[image: Balisage logo]Balisage: The Markup Conference

Luminescent: parsing LMNL by XSLT upconversion
Wendell Piez
Mulberry Technologies, Inc.

<wapiez@mulberrytech.com>

Balisage: The Markup Conference 2012
August 7 - 10, 2012

Copyright © 2012 by the author. Used with permission.

How to cite this paper
Piez, Wendell. "Luminescent: parsing LMNL by XSLT upconversion." Presented at: Balisage: The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012.
 Balisage Series on Markup Technologies vol. 8 (2012). https://doi.org/10.4242/BalisageVol8.Piez01.

Abstract
Among attempts to deal with the overlap problem, LMNL (Layered Markup and Annotation
 Language) has attracted its share of attention but has also never grown much past its
 origins as a thought experiment. LMNL’s conceptual model differs from XML’s, and by design
 its notation also differs from XML’s. Nonetheless, a pipeline of XSLT transformations can
 parse LMNL input and construct an XML representation of LMNL, with the resulting benefit
 that further XML tools can be used to analyze and process documents originating from the
 alien notation. The key is to regard the task as an upconversion: structural induction
 performed over plain text.

Balisage: The Markup Conference

 Luminescent: parsing LMNL by XSLT upconversion

 Table of Contents

 	Title Page

 	LMNL: the Layered Markup and Annotation Language
 	Ranges

 	Arbitrary overlap

 	Annotations

 	Atoms

 	xLMNL: an XML-based representation of the LMNL data model

 	Compiling LMNL syntax into xLMNL via XSLT upconversion
 	Checking LMNL syntax for well-formedness

 	Working with the model: prototype LMNL applications

 	Reflections

 	Appendix A. xLMNL example
 	LMNL syntax:

 	Compiled into xLMNL

 	Appendix B. RNC schema for xLMNL

 	Appendix C. Demonstrations and source code

 	About the Author

 Luminescent: parsing LMNL by XSLT upconversion

Luminescent is a prototype parser and compiler for LMNL
 syntax, converting LMNL documents into xLMNL, an XML-based
 representation of the LMNL model suitable for further processing. It consists of a series of
 XSLT 2.0 stylesheets, currently running in a web server (using Cocoon) or in batch mode (using
 an XProc pipeline). A second XProc pipeline can apply Schematron validation to the intermediate
 formats generated in Luminescent to detect and locate syntax errors in the input
 document.
LMNL: the Layered Markup and Annotation Language
LMNL (Layered Markup and Annotation Language) is an approach to markup first proposed by
 Jeni Tennison and myself in 2002 [Tennison and Piez 2002]. It emulates XML in some
 respects, but also differs from it in several fundamental ways, suggesting some very different
 approaches to modeling text-based information using markup, with some very different
 applications. For this reason, even if an alternative processing stack could never be built on
 LMNL (which presumably it could, given enough time, effort and resources), and even if LMNL is
 never regarded as a replacement for XML (which it was never intended to be), it turns out to
 be fertile laboratory for solutions to modeling problems - including XML-based solutions for
 XML platforms.
XML is defined [XML Recommendation] as a syntax, but implies a model, which was
 described by the (non-normative) XML Information Set [XML Infoset], expressed in any number of code libraries and APIs (both official
 and unofficial), and finally standardized (at least in one variant) in the XPath 2.0/XQuery Data Model (XDM) [XDM] . LMNL
 inverts this, being defined first as an abstract model, whose syntax is proposed incidentally,
 as a form of representation (and as such, one among many conceivable). Nevertheless, the idea
 is the same: a formal model stabilizes a set of capabilities for tools performing useful
 operations over text-based information sets, and provides a basis for interoperability, while
 a syntax provides a serialization format and an interface for developers and users. Like XML,
 LMNL is conceived in order to support markup, a means of
 assigning labels and attributing properties and relationships to data points or fields in
 text, by means of text; and like XML, LMNL expects to provide a basis for descriptive and declarative markup
 applications (although, again like XML, not only those), which support document and data
 processing within layered systems that can thus benefit from separation of concerns (between
 authoring, editorial, data management, and production tasks, for example), and that are not
 locked into single applications. Again like XML, LMNL does this by leaving it to applications
 to define their own sets of names, labels or keywords, to which they can assign whatever
 semantics they see fit. In this respect, LMNL syntax (like XML) is a meta-language while LMNL
 itself (like the XDM) is a meta-model: a model (with a design and hence a particular set of
 affordances in application) that we use to make models, of documents, families of documents,
 and assorted information sets of whatever description.
This much is similar; the differences from XML are (primarily) in the design of the model
 itself, and (secondarily) in the syntax proposed to represent it. The syntax is designed to
 look as little like XML as possible, for two reasons: first, so that LMNL syntax may be
 embedded directly into XML syntax, or the reverse; and secondly, to reduce cognitive overload
 when thinking about LMNL and XML together, or when thinking about LMNL with the burden of
 expectations formed by XML. (At the level of the model, we have similarly tried to avoid using
 XML terminology for LMNL concepts except where the connections are strong.) In the interests
 of brevity, rather than explicate the model fully and offer rationales for it here, I offer a
 simple summary description of the model, and of LMNL syntax, together.Note
Readers may wish to review some of the historical LMNL specifications, which can now
 be found at lmnl-markup.org.

