[image: Balisage logo]Balisage: The Markup Conference

Beyond Well-Formed and Valid
QA for XML Configuration Files
Sheila M. Morrissey
Senior Research Developer
ITHAKA

<sheila.morrissey@ithaka.org>

John Meyer
Director of Data Technology
ITHAKA

<john.meyer@ithaka.org>

Sushil Bhattarai
Data Software Developer
ITHAKA

<sushil.bhattarai@ithaka.org>

Gautham Kalwala
<gautham.kalwala@ithaka.org>

Sachin Kurdikar
Data Software Developer
ITHAKA

<sachin.kurdikar@ithaka.org>

Jie Ling
Data Software Developer
ITHAKA

<jie.ling@ithaka.org>

Matt Stoeffler
Data Software Developer
ITHAKA

<matt.stoeffler@ithaka.org>

Umadevi Thanneeru
Data Software Developer
ITHAKA

<umadevi.thanneeru@ithaka.org>

International Symposium on Quality Assurance and Quality Control in XML
August 6, 2012

Copyright © 2012 ITHAKA

How to cite this paper
Morrissey, Sheila M., John Meyer, Sushil Bhattarai, Gautham Kalwala, Sachin Kurdikar, Jie Ling, Matt Stoeffler and Umadevi Thanneeru. "Beyond Well-Formed and Valid." Presented at: International Symposium on Quality Assurance and Quality Control in XML, Montréal, Canada, August 6, 2012. In Proceedings of the International Symposium on Quality Assurance and Quality Control in XML.
 Balisage Series on Markup Technologies vol. 9 (2012). https://doi.org/10.4242/BalisageVol9.Morrissey01.

Abstract
One of the consequences of the rapid development and dissemination of the ecosystem of XML technologies was the widespread adoption of XML as a meta-format for the specification of application configuration information. The validation of these rich configuration files with standard XML validation tools, however, is often not sufficient for error-free deployment of applications. This paper considers how to categorize some of the constraints that cannot be enforced by such tools, and discusses some XML-based approaches to enforcing such constraints before, or as part of, deployment.

Balisage: The Markup Conference

 Beyond Well-Formed and Valid

 QA for XML Configuration Files

 Table of Contents

 	Title Page

 	XML for Configuration: Background

 	XML for Configuration at Portico: Issues
 	What is Portico?

 	Portico XML Configuration Files: A Description

 	Portico XML Configuration Files: Categories of Configuration Issues
 	Consistency Issues

 	Referential Integrity Issues

 	Existence Issues

 	XML for Configuration at Portico: Solutions
 	Consistency Checker

 	“Referential Integrity” Checker

 	Existence Checker

 	Reflections

 	About the Authors

 Beyond Well-Formed and Valid
QA for XML Configuration Files

XML for Configuration: Background
One of the consequences of the rapid development and dissemination of an ecosystem of XML technologies, including free and open source XML parsers, XSLT engines, and binding tools for various programming languages, was the widespread adoption of XML as a meta-format for the specification of application configuration information. The XML ecosystem obviated the need to write custom parsers for one-off configuration formats. This was true in part because, at least at the syntactic level, there was a tool-chain at hand to warrant the well-formedness and validity of those files. XML also facilitated the use of richly structured configuration information. Coincident with an increasing community of practice in architectural idioms such as abstract factories (see [gamma et al]), this capacity for rich configuration made XML the norm for configuration of such applications as Apache’s Tomcat server for Java servlets and Java Server Pages (JSP), Hibernate’s object/relational mapping framework, the Ant build tool, and the Spring application framework and inversion-of-control (IOC) container.
These rich configuration files forward many diverse ends, ranging from (at least the possibility of) more cleanly engineered code, to hot-swappable web applications. However, as even a cursory view of these projects’ listservs indicates, configuration files often are the cause of hiccups in application deployment. Some of these problems can be alleviated by the application of standard XML validating parsers in the deployment process. Other problems however do not yield themselves to the standard XML tool chain.
Widely used applications such as the ones mentioned here often have interactive development environment (IDE) support for the creation of configuration files. The IDE might make use of template files, for example, and provide hints when creating and populating configuration instances. Such IDE support however is not typically robust in validating the content entered, whether or not the hints are taken.
The information models of which these XML configuration files are instantiations (see
 [abrams]) entail constraints more complex than those enforced by XML
 well-formedness and validity. These constraints are not expressed, and are perhaps
 inexpressible, in a configuration file’s document type definition, whether that
 definition is a DTD, or an XSD schema, or a RelaxNG specification. How might we
 categorize at least some of these constraints? What techniques can we employ to enforce
 them before, or as part of, deployment?

