[image: Balisage logo]Balisage: The Markup Conference

ACS Publications — Ensuring XML Quality
Tamara Stoker
Vendor Relations Manager
American Chemical Society

<tstoker@acs.org>

Keith Rose
Lead Programmer Analyst
American Chemical Society

<krose@acs.org>

International Symposium on Quality Assurance and Quality Control in XML
August 6, 2012

Copyright © 2012 American Chemical Society

How to cite this paper
Stoker, Tamara, and Keith Rose. "ACS Publications — Ensuring XML Quality." Presented at: International Symposium on Quality Assurance and Quality Control in XML, Montréal, Canada, August 6, 2012. In Proceedings of the International Symposium on Quality Assurance and Quality Control in XML.
 Balisage Series on Markup Technologies vol. 9 (2012). https://doi.org/10.4242/BalisageVol9.Rose01.

Abstract
The benefits of using XML in publishing are widely known but those benefits are
 more difficult to attain if the quality of the XML produced by the process is not
 consistently at a very high level. This case study outlines the steps that the American Chemical
 Society (“ACS”) has taken both in-house and in collaboration with the
 vendor to which we have outsourced portions of our publication workflow. In addition
 to producing predictable XML, these efforts have also improved our publication
 time.

Balisage: The Markup Conference

 ACS Publications — Ensuring XML Quality

 Table of Contents

 	Title Page

 	Introduction to ACS

 	The ACS Manuscript Workflow

 	Why XML Quality is Critical

 	Validations (Quality Enforced)
 	Example 1

 	Example 2
 	Validation code (Groovy)

 	Violation message

 	Automatic Edits (“Hands-Free” Quality)
 	Example 1

 	Example 2

 	Vendor XML Quality
 	Vendor Scoring

 	Vendor Validations

 	Vendor Manual rejections

 	Conclusion

 	About the Authors

 ACS Publications — Ensuring XML Quality

Introduction to ACS
ACS is a professional membership organization, chartered by the U.S. Congress in 1876,
 representing over 164,000 professionals at all degree levels and in all fields of
 chemistry and sciences that involve chemistry. Primary ACS divisions include Membership
 and Programs; Chemical
 Abstracts Service, a secondary publisher of chemical-related data,
 information abstracts, and databases; and the Publications Division (“ACS Pubs”).

The ACS Manuscript Workflow
The Journal and Book publishing units of ACS Pubs produces over forty STM
 peer-reviewed journals focused on various disciplines of chemistry. In 2012, ACS Pubs
 expects to publish about 325,000 pages in approximately 40,000 articles
 (manuscripts).
Chemists from around the world document their research results and submit manuscripts
 to ACS of their findings for peer review and publication. Once a manuscript has been
 reviewed and accepted for publication, ACS receives it in the document format submitted
 by the author (Microsoft Word or LaTeX, for example). ACS has standardized on XML as the
 internal manuscript format and uses an “XML-first” approach to facilitate the production
 and publication processes. Therefore, before any processing occurs, the author’s
 original document is sent to a vendor for conversion into XML, using a DTD that is a
 customized version of the NLM article DTD. (See ACS Tagsets.)
After the manuscript is converted to XML, ACS staff that have Chemistry or related
 scientific degrees (“Technical Editors”) prepare it for publication, editing the paper
 for clarity and technical content (see ACS Style Guide) and ensuring
 proper markup of content. A proof version of the manuscript is sent to the author (in
 PDF format) for their review and the author’s corrections are applied before it is
 published on the ACS
 Publications web site and also in print. The composition process of journal
 manuscripts (proof, web, and print PDFs) has recently been automated (see ACS Automated Composition), with great success. The high-level of quality of the XML
 input to the composition engine is critical to the successful composition results.
This is a simplified narrative of our workflow (see Figure 1). The actual workflow is, of course, much more involved.
Figure 1: ACS XML Workflow Overview
[image:]
High-level overview of the ACS manuscript workflow.