Ranges
Where XML has elements, LMNL has ranges. Unlike XML
 elements, ranges in LMNL have no necessary relation with one another: they are neither
 parents, nor children of each other, nor in any hierarchy at all. Ranges may be named (names
 in LMNL are qualified by namespaces in much the way they are in XML), or anonymous. The
 assumption is that they will ordinarily have generic names indicating their type, like XML
 elements. Ranges are properties of an owner limen (using
 the Latin word for doorstep to designate this important data object type),
 which belongs either to the document as a whole or an annotation, and which has a value comprising a single string (a sequence of contiguous
 characters). The value of the range will be a substring of the value of the limen, while its
 position will be the character offset within its limen where its starts.
In order to avoid confusion with XML, LMNL syntax uses a different set of delimiters to
 identify starts and ends of ranges. This example shows a chunk of LMNL syntax with two types
 of ranges, s and l, marked
 over the stream of text. s ranges do not overlap with other
 s ranges, and l never
 overlaps with l, but the two types overlap each
 other:[s}[l}He manages to keep the upper hand{l]
[l}On his own farm.{s] [s}He's boss.{s] [s}But as to hens:{l]
[l}We fence our flowers in and the hens range.{l]{s]

In the way that XML has a concise empty-element syntax, empty ranges may also be marked
 with single tags, as in [br]. Empty ranges have no value (or their value is an
 empty string), although they do have a position within their owner layer.
It is sometimes convenient (although LMNL syntax does not require it) to designate a
 single range covering the entire
 document:[excerpt}
[s}[l}He manages to keep the upper hand{l]
[l}On his own farm.{s] [s}He's boss.{s] [s}But as to hens:{l]
[l}We fence our flowers in and the hens range.{l]{s]
{excerpt]

Arbitrary overlap
LMNL supports arbitrary overlap, which is to say overlapping ranges of the same type.
 This is important for certain potential applications such as annotation frameworks and range
 indexing, where ranges of text need to be identified that may overlap, while still being of
 the same type.
In LMNL syntax, this example shows two ranges named r,
 overlapping each
 other:[r=r1}A case [r=r2}of{r=r1] arbitrary overlap{r=r2]
While
 the range identifier (given after the =) is optional, when it is not given, a
 close tag is presumed to match the most recent open tag with the same combination of name
 and identifier; thus to express overlap of this kind (rather than one r range simply being enclosed in the other), the identifier is necessary on
 the tags marking at least one of the ranges involved. But the identifier is not formally
 part of the name.

Annotations
While XML elements may have attributes, LMNL ranges may have annotations. Unlike XML attributes, there is no restriction against assigning
 more than one annotation with the same name to a given range; likewise, the order of
 annotations on a range is supported in the model.
In the syntax, annotations are represented by using tagging inside
 tagging:[excerpt [source}The Housekeeper{source] [author}Robert Frost{author]}
[s}[l [n}144{n]}He manages to keep the upper hand{l]
[l [n}145{n]}On his own farm.{s] [s}He's boss.{s] [s}But as to hens:{l]
[l [n}146{n]}We fence our flowers in and the hens range.{l]{s]
{excerpt]
In
 order to reduce tagging overhead, when annotations contain only simple string values, their
 close tags may be presented in abbreviated notation (resembling anonymous end
 tags):...[l [n}145{]}On his own farm.{s [id}s1{]]...
In
 addition (as this example also shows), the syntax permits placing annotations on end tags,
 not only on start tags.
Finally, while attributes in XML assign properties to elements as name-value pairs, LMNL
 annotations may be structured. In the LMNL model, annotations are isomorphic to LMNL
 documents: like a document, an annotation has a limen with content and optionally ranges
 over that content. Likewise, like ranges (including ranges over annotation content),
 annotations may be annotated.
Given this flexibility it is sometimes convenient for annotations, like ranges, to be
 empty, having no content but only annotations, which it groups, orders and names.
So this is legal syntax and represents a coherent LMNL document
 object:[excerpt
 [source [date}1915{][title}The Housekeeper{]]
 [author
 [name}Robert Frost{]
 [dates}1874-1963{]] }
[s}[l [n}144{n]}He manages to keep the upper hand{l]
[l [n}145{n]}On his own farm.{s] [s}He's boss.{s] [s}But as to hens:{l]
[l [n}146{n]}We fence our flowers in and the hens range.{l]{s]
{excerpt]

In this example, the excerpt range carries two empty annotations,
 source and author, each of which has annotations of its
 own.
This is an especially powerful feature of LMNL, not only because it provides a very
 useful capability in modeling (as it presents annotations in a directed graph structure
 – as if XML attributes could have their own attributes), but also because of its
 implications for the way documentary information is organized and linked. For example, a
 LMNL system might well support attaching a document dynamically as an annotation to a range
 in another document.