XML for Configuration at Portico: Issues
What is Portico?
Portico is a digital preservation service for electronic journals, books, and other content. Portico is a service of ITHAKA, a not-for-profit organization dedicated to helping the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways. As of April 2012, Portico is preserving more than 17.7 million journal articles, nearly 17,000 books, and nearly 1.5 million items from digitized historical collections (for example digitized newspapers of the 18th century).
Content comes to Portico in approximately 300 different XML and SGML vocabularies.
 These XML and SGML documents are accompanied by page image (PDF) and other
 supporting files such as still and moving images, spreadsheets, audio files, and
 others. Typically content providers do not have any sort of manifest or other
 explicit description of how files are related (which ones make up an article, an
 issue of a journal, a chapter of a book). This content is batched and fed into a
 Java workflow that is driven by XML configuration files, which Portico calls
 profiles (about 190, one for each publisher content stream), and
 registries (shared across all content streams).
The Portico workflow maps the publisher-provided miscellany of files into bundles
 that comprise an article or book or other content item.

 Figure 1
[image:]
Figure 1: Mapping Files to Content Units

Publisher-provided XML and SGML files are normalized to the Portico profile of the
 National Library of Medicine’s Journal Archiving DTD. The workflow identifies the
 format of each of the component files, and, where a format specification and
 validation tool is available, validates each file against its format specification.
 It generates metadata considered important for preservation (descriptive, or
 bibliographic, metadata; technical metadata about files and their formats;
 provenance and event metadata, detailing the tool chain, including hardware and
 software information, used in processing the content). These metadata are formatted
 as XML, and are stored with the preserved digital object.

 Figure 2
[image:]
Figure 2: Portico High-Level Workflow

Some of the sub-steps in this workflow are explicit QA checks of the XML content –
 both that provided by the publishers, and that produced by Portico in the workflow
 itself. This QA includes XML validation, the assertion (via Schematron) of other
 constraints on content values, and visual inspection of sample content. We have
 written about some of the QA techniques and challenges associated with these content
 files for Balisage and other venues (see, for example, [morrissey et al] and
 [morrissey 2011]). In this paper we would like to focus on the QA
 challenges associated with those XML registry files that drive our workflow.

Portico XML Configuration Files: A Description
The Portico workflow is a pluggable framework. At each step, or activity, in the workflow, the particular tool to be employed is dynamically selected, based on the format or mime type of the file or files being processed at that step. Thus, for example, the “de-layer” activity would invoke standard tar, gzip, or zip tools to expand and separate out the content of .tar, .gzip, or .zip files. The same activity would invoke an XSL transform to split a publisher XML file containing bibliographic metadata for all the articles in an issue of a journal into separate XML files for each article (and would invoke a different XSL transform for each different publisher XML format).

