[image: Balisage logo]Balisage: The Markup Conference

But wait, there’s more!
C. M. Sperberg-McQueen
Member of the technical staff
World Wide Web Consortium / MIT

Balisage: The Markup Conference 2008
August 12 - 15, 2008

Copyright © 2008 by the author. Used with permission.

How to cite this paper
Sperberg-McQueen, C. M. "But wait, there’s more!." Presented at: Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15, 2008. In Proceedings of Balisage: The Markup Conference 2008.
 Balisage Series on Markup Technologies vol. 1 (2008). https://doi.org/10.4242/BalisageVol1.Sperberg-McQueen02.

Abstract
XML has been widely adopted and forms part of the infrastructure of most modern
 information technology. We have a satisfyingly large collection of XML vocabularies and XML
 tools. Is it time to declare victory and go home yet? Or is there more to do?

Balisage: The Markup Conference

 But wait, there’s more!

 Table of Contents

 	Title Page

 	But wait, there’s more!

 	About the Author

 But wait, there’s more!

But wait, there’s more!
Some members of the audience will already be familiar with the phrase that is my title
 today: But wait. There’s more. But not everyone will be, so I had better
 start with a few words about Yuri Rubinsky. Yuri was a significant figure in the history of
 descriptive markup. He ran a software company, SoftQuad, that sold a popular SGML editor called
 Author/Editor and later on an HTML editor called HoTMetaL, based on Author/Editor, and
 later still (after Yuri’s time) SoftQuad created XMetal, which is still a popular application although it has changed hands a number
 of times since SoftQuad was acquired by Corel some years ago.[1]
Now, Yuri was a sweet — and sometimes sour — but a sweet, friendly,
 persuasive man: well-liked in the community and well deserving of being liked. He made a
 tremendous impact on a lot of us, including many of us in this room. And he died young. So if
 after this talk, you ask some of us old-timers about him, you may catch us lurching
 unpredictably back and forth between laughter and husky-voiced reminiscences.
As an engaging and persuasive sort of guy, Yuri was, of course, a pretty good salesman. And
 he was also an enthusiastic and committed cheerleader for the technology of descriptive markup
 and the freedom and responsibility that is entailed by the idea of giving ownership of the data
 to the creators of the data. Sometimes these two roles of salesman and cheerleader came into a
 state of, well, if not conflict, then at least a state of tension.
There’s a story that Yuri was once on a sales call with a colleague talking to some
 potential customers about the benefits of descriptive markup and the virtues of Author/Editor. He was eloquent, and SGML and Author/Editor were in fact a pretty good fit for this particular organization, so
 the potential customers were very soon persuaded. They began giving the usual signs of being
 ready to close the deal, but Yuri kept talking, piling advantage upon advantage to the case for
 descriptive markup and SGML, and eventually they were practically tugging at his arms, reaching
 into their pockets for their checkbooks, and his colleague was making let’s wrap
 it up noises, and Yuri turned around, fixed them with his eye, and said But
 wait. There’s more.
Now, the gist of that moment, the way the desire for clarity and the eagerness to show
 people all the ramifications and advantages of descriptive markup overpower the short-term
 desire to close the sale, the way that Yuri is so filled with enthusiasm that he can barely stop
 his exposition in order to allow people to hand him their money — these seem somehow so
 characteristic of Yuri and of his infectious enthusiasm that the story is now inextricably
 linked in our memory with Yuri.
It’s ten years now — ten years and a few months — since the
 Extensible Markup Language, version 1.0, became a recommendation of the World Wide Web
 Consortium. There’s something a little artificial about anniversaries of this kind, and
 I don’t like to observe them too scrupulously or make too much of them. But it is useful
 from time to time to stop and think about things in a broader frame of reference, to reflect on
 where we were some time ago, where we wanted to go from there, where we went in fact, and where
 we would like to go from here. And we can do a lot worse than to use anniversaries like this one
 as occasions for such periodic self-examination.
Yuri Rubinsky died the winter before the W3C formed the working group that eventually
 produced the XML specification. He had been one of the first and most persuasive members of the
 SGML community to argue that SGMLers should embrace the web as showing how useful and powerful
 an SGML application could be, instead of looking down on it for the shortcomings of its puny
 HTML tag set and the laughable inadequacies of most HTML processors. He wrote a book once, with
 Murray Maloney, called SGML on the Web, which is still worth
 reading for one of the most lucid descriptions you will find anywhere of the nature of
 descriptive markup [Rubinsky and Maloney 1997]. So it’s no surprise, I guess, that when
 I think about XML and its place in a broader context, I find myself thinking about Yuri Rubinsky
 and about the story I just told you and about the phrase But wait, there’s
 more.
Over time I have come to believe that the phrase But wait, there’s
 more — or the variant of the phrase which seems to fit Yuri’s willingness
 to accept the web as something we can learn from, But wait, there’s less, — I’ve come to believe that these can
 illuminate our situation in a variety of ways. Now, before I talk about some of them, I have to
 explain that I sometimes think there are two kinds of projects in the world. Other times, I
 think only that there often seem to be two kinds of projects in the world. I don’t
 actually know how many there are or whether these are really distinct. There are what you might
 call barn raisings — you have something you want to do, you gather the
 materials and people and resources that are necessary to do it, you do the thing, you raise the
 barn, and then everybody goes home again. (I may need to explain to people who aren’t