Atoms
At its base, a LMNL document is defined as a sequence of atoms: the most common type of atom will ordinarily be a character
 atom, represented by a single Unicode character in the syntax. Yet while every
 character in Unicode maps to a corresponding atom, atoms in LMNL are also capable of
 representing other information of whatever kind an application may find it useful to
 represent in this way.
An atom has string length of 1. Consequently, and unlike empty ranges, atoms not only
 have location, but they occupy space, are included in the value of ranges in
 which they participate, and can be marked up. Atoms are identified with their own notation,
 {{ }}, in the syntax.[1] In this example, an atom named logo is marked
 up with a range named link:[link [href}lmnl-markup.org{]}{{logo [src}lmnl-markup.org/hat.png{]}}{link]

xLMNL: an XML-based representation of the LMNL data model
One way LMNL builds on the conceptual foundation of XML is by differentiating between
 operations on the syntax, which imply parsing, and operations on optimized representations of
 documents held in memory: the model. This differentiation gives us leverage in
 development, since we have the opportunity to identify either syntax or model as the
 appropriate place for design and implementation, whether that be of the tag set itself
 (considered as a set of labels and constraints over their use), user interfaces,
 transformations or anything else.
Paradoxically, while the LMNL model is designed in deliberate contrast to XML, it is
 nevertheless useful to specify an XML-based representation of it, for several reasons. First,
 it exposes instances conveniently by giving us the opportunity to serialize LMNL documents in
 XML syntax. Second, it makes it possible to use XML-based tools (such as XSLT, schema
 technologies, XQuery, XML servers, CMS and database technology) to query and manipulate LMNL
 – an advantage for those of us who are well-practiced in these technologies for data
 processing, but not in Java or Python. And thirdly, it clarifies some of the resemblances and
 differences between LMNL and other approaches (especially XML-based approaches) to the problem
 set.
Since 2002, I have experimented with adapting XML to LMNL in several different ways. Not
 only can XML elements be construed as LMNL ranges and XML attributes as LMNL annotations (this
 is the essence of the CLIX and ECLIX approaches, cf Piez 2004); also,
 XML-based notations for representing overlap, such as milestone-based notations or segmented
 and aligned XML elements, can be mapped into LMNL. This provides a framework, at least, for
 thinking systematically about how to implement and maintain processes to manage these awkward
 and difficult forms of XML.
Yet the real power of the LMNL model as such cannot be exploited without a more direct
 representation. xLMNL is an XML-based representation of the
 model itself: that is to say, it leaves behind the concept of a document as an information set
 represented in embedded markup (literal tags applied directly to literal text), and simply
 uses XML as a kind of poor man's (hierarchical) database. This gives us many of
 the advantages of an XML platform described above, while making downstream applications more
 tractable, inasmuch as they can work directly with LMNL as conceptualized, rather than at a
 remove. At the price of being somewhat heavyweight and memory intensive, xLMNL is thus a
 useful interim format for testing ideas and demonstrating concepts.
Again, the most concise way of presenting this design is by way of an example: the xLMNL
 equivalent of the document given above is presented in Appendix A.Note
Note however that the notation itself is not at all concise! In fact there are many
 redundancies built into xLMNL, as compared to a bare LMNL range model, in order to
 streamline downstream processes. For example, text layer content is broken up into spans
 which are indexed to the ranges in which they participate. While a LMNL processor might
 wish to calculate this on the fly, when working on a static document it makes sense to
 index them only once, so this is done in xLMNL. It should go without saying that this does
 not preclude a more lightweight standoff-based XML representation of LMNL.
xLMNL has undergone several iterations since I first starting modeling LMNL directly
 with XML in 2004 [Piez 2004, and see also Piez 2010]

Developers who work on the overlap problem in XML will recognize this as a standoff
 representation of ranges. As such, it might be generated and maintained in any number of ways
 – even (if rather onerously) by hand.
Nevertheless, no claim should be inferred that I suppose xLMNL to be at all an optimal
 approach to working with LMNL on an XML platform. The best argument for doing this is that
 fairly dramatic demonstrations of the interest of overlapping markup are not all that hard to
 come by if one only has a means by which to create them, and xLMNL is a step along the
 way.
A schema for xLMNL, using Relax NG (compact syntax)
 appears in Appendix B.

Compiling LMNL syntax into xLMNL via XSLT upconversion
In its current form, the complete Luminescent pipeline has thirteen steps, each of which
 is implemented in an XSLT 2.0 transformation. These can be chained together using any
 available means; I have used both XProc and Cocoon (which is convenient for hooking
 Luminescent together with further transformations processing xLMNL into various targets).
 Several of the steps could be combined for greater efficiency; the reason to have so many
 presently is to maximize transparency for development and debugging.
The steps proceed as follows:	Comments are extracted using a regular expression matching on open and close comment
 delimiters ([!-- and --]). This has to be done first so that
 markup inside comments will not be processed in subsequent steps. The result is a single
 element (representing the root of the tag tree) containing a sequence of strings and
 elements representing comments.

	Tokenization: all open and close tag delimiters, [, {,
] and } in document content (i.e., not inside comments) are
 matched and wrapped as XML t elements (for token). The result is a sequence of strings interspersed with
 comments and these elements, representing tag delimiters.

	The token (t) elements are marked with line and
 character offsets, to be carried forward for purposes of any error reporting that has to
 be performed later.

	A sibling recursion is applied to infer tagging from the tokens. A tag element is initiated with each open delimiter
 ([or {); each close delimiter (] or
 }) ends the tag element most recently
 started. The result is a rudimentary tag tree of the document. Delimiters and comments
 are retained.