 Figure 3
[image:]
Figure 3: Format-driven Tool and Tool Component Plugins for WorkFlow
 Step

So, at the root of all the XML configuration files that drive and parameterize the Portico workflow is the format registry file: FormatRegistry.xml. There is a <Format> element for each distinct format for which the archive contains at least one instance. This, for example, is part of the <Format> element for one publisher’s profile of one version of the NLM Journal Publishing DTD:

 <Format FormatId="XXX_NLM_Journal_Publishing_DTD_2.1"
 CreationTimestamp="2006-06-13T13:00:00-05:00">
	<PorticoDefinedName>XXX Journal Publishing DTD v2.1 20050630</PorticoDefinedName>
	…
 <Format>

For each workflow step or activity, the tool registry file, ToolRegistry.xml, maps each format to the Java class to be plugged in, configured, and executed at that step. So, for example, in the tool registry, we have entries such as:

 <TransformationSet>
	 <ToolStrategy SupportingFormatId="XXX_NLM_Journal_Publishing_DTD_2.1">
		 <Script Rid="scrxxx"/>				
	 </ToolStrategy>
	 ...
 </TransformationSet>

This entry indicates that in the workflow Transform Files step, if
 the Portico identifier (defined in the format registry) for the format of the file
 to be transformed is XXX_NLM_Journal_Publishing_DTD_2.1, then we should
 look for plug-in information about what tool to employ, and how to parameterize it,
 in a subsequent ScriptInfo element with a ScriptID
 attribute value of scrxxx. In that element, we will see specified such
 things as a list of relative file paths to XSL transforms that comprise the
 transformation pipeline for instances of this format, along with (relative)
 directory names where those files are located; the Portico identifier for the format
 of the output of this transformation (also defined in the format registry); a
 fully-qualified Java class name for a filter through which the input file is to be
 passed; and an Rid attribute referring to yet another subsequent
 element containing full information about the Java tool class that will invoke the
 filters and the XSL pipeline.

 <ScriptInfoSet>
 <ScriptInfo ScriptId="scrxxx"
 ScriptType="transformation"
 ScriptDir="xxx">
 <Tool Rid="BaseTransform_1.0">
 <Parameters>
 <Parameter>
 <Name>StyleSheetList</Name>
 <ValueOrderedList>
 <ValueOrderedListItem>
 <Number>10</Number>
 <Value>xxx2ptc_1_10.xsl</Value>
 </ValueOrderedListItem>
 <ValueOrderedListItem>
 <Number>20</Number>
 <Value>fix-data_1.xsl</Value>
 </ValueOrderedListItem>
 ...
 </ValueOrderedList>
 </Parameter>

 <Parameter>
 <Name>outputFormatId</Name>
 <Value>PTC_Article_DTD_2.1</Value>
 </Parameter>
 <Parameter>
 <Name>InputFilterClass</Name>
 <Value>
 org.portico.threadedtool.tool.transform.filter.XmlPrologTransformFilter
 </Value>
 </Parameter>
 ...
 </Parameters>
 </Tool>
 </ScriptInfo>
...
</ScriptInfoSet>

Later in the tool registry, information about the BaseTransform_1.0 tool is specified, including its Java class name, and information about the parameters to be passed when instantiating that class (as we did in the ScriptInfo element above), including whether or not the parameter is required, and what its type should be:

<ToolInfoSet>
 <ToolInfo Id="BaseTransform_1.0">
 <Name>BaseTransformTool:1.0:2007-05-01</Name>
 <Description>
 Tool for transformation of XML files via XSL stylesheets.
 </Description>
 <Status>ACTIVE</Status>
 <ClassName>
 org.portico.threadedtool.tool.transform.BaseTransformTool
 </ClassName>
 <ToolParameters>
 <ToolParameter Name="StyleSheetList"
 Required="true"
 ParameterType="ValueOrderedList">
 <Description>
 This is the list of XSL stylesheets that are to be processed and the
 order in which they should be processed.
 </Description>
 </ToolParameter>
 <ToolParameter Name="outputFormatId"
 Required="true"
 ParameterType="Value">
 <Description>
 This identifies the output format ID of this set of transforms.
 </Description>
 </ToolParameter>
 <ToolParameter Name="InputFilterClass"
 Required="false"
 ParameterType="Value">
 <Description>
 This identifies the filter to be applied to the file before transforms.
 It should contain the fully qualified class name of the filter.
 If this Parameter is not supplied, the default BaseFilter
 class is used. Legal values come from package
 org.portico.threadedtool.tool.transform.filter.
 </Description>
 </ToolParameter>
	...
 </ToolParameters>
 </ToolInfo>
 ...
<ToolInfoSet>

