above, we embed documentation steganographically in the ordinary
 comment lines within the source code. A sample appears in Figure 3, using standard
 XML angle brackets as documentation markup within a Matlab or Octave source file.
 Comments containing content intended for delivery to the final end-user documents
 get a special syntax, %# instead of simply %. Given a
 source document in this form, the comment processor performs four straightforward
 pre-processing steps, resulting in valid XML that encapsulates all of the content
 required for end-user documentation:	Wrap any executable statements in <code> tags

	Delete ordinary comment lines

	Convert documentation comments by removing the leading
 %# markers

	Wrap the entire document in <codefile> tags

Figure 3: Figure 3
[image:]
A working example of steganographic documentation

An obvious (and planned) enhancement to this is to replace the angle brackets with
 a more felicitous markup scheme, such as Markdown, Textile or YAML.[4] Note that we have prototyped this process on Matlab/Octave source files,
 but it should work with any programming language that supports inline comments
 containing arbitrary text. The pre-processing routine is therefore customized to
 each source language, but the subsequent processing steps would be the same for any
 source language. Given a valid XML representation output by the preprocessing step,
 the next processing phase is an XSLT transformation to a standard publication format
 such as DocBook or DITA. Transformation from this intermediate form to final print
 or web format is then straightforward via standard tools.[5]

Unit testing
Section 3.1 outlines the basic process, which we also propose to extend to
 black-box unit testing. In this use-case, we embed structured unit-testing rules
 (rather than documentation content) within comments in the source code. There are
 precedents for this sort of inline testing (e.g., the aforementioned doctest package
 in Python), but to our knowledge these are limited to single-language contexts.
 There are also language-neutral domain-specific rule languages for unit testing
 (e.g., the TestML package; see Net, 2012), but these have not been used for inline
 tests. We propose to use a language-neutral rule syntax to specify unit tests
 declaratively, and then embed them in source-code comments.
Programmatic unit testing is particularly important for scientific function
 libraries, partly because a well defined functional API will try to isolate logic so
 that relatively few dependencies exist between routines at the API level, but also
 because scientific routines frequently involve subtle and highly technical execution
 logic, so that errors in output may not be immediately obvious to human observers.
 (For example, do you know offhand whether this square-root calculation is correct:
 sqrt(88) => 9.276442 ?) Note that the steganographic method could also be
 extended to white-box testing, if the code generates a structured log file
 containing intermediate results.

Source code portability
Scientific function libraries are frequently written in one programming language,
 and then ported to another language to support source-level compatibility. As noted
 above, this is more likely to occur for scientific code, because the concepts
 represented are typically unrelated to the programming dialect. Linear algebra is
 the same, whether implemented in C, Fortran or Java. Indeed, Feldman (1990) exploits
 the grammatical equivalence between Fortran 77 and C to implement a direct
 language-level converter. [6] This converter was then used to port the Numerical Recipes function
 library in that direction (see Press, et al., 2007).
In general, grammatical equivalence will not hold, and programmatic language-level
 conversion cannot reasonably be achieved. Even where it is possible, there are
 typically optimizations and refactorings that an expert in the target language would
 want to apply. The upshot is that post-translation manual intervention to debug or
 refine the target code should naturally be part of the process. Nonetheless, for any
 function library written in a particular language, there will be some family of
 alternative languages to which it could (in principle) be ported.[7] This family of languages then defines an equivalence class of mutual
 pseudocode for the routine or library. That is, if one starts with a working
 program written language A, and wishes-- with the services of an expert in language
 B-- to port the code, then the original program (in A) can serve as pseudocode for
 the target program (in B). Most developers have personal experience with applying
 this general process, so we are not inventing anything new here. The only real
 innovation is the recognition that much of the programming effort required for such
 a port-- namely the documentation and testing-- can be specified declaratively and
 in a structured way, as described in sections 3.1 and 3.2. An accurate programmatic
 conversion of the documentation and test plan is possible, using the sort of XSLT
 transformations described above. What remains is for a target-language expert to
 re-implement the pseudocode (i.e., the verbatim copies of source-language executable
 statements) as optimized target-language code. Note finally that the
 post-translation availability of dual implementations of the identical scientific
 logic opens up the possibility of automated comparative unit testing: if both
 implementations are supposed to do the same thing, then they should (typically,
 within machine precision) return identical outputs for identical inputs.