	Types are assigned to the tags, which are mapped to start, end, empty and atom elements. This works by
 inferring each type of tag from its open and close delimiters: [r} for
 start, {r] for end, [e] for empty, and {{a}} for
 atom. The extra level of delimiters required for atoms is respected; tags with
 outer shells but no inner shells (that is, that fail to
 respect the double-brace syntax of atoms, as in {{atom}}) are marked as
 errors.
Simultaneously, tag names (generic identifiers) are extracted from their values. Any
 tags that have range identifiers with the generic identifier keeps its range identifier
 as part of its GI. (So a tag [range=r1} is represented as <range
 gi="range=r1"/>.)

	Start tags are marked with unique identifiers (distinct from any range identifiers
 already given).

	By means of another sibling recursion, end tags are marked with the identifier of
 the most recent start tag with the same GI.
Since range identifiers are still, at this stage, considered part of the GI, the
 sibling recursion in this process matches end tags to start tags correctly.

	Matching start and end-tag pairs appearing inside tags are promoted into
 annotations.
This is the trickiest step, for two reasons. First, abbreviated syntax permitted for
 simple annotations means that anonymous end tags ({]) may be matched with
 named start tags. Secondly, annotations may contain markup, and so not just any tag
 directly inside a tag is actually an annotation delimiter (it could mark up a range over
 content inside the annotation). This process must work, again, via sibling recursion
 (the third one performed in the pipeline). Where tagging is not correct, error elements may be generated.

	Character offsets are marked on start, end, empty and atom tag elements, and text spans are wrapped (with span elements) and marked with character offsets within their
 owner layer (or limen in LMNL terminology: the
 annotation or document within which they appear). The offsets are determined from the
 lengths of string content (text nodes in the XML), with any atoms appearing being given
 length 1, while comments and range markers have length 0.

	Proper generic identifiers (range names) are derived from combinations of ranges
 with their identifiers. (The identifiers are saved as label attributes in case they may be wanted.)

	Unique identifiers are assigned to ranges; range start and end tags have the same
 identifier, while empty range tags have their own.
 Similarly, annotations are marked with unique identifiers, as is the document as a
 whole.

	Layer identifiers are assigned to spans, corresponding to the limen (annotation or
 document) in which the span appears. Strictly speaking these identifiers are redundant,
 since the same information is given by the xLMNL document structure; but they are useful
 for optimizing subsequent (downstream) processes or (potentially) for processing or
 aggregating LMNL documents described in multiple xLMNL instances.
The result of this step is a comprehensive tag tree of the marked up
 LMNL syntax instance.
(A later project goal will be to codify this format for interchange; it maps to the
 earlier CLIX format. This may also prove to be more robust than xLMNL for maintenance of
 LMNL data sets in XML, since ranges are still represented by tags within the text stream
 rather than standoff markup.)

	The tag tree is converted into xLMNL by reading range elements from start/end tag
 pairs, or from empty range markers as the case may be. Ranges are marked with the start
 and end offsets, read from their tags. Spans are marked with pointers to the ranges in
 which they participate. (A fourth sibling recursion accomplishes this. Again, the
 information here is redundant but useful.)

Checking LMNL syntax for well-formedness
Rather than stop processing, the pipeline currently emits error elements when it encounters problems, with codes identifying the issue.
 This appears to work well.
In addition, more precise diagnostics are performed by applying Schematron validation to
 particular steps in the pipeline. (This is implemented with a second XProc pipeline
 specification that imports the main one, applies Schematron schemas to the results of two of
 Luminescent's intermediate formats, aggregates their results together and formats them.) For
 example, using Schematron it is easy to check whether all start tags have matching end tags
 or vice-versa, or that range or annotation names follow their rules. Because the
 intermediate formats carry forward information on the location of tagging in the original
 LMNL syntax instance, Schematron can report the locations of tagging found to be
 problematic.
This is especially important since LMNL syntax becomes hard to read as the markup
 becomes more complex.[2] For example, here is a malformed
 instance:[excerpt [source}The Housekeeper{source] [author}Robert Frost{author]]}
[s}[l [n}144{n]}He manages to keep the upper hand{l]
[l [n}145{n]}On his own farm.{s] [s}He's boss.{s] [s}But as to hens:{l]
[l [n}146{n]}We fence our flowers in and the hens range.{l]{s]
{excerpt]
(The
 error occurs at the end of the first line, where an extra] appears before the
 } ending the start tag.)
Schematron reports
 this:Error UNEXPECTED-TAGGING reported for } at 1:71,
 C:\Projects\LMNL\Luminescent\lmnl\frost-quote.lmnl
No start tag matches end tag {excerpt] at 5:1,
 C:\Projects\LMNL\Luminescent\lmnl\frost-quote.lmnl
The
 processor has taken the mistaken], as it must, as the end of the tag; and
 since it therefore makes an empty range marker, the end tag that is supposed to match it is
 found to have no start tag.
The two errors are detected differently. The first error is reported for any tag
 delimiter that can't be matched with a corresponding delimiter of the opposite kind (start
 or end). The second is reported for the failure to follow the constraint that all start tags
 must have end tags and vice versa.
The line numbers and offsets reported (1:71 and 5:1) correctly locate the problems;
 character 71 of line 1 is the location of the orphaned tag close delimiter }
 (which would have closed a start tag had the] character not intervened), while
 line 5 character 1 is where the orphaned end tag is located.