Portico XML Configuration Files: Categories of Configuration Issues
There are a lot of moving parts in even this condensed description of the semantics of these two configuration files. As more and more publisher streams were added to Portico’s workflow, more and more configuration information was added to these files, by more and more developers working at the same time to add new content streams and their accompanying Java tool and filter classes, and associated XSL transformations. And these additions had to be made in several different workflow environments: a developer environment; an integration environment where profiles and registries for new publisher streams are first worked out; a QA environment for regression testing of tool, transform, workflow, and configuration changes; and, finally, to the production environment.
Perhaps to no one’s surprise, Portico began to experience deployment glitches. None of these glitches occurred because the XML registry files were either not well formed or invalid, as developers consistently validated the files against their respective schemas before committing to Portico’s source control system, and the deployment scripts also invoked a parser to validate the files. The workflow was paused; new configuration files and other resources were deployed; the workflow was cranked back up. Then it would hum along through several workflow steps, before encountering what effectively was a configuration error that would bring one or more batches to a halt.
So the first question we asked ourselves was, what is it about the semantics of the content of the elements in these files – and the relationship among elements in the same and in different XML configuration files, and the relationship between the content in those elements and other components of the workflow software and other resource files – that enabled configuration errors to pass undetected through the sieve of standard XML validation tools?
Consistency Issues
At run time, every tool specified in the tool registry verifies the presence
 or absence of various required and optional parameters, and checks to see, when
 present, that they are of the required type before proceeding to execute the
 tool. Just as the workflow that invokes the tools is a pluggable framework, so
 too are the individual tools themselves pluggable (See Figure 3). This enables Portico to
 use a single generic XML transformation Java tool on input that requires
 slightly varying processing.
Since the tool is in some sense generic, some parameters for the tool are
 optional. However, it can be the case that if one of these optional parameters
 is present, and if the parameter has a particular value, then other optional
 parameters must be provided as well. For example, the
 InputFilterClass parameter is optional, but if it is present, and if its value is
 org.portico.threadedtool.tool.transform.filter.ExternalEntityReplacerFilter,
 then the tool registry must also provide the additional otherwise optional
 parameters AttributeValueSeparator, AttributeName,
 ElementQNames, MatchString, and
 ReplacementString. 1

If these constraints are not met, the tool registry file will pass schema validation, but the workflow step attempting to transform an instance of this file format will fail at runtime, because the tool it invokes requires more configuration information to perform the transformation. So we have a need to check for consistency between the (variable, and complexly dependent) input expectations of the Java tool, and the configuration values provided in the XML registry.

Referential Integrity Issues
As mentioned above, the Portico workflow is "format driven.” The choice of
 tool to be plugged in at different steps in the workflow is determined by the
 format of the object to be processed at the step (indeed, the sequence of
 workflow steps itself is driven by the expected collection of format instances
 in a content stream). And, as noted, we encounter many formats – the
 FormatRegistry.xml file contains, at the time of writing, 545
 Format elements.
Various constructs for defining an XML vocabulary (DTD, Schema, and RelaxNG) have provisions for specifying a constrained list of values for, for example, attributes. These provisions typically are employed for a smaller number of values than would be required to cover the ever-growing list of formats Portico encounters. Nor would such a constrained list of identifiers include the other information about the format that is associated with the identifier in the format registry. For our purposes, we would categorize that list of format identifiers (along with associated format information) as “data” rather than “structure”. Further, if the list of constrained values were to be maintained in the document type definition itself – at “compile time”, so to speak, – we would be injecting what would be for us an unwanted level of complexity in the versioning of our schema.
Nevertheless, we have the requirement to ensure a sort of “referential integrity check” among XML files – that is, between the unique Portico format identifiers in the format registry, and the format identifiers employed in the tool registry and other Portico configuration files – to ensure successful runtime interaction between the workflow tools and the registries that drive them.