Why XML Quality is Critical
All of the processing that takes place on the text of each manuscript is performed
 after its conversion into XML. Technical Editors use a customized XML editor when they
 edit the manuscript, and all of the tools which automate the processing of manuscripts
 expect and require XML input. The quality of this XML is critical to the successful
 completion of each of these tools. A manuscript in XML format must be properly tagged so
 that it can be parsed. This is easily checked using the DTD. If all required document
 elements are present in the XML, and the contents of each of the document elements are
 valid within their context, then a manuscript has an acceptable quality level for our
 automation tools. As an example, our tools cannot understand a Publication Year with a
 value of “next year or maybe the year after”. Documents with invalid tagging or content
 require manual intervention to be processed for publication. Given the sheer quantity of
 XML processed daily at ACS, manual intervention must be a very tiny exception to keep
 production costs down and time-to-publication intervals competitive.
To enhance the quality of the XML tagging and contents of each manuscript, validation
 tools and tools that perform automatic content and tagging changes (“edits”) were
 developed internally by ACS staff. The validation tools are run before the initial
 version of the XML content is accepted from the vendor, and again between most workflow
 stages. The automatic content and tagging edits are performed before and after the
 Technical Editors edit the manuscript.

Validations (Quality Enforced)
There are hundreds of custom validations that are performed on each manuscript.
 Validations are typically executed as a manuscript transitions from one workflow stage
 to the next. Individual validation checks are collected in logical groups, and those
 logical groups of validations are executed by controllers that focus on the workflow
 stage of the manuscript.
Some validation requests occur independently of workflow transitions. The vendor who
 converts the manuscript from the author’s original document format into XML executes
 some of our content validations before sending us the converted manuscript. Technical
 Editors may execute our validations directly within their XML editor (Arbortext) to
 check the validity of a manuscript before they attempt to promote it. Because validation
 requests come from a variety of sources, a web service was developed as a common entry
 point for execution of validations (Figure 2).
Figure 2: ACS Manuscript XML Validation Architecture
[image:]
Validations may be called “on demand” by individual users or by workflow
 tools. The particular Validation Controller is specified as a parameter to the
 web service request.

Validation violations, which indicate invalid XML tagging or invalid content, are
 categorized into three severities: warnings, errors, and fatal errors. Severe validation
 violations may prevent a manuscript from proceeding to the next workflow stage, which
 would require manual intervention. This is dependent on the particular stage, however.
 Violations that would halt processing at one point might be tolerated at a different
 point, particularly if a following stage of processing will involve staff interaction
 with the manuscript.
When a violation is detected, details are enclosed in a “processing-comment” element
 that contains a custom message for the violation. See the example: Violation Message. That element is inserted into the manuscript XML. If
 possible, it is inserted close to the location where the violation occurred. If the
 violation is not location-specific within the XML, the message element is placed close
 to the top of the XML document. Validation violation messages are interpreted by staff
 who take the appropriate corrective action. Violation messages are removed automatically
 when a manuscript “passes” validations and moves along in the workflow.
If a severe violation exists in the new converted manuscript XML that is sent from the
 vendor, it is automatically rejected back to the vendor. Both the vendor and ACS receive
 notifications of the rejections so that we can track any chronic issues and also ensure
 that the violations are corrected and the manuscript is resent.
ACS utilizes Documentum, a content management system, to store and process
 manuscripts. Documentum includes a Java API for custom application integration. ACS
 content validations are implemented using a few different technologies, including Java
 and Groovy. Implementing validations in Java and Groovy allow for validation of the
 manuscript content against data stored in the Documentum database, and the behavior of
 some validations change in subtle ways depending on manuscript attributes that are
 stored in the Documentum database. Validations written in Groovy may be developed
 quickly and deployed into production without incurring down-time.
The framework and validations that were implemented using Groovy were inspired by some
 of the main concepts of Schematron,
 such as the use of XPath
 expressions and assertion style programming. Individual validations that had no
 dependency on information stored in the content management system could have been
 implemented using Schematron. However, many validations did have that dependency, and
 there was a desire for a consistent approach in validation code.
Example 1
When a manuscript is ready for publication in an issue of a journal, a check is
 performed to ensure that //date[@date-type=’issue-pub’] is present in
 the content XML. If it is present, it is also checked to ensure that it is a valid
 date. If it is present and contains a valid date, then it is checked to ensure that
 it matches the “issue publication date” value stored in the Documentum database for
 that particular manuscript.