Working with the model: prototype LMNL applications
Currently I have several processes running with xLMNL as source. Some of these are tuned
 to particular tag sets, while others are generic. A selection is offered in place of
 presentation slides for this paper (the zipped package contains a mix of HTML, XML and SVG and
 can be reviewed starting from index.html using any current web browser).	A generic diagnostic stylesheet can report which range types overlap with which
 other range types. (This is most useful to know for process customization.)

	XML can be extracted from xLMNL dynamically, using a parameterized listing of range
 types to be reflected as a hierarchy of XML elements. Ranges of these types are promoted
 into XML elements; their annotations become, when they have simple values, XML
 attributes. Ranges not among these types, and annotations that are not cast to
 attributes, become XML elements representing range delimiters (tags) or annotation
 structures. Spans of text are kept with pointers to the ranges in which they
 participate, when these have not been cast to ancestor elements.
This process can be run independently, but its functionality is also available
 dynamically as a function call in XSLT, operating on any xLMNL document or annotation
 (or a subset of spans from within a document or annotation, perhaps those associated
 with a given range) and casting it into XML.
This is also a generic process, although the particular ranges to be converted into
 XML elements is passed in at run time.

	SVG graphs and HTML renditions can be generated to display and depict LMNL
 documents. These transformations, to be sure, are not always trivial; but their
 difficulties are greatly mitigated by the XML extraction process just mentioned, used to
 cast LMNL into intermediate XML formats (hierarchical views of the
 LMNL).
These are not generic processes, since of course particular displays are optimized
 for particular tagging semantics, but some of them do rely on imported functionalities
 implemented generically (such as the logic that generates SVG bubble
 graphs), so it can be shared.

Links to demonstrations are provided in Appendix C.

Reflections
I can make no pretense as to the efficiency or scalability of this approach. So far, it
 has only worked well enough for my purposes: to demonstrate its feasibility in principle, and
 to test the specifications. While it has performed adequately well on documents up to several
 hundred Kb in size, and experience suggests that processing bottlenecks for Luminescent are
 actually more likely coming out of xLMNL rather than into it, I have no data to confirm my
 intuitions here. There does appear to be a rich and interesting set of problems at
 hand.
Nevertheless, if nothing else, this exercise has suggested some very interesting things
 about markup technologies beyond XML. One of the keys appears to be the separation of the
 parsing of the syntax from the construction of the model; so the parse tree is a tree only of
 the tags, from which the document model is derived by a different process. (The parse itself
 works like a parse of S-expressions, in which open and close delimiters are recursively parsed
 into tags.[3]) In this view of things, machine-automated text processing can support a very
 different form of document description than that provided by the operational semantics of XML,
 which in order to build a document model from the markup in a single pass, must limit itself
 to a syntax in which not just tags but the element structure itself can be described by a
 context-free grammar.[4] Thus its document models are limited to trees and to graphs projected over that
 tree [Bos 2005]. While not, formally, more expressive than XML markup (since
 graphs projected over a tree can express the same relations as LMNL markup, as indeed they do
 in xLMNL or other XML-based representations of LMNL), LMNL markup is practically so; it can
 get closer to the text than XML does, inasmuch as in order to fit within its
 own rules, XML's representation of a document (or at any rate, of a document in which
 overlapping structures or features, or structured annotations, are represented) is always
 getting in its own way.
Related to this is another aspect of this work: this parsing or compiling process does not
 assume a single depth-first traversal of structures implicit in the syntax, and so does not
 perform a single pass over the data. Instead, it considers that the entire text is available
 to the parser at once, and works by applying several distinct heuristic operations in
 sequence: first tags are inferred from delimiting tokens; then different types of tags (open,
 close, empty or atom) are recognized; then open/close pairs are matched, etc. Whether this
 technique is very novel or interesting, or how it relates to (or evades, or complicates)
 classic problems in text processing, I am not highly qualified to say. Yet it might be
 interesting for the sole reason that it serves as a proof of concept for generalized plain
 text processing in XSLT.
What I as a markup user find most remarkable, however, is what happens once a tool chain
 like this is in place. XML practitioners, I think, or at least those of us who work with
 structurally complex texts, are familiar with a conflict between the wish to describe our
 information accurately, capably and gracefully, and the need to force everything into a single
 hierarchy of elements – for reasons having nothing to do with the purposes of the
 markup, but only because the processing infrastructure insists on it, behind the scenes,
 before work has even begun. This conflict is apparent every time we work with (or must
 develop) a schema that has to make design compromises in order to address a requirement to
 represent things that overlap, introducing one or more of the well-worn but cumbersome
 workarounds for doing so. Sometimes we are faced with truly vexing problems in tagging, and
 even in the best case, having to use workarounds generates a certain amount of mental
 background noise. When working with LMNL markup, all this clamor is silenced. Even in small
 demonstrations, I am finding it liberating to be able to mark exactly what I wish to describe,
 with concern only for its clearest denotation in tags and its fidelity to what I want to
 represent in the text. If this is possible at all (and it evidently is), XML's early
 commitment to a single tree representation of something as complex as a text (meaning that
 word in the sense that literary scholars do, with everything it entails) appears to be a
 premature optimization – in other words, not always an optimization at all. When tags in
 plain text can be used to represent whatever structures in and features of text we care to
 discover, irrespective of whether they fit easily into a single tree-shaped model, then the
 potentials of markup are magnified immensely. We have only just started to explore the
 possibilities.