Existence Issues
As seen above, the tool registry refers to many objects that are assumed to
 exist at run time: Java tool and filter classes, XSL files, and other supporting
 files. The existence or non-existence of such objects, even if their names are
 specified in a document type definition, is extrinsic to the kind of structural
 information a document type definition can provide, and which standard parsers
 can validate. Yet a successful deployment of these XML configuration files
 depends on verifying the actual existence of these objects in the total
 deployment package. This was in fact the most frequent cause of
 configuration-file-dependent deployment errors. An updated tool registry would
 be deployed, but the new XSL files, or a new JAR file containing new Java tool
 or filter classes specified in the updated registry, or the DTD or XSD files
 associated with an XML or SGML format, were not deployed along with the new
 tool registry. When the workflow was restarted, a (Java) workflow step would
 look to the tool registry to determine which Java tool or filter class it should
 employ, or, if the workflow step was an XSL transformation, what list of XSL
 makes up the transformation pipelene, or against which DTD or schema a format
 instance was to be validated. If the classes or files specified in the tool
 registry had not also been deployed, the workflow step would raise a fatal error
 and halt processing.

XML for Configuration at Portico: Solutions
The second question we asked ourselves was whether we could devise some automated solutions to these consistency, referential integrity, and existence issues in order to avoid, or at least minimize, costly cycles of stop/deploy/restart/fail/stop/correct/redeploy/restart in our release deployments. We found that we could, and that we could do so fairly simply with XSL transforms, assisted, in some cases, with Java extension functions. We run these transform as part of deployment script before the stop/restart of the workflow.
Consistency Checker
The tool registry’s ToolInfo element documents all the possible calling parameters that can be passed to the Java tool class it specifies, indicating whether they are required or optional, and specifying the type of each parameter. Assuming correct documentation (for ensuring which, to probably no one’s surprise, we have not yet invented a completely automated tool), this meant that we had sufficient information in the tool registry itself to perform consistency checks. We use an XSL transform (Schematron is another obvious candidate for this) to compare the various Paramter elements in the ScriptInfo element that configures each invocation of a particular tool for a particular format, with the information in the ToolInfo elements. If an error message is created, the registry is not deployed until it is repaired.

“Referential Integrity” Checker
Again, we used an XSL transform. The transform extracts format and mime type information from the format registry being deployed with the tool registry, and uses that extracted information to verify that any referenced format id or mime type in the tool registry has been declared in the format registry.

Existence Checker
Our existence checker also uses XSL, aided by extension functions, to look outside
 the XML box to determine that expected directories and XSL and other files exist in
 the target deployment directories, and that classes referenced in the tool registry
 exist in the .jar files also on the deployment path. In the case of XSL and other
 XML files, it would of course be possible to use xsl-document to check
 for the existence of necessary resources. For non-XML file resources whose existence
 we wished to confirm, we could have used the unparsed-text() function,
 interpreting an empty string result as a non-existent file. As we were using Java
 extension functions to confirm the existence (i.e. deployment) of Java classes on
 what would be the workflow's runtime Java classpath, and as the workflow uses the
 classpath to resolve the location of XSL and other file resources, we used Java
 extension functions to confirm the existence of these resources at deployment.

 <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:jexist="java/org.portico.conprep.util.deployment.validatetoolregistry.ExistenceChecker" >

 <xsl:variable name="jExistInstance" select="jexist:new()"/>

 <!-- == -->
 <!-- name="check-class-exists" -->
 <!-- == -->
 <xsl:template name="check-class-exists">
 <xsl:param name="className"/>
 <xsl:param name="Path"/>
 <xsl:variable name="result"
 select="jexist:classExistsOnClasspath($jExistInstance, $className)"/>
 <xsl:if test="not($result)">
 <xsl:message terminate="no" >
 Class <xsl:value-of select="$className"/> does not exist.
 <xsl:value-of select="$Path"/>
 </xsl:message>
 </xsl:if>
 </xsl:template>