Conclusions
We have outlined a general approach to automated documentation, unit-testing and code
 portability for scientific function libraries, using the ordinary comment syntax as a
 vehicle to embed declarative logic steganographically in the source code. This addresses
 immediate and practical needs in our workplace, and may be useful to others similarly
 situated. We have a working prototype of significant portions of this tool chain, and
 are working to build it out further.

References
[Allen (2012)] Allen, Dean, 2012, Textile:
 A Humane Web Text Generator, Internet resource, Textism, downloaded 15 April
 2012. http://www.textism.com/tools/textile/

[Anderson, et al. (1999)] Anderson, E., Z.
 Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
 Hammarling, A. McKenney, D. Sorensen, 1999, LAPACK Users' Guide, Third
 Edition, Society for Industrial and Applied Mathematics (SIAM).
 http://www.netlib.org/lapack/lug/

[Beebe (2012)] Beebe, Nelson, 2012, A
 Bibliography of Literate Programming, technical report, University of Utah.
 ftp://ftp.math.utah.edu/pub/tex/bib/litprog.ps.gz
[Ben-Kiki, Evans and Net (2009)] Ben-Kiki, Oren, Clark Evans and Ingy döt Net, 2009, YAML Ain’t Markup Language
 (YAMLTM), Version 1.2, 3rd Edition, Patched at 2009-10-01, technical report,
 YAML.org, downloaded 18 April 2012. http://yaml.org/spec/1.2/spec.pdf

[CERN (2004)] CERN - European Organization for
 Nuclear Research, 2004, Colt: Open Source Libraries for High Performance
 Scientific and Technical Computing in Java, Internet resource, downloaded 17
 April 2012. http://acs.lbl.gov/software/colt/api/index.html

[Dijkstra (1972)] Dijkstra, E. W., 1972,
 The Humble Programmer [ACM Turing Lecture 1972],
 Communications of the ACM, 15(10), pp. 859-66.
 http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html. doi:https://doi.org/10.1145/355604.361591.

[Feldman (1990)] Feldman, S. I., 1990, A
 Fortran to C Converter,
 ACM SIGPLAN Fortran Forum, 9(2), 21-22.
 http://dl.acm.org/citation.cfm?id=101366%C3%DC

[Gruber (2012)] Gruber, John, 2012,
 Markdown, Internet resource, Daring Fireball, downloaded 15 April
 2012. http://daringfireball.net/projects/markdown/
[Hellmann (2011)] Hellmann, Doug, 2011,
 The Python Standard Library by Example,
 Addison-Wesley.
[Hoare (1973)] Hoare, C. A. R., 1973, Hints
 on Programming Language Design, technical report STAN-CS-73-403, Stanford
 Artificial Intelligence Laboratory, December.
 ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/73/403/CS-TR-73-403.pdf

[Knuth (1984)] Knuth, Donald E., 1984,
 Literate Programming,
 The Computer Journal, 27(2), 97-111. doi:https://doi.org/10.1093/comjnl/27.2.97.
[Knuth (1992)] Knuth, Donald E., 1992,
 Literate Programming, Center for the Study of Language and
 Information - Lecture Notes.
[Leisch (2002)] Leisch, Freidrich, 2002,
 Sweave: Dynamic generation of statistical reports using literate data
 analysis, Compstat 2002 - Proceedings in Computational Statistics,
 575-580.