Appendix A. xLMNL example
LMNL syntax:
[excerpt}
[s}[l [n}144{n]}He manages to keep the upper hand{l]
[l [n}145{n]}On his own farm.{s] [s}He's boss.{s] [s}But as to hens:{l]
[l [n}146{n]}We fence our flowers in and the hens range.{l]{s]
{excerpt
 [source [date}1915{][title}The Housekeeper{]]
 [author
 [name}Robert Frost{]
 [dates}1874-1963{]]]

Compiled into xLMNL
White space is added for legibility, and LF characters in the data indicated with

.
<?xml version="1.0" encoding="UTF-8"?>
<x:document xmlns:x="http://lmnl-markup.org/ns/xLMNL" ID="N.d1e1"
 base-uri="file:/c:/Projects/LMNL/Luminescent/lmnl/frost-example.lmnl">
 <x:content>
 <x:span start="0" end="1" layer="N.d1e1" ranges="R.d1e2">
</x:span>
 <x:span start="1" end="34" layer="N.d1e1" ranges="R.d1e2 R.d1e5 R.d1e6">He manages to keep the upper hand</x:span>
 <x:span start="34" end="35" layer="N.d1e1" ranges="R.d1e2 R.d1e5">
</x:span>
 <x:span start="35" end="51" layer="N.d1e1" ranges="R.d1e2 R.d1e5 R.d1e15">On his own farm.</x:span>
 <x:span start="51" end="52" layer="N.d1e1" ranges="R.d1e2 R.d1e15"> </x:span>
 <x:span start="52" end="62" layer="N.d1e1" ranges="R.d1e2 R.d1e15 R.d1e25">He's boss.</x:span>
 <x:span start="62" end="63" layer="N.d1e1" ranges="R.d1e2 R.d1e15"> </x:span>
 <x:span start="63" end="78" layer="N.d1e1" ranges="R.d1e2 R.d1e15 R.d1e31">But as to hens:</x:span>
 <x:span start="78" end="79" layer="N.d1e1" ranges="R.d1e2 R.d1e31">
</x:span>
 <x:span start="79" end="122" layer="N.d1e1" ranges="R.d1e2 R.d1e31 R.d1e37">We fence our flowers in and the hens range.</x:span>
 <x:span start="122" end="123" layer="N.d1e1" ranges="R.d1e2"> </x:span>
 </x:content>
 <x:range start="0" end="123" ID="R.d1e2" sl="1" so="1" name="excerpt" el="9" eo="25">
 <x:annotation ID="N.d1e49" sl="6" so="3" el="6" eo="47" name="source">
 <x:annotation ID="N.d1e50" sl="6" so="11" el="6" eo="22" name="date">
 <x:content>
 <x:span start="0" end="4" layer="N.d1e50">1915</x:span>
 </x:content>
 </x:annotation>
 <x:annotation ID="N.d1e53" sl="6" so="23" el="6" eo="46" name="title">
 <x:content>
 <x:span start="0" end="15" layer="N.d1e53">The Housekeeper</x:span>
 </x:content>
 </x:annotation>
 <x:content/>
 </x:annotation>
 <x:annotation ID="N.d1e56" sl="7" so="3" el="9" eo="23" name="author">
 <x:annotation ID="N.d1e57" sl="8" so="5" el="8" eo="24" name="name">
 <x:content>
 <x:span start="0" end="12" layer="N.d1e57">Robert Frost</x:span>
 </x:content>
 </x:annotation>
 <x:annotation ID="N.d1e60" sl="9" so="5" el="9" eo="22" name="dates">
 <x:content>
 <x:span start="0" end="9" layer="N.d1e60">1874-1963</x:span>
 </x:content>
 </x:annotation>
 <x:content/>
 </x:annotation>
 </x:range>
 <x:range start="1" end="51" ID="R.d1e5" sl="2" so="1" name="s" el="3" eo="32"/>
 <x:range start="1" end="34" ID="R.d1e6" sl="2" so="4" name="l" el="2" eo="52">
 <x:annotation ID="N.d1e7" sl="2" so="7" el="2" eo="15" name="n">
 <x:content>
 <x:span start="0" end="3" layer="N.d1e7">144</x:span>
 </x:content>
 </x:annotation>
 </x:range>
 <x:range start="35" end="78" ID="R.d1e15" sl="3" so="1" name="l" el="3" eo="71">
 <x:annotation ID="N.d1e16" sl="3" so="4" el="3" eo="12" name="n">
 <x:content>
 <x:span start="0" end="3" layer="N.d1e16">145</x:span>
 </x:content>
 </x:annotation>
 </x:range>
 <x:range start="52" end="62" ID="R.d1e25" sl="3" so="34" name="s" el="3" eo="49"/>
 <x:range start="63" end="122" ID="R.d1e31" sl="3" so="51" name="s" el="4" eo="62"/>
 <x:range start="79" end="122" ID="R.d1e37" sl="4" so="1" name="l" el="4" eo="59">
 <x:annotation ID="N.d1e38" sl="4" so="4" el="4" eo="12" name="n">
 <x:content>
 <x:span start="0" end="3" layer="N.d1e38">146</x:span>
 </x:content>
 </x:annotation>
 </x:range>
</x:document>