 <!-- == -->
 <!-- name="check-file-exists" -->
 <!-- == -->
 <xsl:template name="check-file-exists">
 <xsl:param name="scriptType"/>
 <xsl:param name="scriptDir"/>
 <xsl:param name="fileName"/>
 <xsl:param name="Path"/>
 <xsl:variable name="result"
 select="jexist:fileExistsOnClasspath($jExistInstance,
 $scriptType, $scriptDir, $fileName)"/>
 <xsl:if test="not($result)">
 <xsl:message terminate="no" >
 File <xsl:value-of select="$fileName"/> does not exist.
 ScriptType = <xsl:value-of select="$scriptType"/>,
 ScriptDir = <xsl:value-of select="$scriptDir"/>
 Path to script = <xsl:value-of select="$Path"/>
 </xsl:message>
 </xsl:if>
 </xsl:template>

Reflections
Not all configuration files -- not even all Portico workflow configuration files --
 are XML files, of course, and not all are likely to be amenable to an XML-based QA
 solution. XML would be overkill for the sort of name-value pairs of configuration
 information more compactly expressed in conventional properties files. As the category
 name of one class of deployment issues suggests, a different implementation choice
 (relational database in lieu of XML registry files for configuration) would provide a
 different mechanism for enforcing at least one sort of consistency in deployment.
There are some limitations to these tools, even as applied to XML configuration files.
 Our consistency checker, which validates the number, name, type, and compulsoriness of
 parameters passed to our Java tools, depends on a manual process of updating the
 ToolRegisty.xml file's ToolInfo section whenever we update our Java tools.
 We could conceivably employ Java annotations, and a meta-process to generate appropriate
 ToolInfo elements, and test to see if those generated elements matched
 the actual elements in the ToolRegistry.xml file (though this approach perhaps only
 pushes back our "manual" dependency on developer discipline to ensuring consistent
 annotation in the Java code).
 A warrant of existence of a resource at deployment time, while reassuring, is not
 necessarily a warrant of existence at run time, particularly for resources outside of
 one's institutional domain or control (though this has not been an issue in Portico's
 deployment process). We have found a simple syntactic surrogate (a non-empty return from
 a method call) that reliably signifies the existence or non-existence of an artifact
 "out there" in the world extrinsic to the XML document we are interrogating. That
 surrogate is satisfactory for our purposes, but it might not be sufficient for all
 purposes. And it is certainly no magical solution to the general ontological problem of
 assessing an XML document's assertion about external reality.
As mentioned above in the Background section, users of other applications with rich
 XML configuration files experience deployment problems. Many of these are caused by
 these same consistency, referential integrity, and existence issues experienced by
 Portico with its registry files. Spring, Hibernate, and Tomcat configuration files all
 contain elements whose contents are intended to be fully-qualified Java class names, for
 classes that are presumed to be on the application’s classpath at runtime, and hence
 available for instantiation via inversion of control. The XML configuration files for
 any of the applications mentioned above can contain elements whose content refers to
 files and directories, both local and non-local, assumed to exist at runtime (for
 example, the location for JSP files used by Apache, as well as “welcome” files and login
 pages, can be specified). Nothing in the schema for Ant files ensures that a developer
 using Ant to build and deploy a Java servlet populates the Ant configuration file so as
 to follow the Java servlet conventions for relative deployment location for servlet and
 other files. A Tomcat web.xml file specifying both type and values for JNDI can be
 well-formed and valid, and yet specify a value that cannot be instantiated as an
 instance of the specified type, or specify a type that in fact does not exist.
What we have found is that, for our XML configuration files, where standard XML
 validation tools will not resolve these deployment issues, we can use XML-based tools
 for at least these categories of non-structural, “extrinsic” validation requirements.
 Further, because they are XML based, they can be employed in both in simple deployment
 scripts and in continuous integration tools, reducing many common deployment problems.
XML-based tools, though not the only possible solution for solving XML configuration
 file-related deployment issues, were a natural choice for Portico. In part this was a
 pragmatic choice: such XSL and Java-based solutions were well-supported by the skill set
 in our programming team, and the categories of deployment problems we experienced where
 amenable to solution by the means described. Standard XML parsers and XSL transform
 engines made it easy to "get at" the content of XML elements and attributes to test
 assertions about that content beyond the document's well-formedness and validity (Do
 certains things exist "out there" on the file system? Have we provided all the
 parameters that an optional Java filter plugin to a Java plugin tool to a Java framework
 requires at runtime?) . And they made it easy to "get at" them in different contexts
 --both a manual context (a developer updating an XML registry in Oxygen, for example)
 and an automated one (a deployment script that is part of a configuration management
 system).
In part however this was also an aesthetic choice: there is a certain "turtles all the
 way down" appeal to applying XML-based QA tools to XML configuration files that drive a
 workflow for processing digital artifacts whose key components are XML files. The
 aesthetic shaded into the pragmatic, as it so often does in software engineering. The
 consistent, conventional reuse of large-scale structure and coding idioms across such a
 large application as the Portico workflow system helps in making that system
 comprehensible to the developers who support and extend it -- an approach, so to speak,
 toward the possibly asymptotic, reader-centric rather than process- or processor-centric
 goal of "Read once, understand everywhere" [reflection] in complex
 systems.
What precisely comprises the "beauty" or aesthetic appeal of a piece of software (both
 data structures and algorithms, and their instantiation in concrete formalisms such as
 languages) is a topic of much discussion. To what extent does a software instance
 provide, as mathematicians might say of a proof, an "elegant" or "economical" solution
 to the problem it was created to solve? The extent to which the XML community has
 grappled with the ways in which, and the degree to which, an XML document type
 definition can or might comprise a model homomorphic to some domain, suggests that such
 homomorphism is a key criterion. It might be argued that the choice of XML as a
 configuration language for these large-scale frameworks was in some sense opportunistic,
 or "merely pragmatic." The ecosystem of XML parsers provided a "good enough" solution to
 the expression of richly hierarchical configuration information, even if it did not
 provide a solution to the problem of the more complex relationships among components of
 these hierarchies, and to extrinsic realities. The necessity of performing QA on these
 files can be viewed as an indicator of the limits of the economy of XML as a solution to
 the original problem. Whether other software constructs would provide a more "beautiful"
 solution is an open question. That a partial solution to the limits of XML as a
 configuration language can be found in XML-based tools has, at least for Portico, its
 own economical appeal.