[McGrath (2005)] McGrath, Sean,
 2005, Semantic Steganography, Internet resource, accessed July 17,
 2012. http://seanmcgrath.blogspot.com/2005/04/semantic-steganography.html

[Net (2012)] Net, Ingy dot, 2012, TestML User
 Manual, Internet resource, downloaded 18 April 2012.
 http://testml.org/documentation/user-manual/

[NAG (2009)] Numerical Algorithms Group Limited
 (NAG), 2009, NAG Library Manual, Mark 22, Internet resource, downloaded
 17 April 2012.
 http://www.nag.co.uk/numeric/fl/nagdoc_fl22/xhtml/FRONTMATTER/manconts.xml

[OASIS (2010)] OASIS, 2010, Darwin
 Information Typing Architecture (DITA), Version 1.2, OASIS Standard, 1
 December 2010, downloaded 18 April 2012.
 http://docs.oasis-open.org/dita/v1.2/os/spec/DITA1.2-spec.pdf

[Peters (1999)] Peters, Time, 1999,
 docstring-driven-testing, comp.lang.python, accessed June 12,
 2012. https://groups.google.com/forum/?fromgroups#!msg/comp.lang.python/DfzH5Nrt05E/Yyd3s7fPVxwJ

[Pieterse, et al., (2004)] Pieterse, Vreda,
 Derrick G. Kourie, and Andrew Boake, 2004, A Case for Contemporary Literate
 Programming,
 Proceedings of SAICSIT ’04, 2-9.
 http://espresso.cs.up.ac.za/publications/vpieterse_etal_saicsit.pdf

[Press, et al. (2007)] Press, William H., Saul
 A. Teukolsky, William T. Vetterling, and Brian P. Flannery, 2007, Numerical
 Recipes: The Art of Scientific Computing, 3rd Ed., Cambridge University
 Press. http://www.nr.com/

[Schulte, et al., (2012)] Schulte, Eric, Dan
 Davison, Thomas Dye, and Carsten Dominik, 2012, A Multi-Language Computing
 Environment for Literate Programming and Reproducible Research,
 Journal of Statistical Software, 46(3), January.
 http://www.jstatsoft.org/v46/i03/paper

[SciPy (2012)] SciPy Community, 2012, SciPy
 Reference Guide: Release 0.11.0.dev-bdfdc65, technical report, downloaded 16
 April 2012. http://docs.scipy.org/doc/scipy/scipy-ref.pdf

[Stayton (2007)] Stayton, Bob, 2007,
 DocBook XSL: The Complete Guide (4th Edition), Sagehill
 Enterprises. http://www.sagehill.net/book-description.html

[Walsh (2010)] Walsh, Norman, 2010,
 DocBook 5: The Definitive Guide, O’Reilly Media.
 http://shop.oreilly.com/product/9780596805012.do

[Wilson (2011)] Wilson, Greg, 2011,
 Literate Programming, Internet resource, Software Carpentry,
 downloaded 14 April 2012.
 http://software-carpentry.org/2011/03/4069/
[Zaytsev and Lämmel (2011)] Zaytsev, Vadim
 and Lämmel, Ralf, 2011, A Unified Format for Language Documents, in: B.
 Malloy, S. Staab, and M. van den Brand (eds.), Software Language Engineering,
 Lecture Notes in Computer Science, 6563, Springer Verlag, 206-225.
 http://www.springerlink.com/content/126476612j05082n/

[1] Our approach to the embedding of semantic information in source also has
 parallels to McGrath’s (2005) concept of “Semantic Steganography.”
[2] Beebe (2012) provides a very useful bibliography of literate programming.
 Pieterse, Kourie, and Boake (2004) survey a number of literate implementations,
 identifying six essential qualities of literate programming, all emphasizing the
 needs of the human user:	Literate quality (crisp and artistic descriptions and
 definitions)

	Psychological order (arranged to maximize human
 understanding)

	Integrated documentation (commingling of documentation and
 executable statements)

	Table of contents, index and cross references

	Pretty printing

	Verisimilitude (single source document for both documentation and
 executable statements)