Appendix B. RNC schema for xLMNL
namespace x = "http://lmnl-markup.org/ns/xLMNL"

start =
 element x:document {
 document-model }

document-model =
 attribute base-uri { xsd:anyURI }?,
 attribute ID { xsd:ID },
 attribute name { xsd:QName }?,
 debug-support?,
 (annotation | comment)*,
 (content,
 range*,
 (annotation | comment)*)?

annotation =
 element x:annotation {
 document-model }

content =
 element x:content {
 element x:span {
 attribute layer { xsd:IDREF },
 attribute ranges { xsd:IDREFS }?,
 attribute start { xsd:integer },
 attribute end { xsd:integer },
 (text
 | element x:atom {
 attribute name { xsd:NCName },
 debug-support?,
 annotation*
 }
 | comment)+
 }*
 }
range =
 element x:range {
 attribute ID { xsd:ID },
 attribute name { xsd:NCName }?,
 attribute start { xsd:integer },
 attribute end { xsd:integer },
 debug-support?,
 (annotation | comment)*
 }

comment =
 element x:comment {
 debug-support?,
 text }

debug-support =
 attribute sl { xsd:integer },
 attribute so { xsd:integer },
 attribute el { xsd:integer },
 attribute eo { xsd:integer }
A full specification for xLMNL would include constraints not captured by this RNG, such as
 that offsets (start and end
 attributes) must be whole numbers (positive integers or 0); values of end must be greater than or equal to values of start on the same range; the difference between
 the start and end of a
 span (its length) must be equal to its string length plus
 the count of its atom children; referential integrity must be
 maintained between spans, ranges and layers (limina), and so forth.

Appendix C. Demonstrations and source code
A demonstration showsing results of the Luminescent pipeline accompany this paper, in the
 Slides and Materials
 linked in the Proceedings. Unzip the package and open index.html, which will
 describe the examples and present links for examining them.
Many browsers will now attempt and may do a reasonable job rendering the SVG examples. But
 best results will be obtained from a fully conformant SVG viewer implementation with panning
 and zooming to arbitrary levels of scale. (Most browsers will not zoom in as far as you may
 want to go.) Apache Squiggle (distributed with Batik) is recommended.
Source code for Luminescent is available on github, at
 https://github.com/wendellpiez/Luminescent.

Bibliography
[Bos 2005] Bos, Bert. The XML data model.
 2005. See http://www.w3.org/XML/Datamodel.html
[Cayless and Soroka 2010] Cayless, Hugh A., and Adam
 Soroka. On Implementing string-range() for TEI. Presented at
 Balisage: The Markup Conference 2010 (Montréal, Canada, August 3 - 6, 2010). In Proceedings of Balisage: The Markup Conference 2010. Balisage Series
 on Markup Technologies, vol. 5 (2010). doi:https://doi.org/10.4242/BalisageVol5.Cayless01.
[DeRose 2004] DeRose, Steven. Markup Overlap:
 A Review and a Horse. Presented at Extreme Markup Languages 2004 (Montréal,
 Canada).
[Durusau and O'Donnell n.d.] Durusau, Patrick, and
 Matthew Brook O'Donnell. JITTs (Just-in-time Trees).
 http://www.durusau.net/publications/NY_xml_sig.pdf.
[lmnl-markup.org] LMNL-markup.org. See
 http://www.lmnl-markup.org.
[Piez 2004] Piez, Wendell. Half-steps toward
 LMNL. Presented at Extreme Markup Languages 2004 (Montréal, Canada). See
 http://www.piez.org/wendell/papers/LMNL-halfsteps.pdf.
[Piez 2010] Piez, Wendell. Towards Hermeneutic
 Markup: An architetural outline. Presented at Digital Humanities 2010 (London,
 England). See http://www.piez.org/wendell/papers/dh2010/index.html.
[Portier and Calabretto 2009] Portier, Pierre-Édouard, and Sylvie Calabretto. “Methodology for the construction
 of multi-structured documents.” Presented at Balisage: The Markup Conference 2009 (Montréal,
 Canada, August 11 - 14, 2009). In Proceedings of Balisage: The Markup
 Conference 2009. Balisage Series on Markup Technologies, vol. 3 (2009).
 doi:https://doi.org/10.4242/BalisageVol3.Portier01.
[Portier and Calabretto 2010] Portier, Pierre-Édouard, and Sylvie Calabretto. “Multi-structured documents and the
 emergence of annotations vocabularies.” Presented at Balisage: The Markup Conference 2010,
 Montréal, Canada, August 3 - 6, 2010. In Proceedings of Balisage: The
 Markup Conference 2010. Balisage Series on Markup Technologies, vol. 5 (2010).
 doi:https://doi.org/10.4242/BalisageVol5.Portier01.
[Pondorf and Witt 2010] Pondorf, Denis, and Andreas
 Witt. Freestyle Markup Language: Specification of an intuitive, powerful,
 polyhierarchical new extensible markup language. Presented at Balisage: The Markup
 Conference 2010 (Montréal, Canada, August 3 - 6, 2010). In Proceedings
 of Balisage: The Markup Conference 2010. Balisage Series on Markup Technologies,
 vol. 5 (2010). doi:https://doi.org/10.4242/BalisageVol5.Pondorf01.
[Schmidt 2010] Schmidt, Desmond. The
 inadequacy of embedded markup for cultural heritage texts. In Literary and Linguistic Computing (2010) 25 (3): 337-356. doi:https://doi.org/10.1093/llc/fqq007.
[Sperberg-McQueen and Huitfeldt 1999] Sperberg-McQueen, Michael, and Claus Huitfeldt: "Concurrent Document Hierarchies in MECS and
 SGML". In Literary and Linguistic Computing (1999) 14, pp
 29-42. doi:https://doi.org/10.1093/llc/14.1.29.
[Stegmann and Witt 2009] Stegmann, Jens, and
 Andreas Witt. TEI Feature Structures as a Representation Format for Multiple Annotation
 and Generic XML Documents. Presented at Balisage: The Markup Conference 2009,
 Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The
 Markup Conference 2009. Balisage Series on Markup Technologies, vol. 3 (2009).
 doi:https://doi.org/10.4242/BalisageVol3.Stegmann01.
[Stührenberg and Jettka 2009] Stührenberg,
 Maik, and Daniel Jettka. A toolkit for multi-dimensional markup: The development of SGF
 to XStandoff. Presented at Balisage: The Markup Conference 2009 (Montréal, Canada,
 August 11 - 14, 2009). In Proceedings of Balisage: The Markup Conference
 2009. Balisage Series on Markup Technologies, vol. 3 (2009). doi:https://doi.org/10.4242/BalisageVol3.Stuhrenberg01.
[Tennison and Piez 2002] Tennison, Jeni, and
 Wendell Piez. The Layered Markup and Annotation Language (LMNL). Presented at
 Extreme Markup Languages 2002 (Montréal, Canada).
[XDM] Berglund, Anders, Mary Fernández, Ashok Malhotra,
 Jonathan Marsh, Marton Nagy, and Norman Walsh, eds. XQuery 1.0 and XPath
 2.0 Data Model (XDM) (Second Edition) W3C Recommendation 14 December 2010.
 http://www.w3.org/TR/xpath-datamodel/.
[XML Infoset] Cowan, John, and Richard Tobin, eds.
 XML Information Set (Second Edition). W3C Recommendation 4
 February 2004. http://www.w3.org/TR/xml-infoset/.
[XML Recommendation] Tim Bray, Tim, Jean Paoli, C. M.
 Sperberg-McQueen, Eve Maler, and François Yergeau, eds. Extensible
 Markup Language (XML) 1.0 (Fifth Edition) W3C Recommendation 26 November 2008.
 http://www.w3.org/TR/REC-xml/.