References
[abrams] Abrams, Stephen. File Formats in DCC Digital Curation Manual. S.Ross, M.Day (eds), (October 2007), Retrieved April 20, 2012, from http://www.dcc.ac.uk/sites/default/files/documents/resource/curation-manual/chapters/file-formats/file-formats.pdf.
[gamma et al] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software.Reading, MA: Addison-Wesley, 1995.
[morrissey et al] Morrissey, Sheila, John Meyer,
 Sushil Bhattarai, Sachin Kurdikar, Jie Ling, Matthew Stoeffler and Umadevi Thanneeru.
 "Portico: A Case Study in the Use of XML for the Long-Term Preservation of
 Digital Artifacts." Presented at International Symposium on XML for the Long
 Haul: Issues in the Long-term Preservation of XML, Montréal, Canada, August 2, 2010. In
 Proceedings of the International Symposium on XML for the Long
 Haul: Issues in the Long-term Preservation of XML Balisage Series on
 Markup Technologies, vol. 6 (2010). doi:https://doi.org/10.4242/BalisageVol6.Morrissey01. Retrieved April 20, 2012, from
 http://www.balisage.net/Proceedings/vol6/html/Morrissey01/BalisageVol6-Morrissey01.html.
[morrissey 2011] Morrissey, Sheila M. ‘More What You’d Call ‘Guidelines’ Than Actual Rules' : Variation in the Use of Standards. Journal of Electronic Publishing 14, no. 1: 14. doi:https://doi.org/10.3998/3336451.0014.104. Retrieved April 20, 2012, from http://quod.lib.umich.edu/cgi/t/text/text-idx?c=jep;view=text;rgn=main;idno=3336451.0014.104 .
[reflection] Morrissey, Sheila JHOVE2 and Java Reflection. (February 2009), Retrieved August 05, 2012, from https://bitbucket.org/jhove2/main/wiki/Background_Papers.