 from here that all through the US and Canada as settlement progressed westward through the 18th
 and 19th centuries and new land passed under cultivation, the coming together of communities to
 build barns for new farms — to build barns for each other — was an important
 social binding ritual that is still practiced in more conservative social communities such as
 those of the Mennonites and the Amish. So, a barn raising is an important social event as well
 as a finite project with an end.)
And then there are other projects that you might call community farming.
 Again, you have something you want to do, you gather the people and resources you need, and you
 work together to accomplish your goal, but there is no final whistle, there is no point at which
 the roof beam has been raised, the roof is on, the barn is finished, and you can go home,
 because the task you’re talking about is an ongoing one. Once you have plowed the field,
 you have to start planting it. And once you have planted the field, you have to start weeding.
 And so eventually you have to harvest. And once you finish harvesting, you have to repair the
 plow.
Now, it’s possible to be mistaken about the kind of work something is. The most
 obvious example that comes to my mind immediately is that when standards development
 organizations are young — when they are first created — it is easy to see that
 many people involved think of the formation of, say, a working group as a barn raising. Ah, we
 have a problem, we form a working group, they write the spec, and then they’re done, and
 everybody goes home. When standards development organizations grow older and when individuals
 gain more experience in standards work, they tend less and less, at least in my experience, to
 think of working groups as barn raising projects and more as farming projects because once the
 spec is there, if it’s going to stay around and be used, it will need maintenance, it
 will need errata, it will need amendments, it will need new versions, it will need the
 development of a better test suite, it will need interpretation of difficult passages, and so on
 and so forth.
Now, there’s always a danger that a working group will just stay around out of
 inertia because its members are so lacking in imagination that they can’t get their
 heads around the idea that their work is done and they should go home, so every now and then an
 outside intervention is necessary to reorganize things. But there’s often a very good
 reason that working groups have a longer lifetime than some people might at first have expected.
If we thought that the quiet revolution that Eduardo Gutentag was talking about the other
 day was a barn raising, we were wrong [Gutentag 2008]. Revolutions are almost never barn
 raisings because, remember, if you succeed in your revolution, you suddenly find yourself
 responsible for day-to-day governance and then your work is never done. And we have in many ways
 succeeded in a quiet revolution. But that means there is a never-ending stream of new
 communities needing markup vocabularies. We need better algorithms for validation or for parsing
 or for processing or for styling or for any of the things that we do with marked up data. We
 need to standardize the XML form of office documents, as painful as that experience may be. We
 need to experiment with alternative ways of handling links and validation and styling and so
 forth and discontinuous structures that overlap. There is always more to be done in our quest to
 make descriptive markup ubiquitous and to help it fulfill the revolutionary potential that we
 see in it.
Every paper at the conference illustrates one aspect or another of this work, and while I
 would like to discuss them all one by one individually, that would probably take another three
 or four days, and that might make some of your worry about catching your flights, so
 I’ll try to suppress my urge to comment in detail on each paper individually.
Another sense of the phrase But wait, there’s more, is as a design
 reminder. When you’re designing version one, remember there will be more versions. This
 is not, unless of course you’ve managed to design a complete failure — this will
 not be the last version you want to do of this spec, so remember to provide some support for
 versioning your language. In this connection, it is worth suggesting to you that But
 wait, there’s less, is a good motto to adopt. Something is better than
 nothing. Correction: Almost anything is better than nothing when it comes to supporting
 versioning.
It’s very tempting when you’re designing version 1.0 of something that is
 kinda complicated and kinda hard to say, Oh, man, we can’t think about everything
 at once. We have to focus. We have to identify non-goals. We have to modularize things. We
 hardly know what is going to be in 1.0, let alone what we might want to put in 2.0. We
 can’t design a versioning system that will allow the addition of the features we will
 need in 2.0 because we don’t know what they are. That is way too complicated; we will
 not get it right, so let’s focus on just the immediate task. If you allow a
 working group to fall into that line of thinking, you have every likelihood that the working
 group will do nothing at all about versioning. Case in point: the XML Schema 1.0 working group.
 We knew it was important; we spent a lot of time talking about it. And our discussion of it made
 clear that we didn’t have the first idea how to do a really good versioning mechanism,
 how to support all the kinds of changes that we would need to make in future versions of XSD,
 without building a lot of useless mechanisms to support changes that we weren’t going to
 turn out to make.
The only perfect versioning mechanism — no cost without benefit — is a
 versioning mechanism that predicts exactly what changes are going to be necessary. No versioning
 mechanism designed without clairvoyance can be perfect. Important principle: It doesn’t
 have to be perfect to be useful. Those of you who were here Monday will have heard David Orchard
 mentioning HTML as a good example of a language that has survived versioning very well; he is
 not the only one [Orchard 2008]. It is a very common example, and in fact,