Example 2
We validate that the element <journal-id> is present as a child
 of the <journal-meta> section (which must also be present), and
 that the <journal-id> contents must be two characters in length.
 The XPath expression that finds elements matching that condition is
 //journal-meta/journal-id[string-length(.)=2]. If there are no
 elements that match that expression then a violation message is inserted into the
 tagging and the overall validations result is a fatal error.
Validation code (Groovy)

xmlTestXPath(vid: 'journal-id',
 desc:'Journal Id must be present and be 2 characters long',
 context:’//journal-meta/journal-id’,
 condition:'string-length(.)=2',
 messageId:'exact-string-length',
 severity:ACSPubsMessage.FATAL[…]

Violation message

<tep-common:processing-comment category="Validation" error-code="exact-string-length"
type="fatal">Journal Id must be 2 characters long.</tep-common:processing-comment>

Automatic Edits (“Hands-Free” Quality)
At two different times during the processing of a manuscript, content and tagging
 changes are automatically applied to the XML document. The first time (“pre-edit”)
 occurs between the stages when the manuscript is converted into XML and when the
 Technical Editor edits it.
Pre-edits are commonly applied content corrections and tagging enhancements. For
 example, commonly misspelled (mispelled?) words are automatically corrected. Another
 simple example is that <title-group> elements are added if they are
 missing.
The goal of these automatic edits is twofold: to reduce the amount of time Technical
 Editors spend manually making common changes, and to increase quality by lowering the
 chances that instances of errors slip through the manual editing process. (Humans won’t
 catch every mispelled word!)
Automatic edits are also applied after the Technical Editors complete the manual
 editing process. These edits (“post-edits”) do not typically alter the element contents,
 but target the element tagging. Tagging is normalized (extraneous attributes removed,
 etc.) and the manuscript is prepared for future stages, such as web and print
 publication.
The automatic edit process itself is complex, and is accomplished using a combination
 of technologies. Many edits are implemented in Java after the XML document has been
 parsed. Some edits are implemented using XSL templates. We have developed thousands of
 individual edits, and continue to add them to our collection.
Example 1
Label and head elements whose content is enclosed entirely inside certain
 formatting tagging will have that formatting tagging stripped. This is implemented
 in Java instead of XSL so that the list of formatting tagging can be supplied in
 dynamic properties.
Before:
 <label><bold>Label 1</bold></label>

After:
 <label>Label 1</label>

Example 2
This code adds a processing comment to the document XML that contains the page
 count of the manuscript. This is one example of an addition to the content XML that
 requires retrieval of information from the Documentum database.

/**
 * Add a processing comment to the document to let the TechEd know what
 * the current DOTS page count is for the document.
 *
 * @param doc ACS Journal DOM Document
 */
public void addPageCountProcessingComment(Document doc)
{
 try {

 String mscNo =
 acsJournalUtil.xpathFindString(doc, ACSJournalUtil.XPATH_DOCUMENT_ID_OLD_9);

 String pageCount =
 dotsMetaDataService.getAttribute(mscNo, DOTSMetaDataService.PAGECNT_TAG);

 int pageCountNum = Integer.parseInt(pageCount);

 if (pageCountNum == 0) {
 acsJournalUtil.addProcessingComment(doc, null,
 TEPMessageService.getInstance().
 getMessageForId(STANDARD_EDITS_PAGE_COUNT_ZERO, pageCount));
 } else {
 acsJournalUtil.addProcessingComment(doc, null,
 TEPMessageService.getInstance().
 getMessageForId(STANDARD_EDITS_PAGE_COUNT, pageCount));
 }
 } catch (Exception e) {
 logger.warn("Unable to determine DOTS page count.", e);
 acsJournalUtil.addProcessingComment(doc, null,
 TEPMessageService.getInstance().
 getMessageForId(STANDARD_EDITS_PAGE_COUNT_UNAVAIL));
 }
}

Vendor XML Quality
ACS outsourced the conversion and composition of its journals approximately five years
 ago, creating the need for someone to manage vendor relations. Initially, the job
 position didn’t include quality metrics experience but over time, metrics experience
 proved necessary. Ensuring vendor quality ultimately was implemented in three ways:
 vendor scoring, vendor validations, and vendor manual rejections.
Vendor Scoring
Measuring the quality of the XML was the first problem undertaken. XML standards,
 or conventions, had already been established with the vendor. For example:
For elements that allow text, any deterministic leading and trailing white
 space within element content should be avoided or moved outside of the tag. […]
 the pink spaces below should be omitted, and the blue spaces should be relocated
 into the adjacent text:
[image:]