1 Portico filters incoming XML and SGML files for a variety of reasons.
 The format validation step, for example, makes use of the JHOVE tool,
 which is not able to make use of catalogs. The DOCTYPE statement will
 therefore sometimes require filtering to cause the parser to resolve to
 a local copy of the DTD or schema. Sometimes a filter is used to correct
 syntactic errors in the DOCTYPE statement, such as white space or
 comments before the XML declaration, encoding declarations inconsistent
 with actual encoding used by the publisher (see morrissey et al
 for other examples)

Balisage: The Markup Conference

Beyond Well-Formed and Valid
QA for XML Configuration Files
Sheila Morrissey
Senior Research Developer
ITHAKA

<sheila.morrissey@ithaka.org>
Sheila Morrissey is Senior Research Developer at ITHAKA.

John Meyer
Director of Data Technology
ITHAKA

<john.meyer@ithaka.org>
John Meyer is Director of Data Technology at ITHAKA.

Sushil Bhattarai
Data Software Developer
ITHAKA

<sushil.bhattarai@ithaka.org>
Sushil Bhattarai is a Data Software Developer at ITHAKA.

Gautham Kalwala
<gautham.kalwala@ithaka.org>
Gautham Kalwala is a member of the ITHAKA data team.

Sachin Kurdikar
Data Software Developer
ITHAKA

<sachin.kurdikar@ithaka.org>
Sachin Kurdikar is a Data Software Developer at ITHAKA.

Jie Ling
Data Software Developer
ITHAKA

<jie.ling@ithaka.org>
Jie Ling is a Data Software Developer at ITHAKA.

Matt Stoeffler
Data Software Developer
ITHAKA

<matt.stoeffler@ithaka.org>
Matt Stoeffler is a Data Software Developer at ITHAKA.

Umadevi Thanneeru
Data Software Developer
ITHAKA

<umadevi.thanneeru@ithaka.org>
Umadevi Thanneeru is a Data Software Developer at ITHAKA.

Balisage: The Markup Conference

content/images/Morrissey01-003.png
Workflow Step
(Activity)

Workflow Tool

Workflow Tool
Component

WORKLOW

WORKLOW

Workflow Delayer
Activity

2IP Delayer Tool

TAR DelayerTool

Publisher1 Publisher2

DelayerXsL DelayerXsL
Pipeline Pipeline

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Morrissey01-002.png
Characterize [l Generate
Supplied Files Metadata

Initialize
Batch

Generate
Checksums

Transform
Files

Interpret o ResolveFile

References lnseecy

Packaging

content/images/Morrissey01-001.png
Incoming File System Resulting Content Model

B Pubpenern B Content Unit (Article)
“ <} °°“§3§2X B Text: Marked Up Text

= 106 21779_ftp.sgm
= B .~ Rendition: Page Images

= CNCR21779 21779_ftp.pdf
21779_ftp.pdf Component: Formula Graphic

l

21779_ftp.sgm aueq001.tif
=} equation / nueq001.gif
aueq001.ti Component: Formula Graphic
aueq002.tif 74 aueq002.tif
nueq001.gif / nueq002.gif
nueq002.gif = Component: Figure Graphic
& image_m — mfig001.jpg
mfig001.jpg nfigd01.jpg
2 image_n / tfigo01.gif
nfigo01.jpg
S} image_t /

tfigooL.gif