[1] This raises the question whether characters can be represented with atom syntax,
 whether they can be annotated, and so forth.The character A may indeed be represented as {{#x41}}
 (using a shorthand reference) or {{lmnl:char [codepoint}41{]}} using a
 reserved name for the atom with an annotation to identify it. But add another annotation
 to the latter form and it will not map back again. (It would be an annotated
 character, and as such could not be represented in a Unicode serialization by
 itself.)

[2] This is a problem for which embedded markup, of course, has no built-in solution (as
 Desmond Schmidt has pointed out, Schmidt 2010) other than using only
 tag sets that do not permit complexity – a high price to pay (a baby for less bath
 water), and not the idea at all. Of course, the syntax is not ultimately the point of
 the LMNL model (which might be supported in all kinds of different interfaces) but only
 a means to an end.
[3] In fact the initial insight that led to the development of this pipeline was that if
 one were to perform simple string substitutions as follows, the result would be S-expression-like:	[and { (open tag delimiters) become ([
 and ({

] and } become]) and
 })

Performing this substition on this
 text:[poem [by}Apollinaire{]}Et [red}l'unique [gold}cordeau{red]
 des [green}trompettes{gold] marines{green]{poem]
we
 get:([poem ([by})Apollinaire({])})Et ([red})l'unique ([gold})cordeau({red])
 des ([green})trompettes({gold]) marines({green])({poem])
Here,
 each parenthetical expression represents a tag.
[4] Thus the XML Recommendation has a well-formedness constraint
 (http://www.w3.org/TR/REC-xml/#GIMatch in XML Recommendation) on an
 XML document that is not, in itself, a definition of syntax, but only a restriction on the
 way it may be used: end tags must have the same name as the most recent unclosed start tag
 (the GI matching constraint). (The reason this is not a definition of
 syntax is because syntactically, an end tag is an end tag irrespective of whether it
 matches the most recent start tag; so this rule is not for the integrity of the syntax
 qua syntax, but rather in order that a second tree may
 be built out of the syntax parse tree.) In connection with the production for element (http://www.w3.org/TR/REC-xml/#NT-element),
 this is how XML is able to bridge from well-formedness to its set of validity constraints
 – something still undefined for LMNL. To be sure, formally speaking validation is
 optional in XML, and systems that validate XML not in the sense of the Recommendation
 (which entails a DTD) but using other models for validation have been implemented several
 times (and in several different ways) since the Recommendation was published in
 1998.While the GI matching constraint is suspended for LMNL, the question remains how a
 validation technology can be developed for a range model rather than a graph, such as this
 constraint enables. But XML and LMNL itself also demonstrate that processing can occur
 with only implicit validation in the application of a markup language.

Balisage: The Markup Conference

Luminescent: parsing LMNL by XSLT upconversion
Wendell Piez
Mulberry Technologies, Inc.

<wapiez@mulberrytech.com>
Wendell Piez has been attending Balisage and its antecedent conferences since the
 early days of XML; among his contributions has been, with Jeni Tennison, the original LMNL
 proposal (2002).

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