With a few exceptions, this largely boiled down to following the author submitted
 authority document. After the source document is converted to XML and returned to
 ACS, Technical Editors are responsible for editing the paper according to
 established standards. After consideration of many options, it was determined that
 the “goodness” of a paper was tied to the time it took the Technical Editor to fix
 any mistakes that happened in conversion; time that was very costly. Moreover, this
 added the element of the criticality of an error, rather than just the number of
 errors. A small team of ACS staff members worked to devise the Conversion Scorecard
 where the Technical Editor could record the minutes they took to fix problems while
 they were editing the manuscript. This process allowed ACS to integrate scoring into
 the existing editing process to make the data collection process as efficient as
 possible. Following is a sample section from the Conversion Scorecard.
Table I
	CONVERSION
 SCORECARD
	Equations	Score
	Minutes to fix equations that were not
 keyed that should have been?	1
	Minutes to fix equations that were not
 MathML that should have been?	0
	Minutes to make the paper match author copy (beyond 2 items above)	0
	Equation Subtotal	1

The scoring methodology having been determined, the next issue was how to apply
 that to the approximately 40,000 manuscripts received by ACS for publication in a
 year in an efficient yet statistically valid manner. One important factor was that
 even with the scorecard, scoring was somewhat complicated. For the scores to be
 valid, the same criteria had to be applied in deciding if something was an issue.
 Also, two Technical Editors had to apply very similar resources to fix the same
 issue in two different papers. In order to maintain this consistency, a small team
 of scorers was selected who could be trained to use the same standards and then
 monitored to ensure that they were recording time in a similar manner. Six of our
 most effective and efficient Technical Editors were selected, trained, and then
 evaluated to ensure their scoring was uniform by having them independently score the
 same set of manuscripts.
With the small scoring team in place, the next determination was to find the
 smallest sample of manuscripts that could be scored and still give a very high
 degree of confidence that the sample was representative of the entire manuscript
 population. A sampling technique which was developed in-house by a Quality
 Management team in another division of ACS was used. That team started with standard
 sampling protocols taught in any statistical course, then created and tested a
 technique used to prove that scoring a relatively small number of items from a huge
 population was statistically representative of the entire population. The technique
 consisted of randomly selecting approximately 10% of the manuscripts submitted in a
 month, or 60 manuscripts. From that group of 60 manuscripts, 40 manuscripts were
 randomly selected. From that sub-sample of 40, 20 manuscripts were randomly
 selected. That sub-sub sample was then scored. The overall standard mean score and
 the standard deviation for the sub-sub sample was determined. Then the remaining 20
 manuscripts were scored (those not included in the first sub-sub sample). The
 overall standard mean and standard deviation for this set was then determined. In
 looking at the standard deviation from the two sets and the mean scores, it was
 determined with a confidence of 90% (which is standard for non-life threatening
 applications), that the mean score for a random sample of 20 manuscripts was within
 11% of the score for the entire population. The width of this interval was deemed
 acceptable.
Given this number, open source “random selector” code was used to select 240
 numbers from 1-40,000, which was 20 manuscripts per month for 12 months. The 240
 random numbers were entered in a table. When a manuscript was submitted to the
 workflow with a sequential number that matched a number in the table, that
 manuscript was flagged. For example, if 1253 was a number in the table, when the
 1253rd manuscript of the year was submitted, then a scoring attribute for that
 manuscript was updated in our workflow system and an email was sent to the scoring
 team telling them the manuscript was ready to be scored as soon as it returned from
 conversion.
When ACS first started scoring, the average number of minutes to fix a manuscript
 was 9.5. Today the number is between 1 and 2 minutes per manuscript. This
 significant improvement was achieved by a collaborative effort with the vendor to
 focus on the same issues and apply continuous improvement to those issues. This
 conversion score is reported weekly both internally and to the vendor. One of the
 real advantages of the reporting is that it is immediately obvious if there has been
 a change that affects the quality.

Vendor Validations
Another way the quality of our converted XML is ensured is by allowing the vendor
 to call our web service to run the ACS validations program. As mentioned earlier,
 ACS has a robust validations system that is applied to manuscripts at many points
 throughout the production workflow, including when manuscripts are returned by the
 vendor. Rather than waiting until a manuscript is returned to run those validations,
 ACS opened up the validations via web service to the vendor, significantly reducing
 the number of manuscripts ever sent to ACS which have validation errors. This also
 helped the vendor to meet turnaround time SLOs.
The validations check against our DTD but also against established conversion
 conventions. Following is an example of a validations error the vendor might see
 upon executing the validations service:
Validation failures were detected for np200906s
Journal: np
Msc Type: r-Review
FATAL: The content of element type "metadata" must match
 "(journal-meta,document-meta,processing-meta?)".