[3] Examples are too numerous to survey here. Prominent contributions include
 Anderson, et al. (1999), CERN (2004), NAG (2009), and Press, et al.
 (2007).
[4] We are at a very preliminary prototyping stage currently, and are
 evaluating various markup options. On Textile, see Allen (2012); on YAML,
 see Ben-Kiki, Evans and Net (2009); on Markdown, see Gruber (2012). Use of a
 non-XML syntax would an extra up-conversion step to achieve valid XML output
 from the pre-processor.
[5] Our prototype relies on DocBook, but we are evaluating DITA as an
 alternative path. Supporting XSLT stylesheets for both (and/or additional)
 publication standards should be possible. For further details on DocBook,
 see Walsh (2010) and Stayton (2007); for further details on DITA see OASIS
 (2010).
[6] To a first approximation, Fortran 77 is a linguistic subset of C. Any
 statement that can be represented in Fortran 77 can be represented in
 C.
[7] For example, at the extreme, it is theoretically possible to represent any
 program written in a Turing-complete language in any other Turing-complete
 language. In practice, we do not advise arbitrary translation.

Balisage: The Markup Conference

Encoding Transparency: Literate Programming and Test Generation for Scientific Function Libraries
Mark Flood
Senior Policy Advior
Office of Financial Research

<mark.flood@treasury.gov>
Mark D. Flood (Mark.Flood@treasury.gov) did his undergraduate work at Indiana
 University in Bloomington, where he majored in finance (B.S., 1982), and German
 and economics (B.A., 1983). In 1990, he earned his Ph.D. in finance from the
 Graduate School of Business at the University of North Carolina at Chapel Hill.
 He has taught finance and business at universities in the U.S. and Canada, and
 worked as an Economist and Financial Economist on issues of regulatory policy
 and risk management at the Federal Reserve Bank of St. Louis, the Office of
 Thrift Supervision, the Federal Housing Finance Board, and the Federal Housing
 Finance Agency. He was a founding member of the Committee to Establish a
 National Institute of Finance. He is currently a Senior Policy Advisor in the
 U.S. Treasury, working for the Office of Financial Research. His research has
 appeared in a number of journals, including the Review of Financial Studies,
 Quantitative Finance, the Journal of International Money and Finance, and the
 St. Louis Fed's Review.

Matthew McCormick
Researcher
Office of Financial Research

<matthew.mccormick@treasury.gov>
Matthew McCormick is a research economist whose work currently focuses on
 systemic risk, network externalities, and housing finance. He is currently
 employed at the Office of Financial Research within the U.S. Department of
 Treasury. Prior to this, he worked as an economist at the Federal Housing
 Finance Agency and the Bureau of Economic Analysis. He holds an M.A. in
 Economics from George Mason University and a B.A. in Economics and Political
 Science from Northwestern University.

Nathan Palmer
Researcher
Office of Financial Research

<nathan.palmer@treasury.gov>

Balisage: The Markup Conference

content/images/Flood01-001.png
Source
document

1

WEB.

™ weave

document

oL Executable pascal
71 code compiler
t>{ ditor tool

Typographic Tex

content/images/Flood01-003.png
% Arguuents:
% a First mmber to add
% b Second mmber to add

4 <name>Sunmer</nane>
“# <documentation>

s <intro>
<descr>Addition nade easy</descr>

s </intro>

s <args

<arginputs

<name>a</mane>

<type>floats/type>

¥ <descr>A good muber to add</descr>
</arginpue>

<arginputs

<namesb < /nane>

<type>floats/tipe>

<descr>Another good mumber to add< /descr>
</arginput>

<argoutpur>

<namesy</mane>

¥ <type>tloats/type>

<descr>Tne sun</descr>

</argoutput>

s </args>

#

s <sequences

<name>Caleulation Sequences/nane>

<step>There 15 only one step!</step>
y=a-+n

s </sequences

</docunentation>

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Flood01-002.png
Saurce code Code

document \ compiler
— Ceior tool

Enchuser
Comment processor

documents