Vendor Manual rejections
Because ACS edits XML that is relatively complex, understandably some errors that
 are difficult to catch with validations are introduced during technical editing.
 These errors often interfere with good composition. These mistakes were originally
 addressed via emails between ACS and the vendor. This caused problems when emails
 were lost or sent to out-of-office staff. There was also no enduring record of the
 problems being addressed. Working with the vendor, a way was implemented to reject
 incorrect tagging that affected composition. For example, a table attribute might
 have been set to be anchored instead of as float which resulted in poor rendering in
 the composed output. Code was installed at ACS and also at the vendor’s site which
 allowed the vendor to reject a composition request with a meaningful error code. Now
 when the ACS workflow system receives an error code, four things happen:
	the specific instructions that the vendor entered at the time of the
 rejection is entered in the ACS workflow system as a note attached to the
 manuscript. For example, “Figure 1 appears in the document but is not
 cited.”

	the code is looked up in a table and general instructions present in the
 table for that error code are found

	these instructions, both specific and general, become the text of an email
 sent to the appropriate ACS staff member

	the manuscript is auto-routed in the workflow system to the appropriate
 stage to be corrected by either a Graphics Editor, a Production Assistant,
 or a Technical Editor, depending on the error to be corrected

Not only did this improve publication time but it improved the quality of the work
 done by ACS staff by giving immediate feedback on errors committed. The rejections
 are also parsed periodically to help guide other efforts to improve throughput and
 quality.

Conclusion
The steps taken by ACS to measure, auto-correct, and validate our XML have made a
 positive difference in all aspects of the workflow. Technology is evolving daily and to
 think that efforts to ensure XML quality are complete is to already be behind. For
 example, we have made over 30 changes to our validations and pre-edits alone since the
 beginning of the year. ACS is committed to continually monitoring and improving the
 processes we have put in place to ensure the quality of our XML.

Bibliography
[ACS Tagsets] O'Brien, Dan and Fisher, Jeff.
 “Journals and Magazines and Books, Oh My! A Look at ACS' Use
 of NLM Tagsets.” JATS-Con Proceedings 2010. http://www.ncbi.nlm.nih.gov/books/NBK47083/.
[ACS Style Guide] Edited by Coghill, Anne M.
 and Garson, Lorrin R. “The ACS Style Guide: Effective
 Communication of Scientific Information, 3rd ed.” 2006. ISBN:
 978-0-8412-3999-9 http://pubs.acs.org/page/books/styleguide/index.html.
[ACS Automated Composition] Needham, Diane.
 “True Automated Page Composition Process.”
 Presentation given at STM Innovations Seminar U.S. – Reinventing
 Innovation, 2012. http://www.stm-assoc.org/2012_05_01_Innovations_US_Needham_True_Automated_Page_Composition_Process.pdf.

Balisage: The Markup Conference

ACS Publications — Ensuring XML Quality
Tamara Stoker
Vendor Relations Manager
American Chemical Society

<tstoker@acs.org>
Tami Stoker has served as the Vendor Relations Manager at the American
 Chemical Society for the past four years. She became a Certified Quality Analyst
 early in her career and worked in the quality management area for many years,
 specializing in business process improvement. Tami resides in Worthington,
 OH.

Keith Rose
Lead Programmer Analyst
American Chemical Society

<krose@acs.org>
Keith Rose is a Lead Programmer Analyst at the American Chemical Society, with
 over 25 years of IT experience. He has spent the last five years in the ACS
 Publications division working on XML-related projects for both journals and
 books. Keith resides in Hilliard, OH.

Balisage: The Markup Conference

content/images/Rose01-002.png
Workflow
Promotion Tools

i

Vendor Technical Editor
(via XML Editor)

Validation Web Service

Basic Validation Conversion Validation | Tech Edit Validation [... other validation
Controller Controller Controller controllers]
] T T
T -
|
I

Synopsis

Basic Validations Validations

Media Validations MathML Validations [... other validations]

content/images/Rose01-001.png
(Author)

| | | ? | * |

| | | | ‘ |

| | | | |

| | 1| Proof 1| Author |

: : : PDF : Corrections :

| | | | |

| | | | |

| T T T |

> | | | i

Author : : : : !

Original H H H \ |
Document ! | ! ! i Print
| | | | | PDF

| | | | |

| | | |

| Vendor || H H H

i i | Awhor | Auhor |

Submission | Conversion | Editing | Review | Corections | Publication

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Rose01-003.png
Incorrect:
<head> Methods samp Materials[</head>
<fn>li<label>ld[i</label>iper<bold>2xli</bold>d.</fn>

Correct:
<head>Methods & Materials</head>
<fn><label>d</label>perllikbold>2x</bold>ld.</£fn>