 they’re quite right: HTML did a great job of supporting versioning. Enthusiasts for HTML
 often will tell you, That is because they got it right. They did a perfect versioning
 mechanism. They said everything you need to know. The only rule you need is: Ignore what you
 don’t understand. Well, that is, I think, a slight over-simplification. HTML
 didn’t get it perfectly right. The versioning rule in HTML with regard to support for
 later versions of the HTML spec is quite simple: When you see a tag you don’t
 understand, ignore the tag. That is a good fallback. But as Sandro Hawke pointed out on Monday
 [Hawke 2008], the best fallback for blink would be some other form of
 highlighting like red color or bold-italic or
 underscoring or very large. If you just ignore the tags and print
 the content, the one thing you have failed to do is indicate that that phrase is any different
 from its context, and that is almost certainly not the best possible fallback, although it is
 better than nothing.
It’s also the case that quite often when you’re extending a vocabulary in
 the ways that HTML has been extended, there are two things you might want to ignore. Sometimes
 you want to ignore the tags. That is the right thing to do for the blink tag and
 the font tag and all sorts of phrase-level tags. Other times what you really want
 to do is ignore the element, which is the right thing to do for, say, the script
 element. If you have read any of the textbooks on Javascript that were written within the first
 ten years of the introduction of Javascript, you’ll remember that there is a three-page
 section that says: Don’t ask why, but at the very beginning of every script
 element you have to repeat these magic formulae. Don’t try to understand it; just do
 it. Alright, if you insist on knowing, this is a common delimiter intended for this processor
 that prevents that from going on, that is a delimiter for this other processor that allows it
 to ignore the first delimiter. Then, there is a special case in that processor that allows it
 get by despite the fact that it doesn’t understand what is going on. Aren’t
 you glad you insisted on knowing why? Again, don’t try to understand it; just copy
 this into the beginning of every one of your scripts.[2] Why? Because HTML didn’t get it perfectly right. There is no way in HTML to
 say this is an element that if you don’t understand, you should ignore the element
 instead of the tag.
Okay, Ignore what you don’t understand is not a perfect rule. HTML
 didn’t get it perfectly right. HTML got it maybe a little less than half right. And HTML
 is nevertheless a huge success story when it comes to a language allowing itself to be
 versioned. Why? Because it did something. That glass that is only one-third full is one-third
 full and not two-thirds empty. Almost anything is better than nothing when it comes to
 supporting versioning. There is more to versioning than you understand. As Peter Brown told us,
 when you start out working on versioning above all, don’t assume you understand what the
 word means [Brown 2008]. Quite true. There is more to versioning than your versioning
 mechanism is going to succeed in supporting. But that is okay. Wait, wait —
 there’s less.
Exercise humility! This is another way of spinning the phrase But wait,
 there’s more, which gives it the sense of But wait, there’s
 more. Yes, I know, but that is okay. I’m not going to try to be everything to
 everyone. That has more general applicability. There is more to the problem —
 whatever problem it is you’re working on — than your personal or corporate views
 and interests. There are different people on the working group with different points of view,
 different values, and, yes, hard though it is to remember, different virtues and different
 contributions to make to the collective work, irritating though they will be from time to time.
 We as individuals are not the be all and end all of our collective work. There is more to the
 working group and to the work than that.
Humility can be very hard to cultivate when so many of our working group colleagues not only
 remind us indirectly of our superiority but demonstrate it daily by their obstinancy in opposing
 what is clearly the right technical solution, that is, the one that we favor. But a little
 humility, even if it is not evenly distributed in the working group, can go a long way in
 helping working groups and other organizations to avoid the kinds of disasters that we heard
 about the other day and to minimize their effect when they happen anyway.
But perhaps the most important application of the phrase But wait, there’s
 more, is to the future of descriptive markup itself. Was XML supposed to be a barn
 raising or a farming project? And, independent of what it was supposed to be, what did it turn
 out to be? And how many barns were we intending to raise before we went out into the fields and
 started plowing?
Now, as I recall it, in 1996 we had a simple, clear plan. We wanted a web-friendly version
 — subset, cutout, profile, call it what you like — of SGML. We wanted a
 web-friendly version of DSSSL. We wanted a web-friendly version of HyTime. That is, we wanted
 web-friendly versions of the three major work items of ISO/IEC JTC1/SC18/WG8, which was the
 group that defined languages for document processing. Oddly enough, I don’t remember
 anyone ever saying we have to have a web-friendly version of the standard page description
 language. That one never seems to have caught on. I don’t understand why not.
Alright, well, if that was our goal, it’s interesting to note that it’s
 done. We have web-friendly versions of all of those things. SGML begat XML. DSSSL begat XSL and
 XSL-FO. HyTime begat (at some remove, but still there is a direct genealogical relation) XLink
 and XPointer. Now, XLink and XPointer do not have the uptake that we had hoped for. But they are
 there for those who need them.
 DOM was not part of the original program as I
 understood it. More stuff started coming down the pike even before we were finished with that
 original program.
But if what were involved in was a barn raising, and we’ve raised all three of the
 barns that we had intended, what are we doing here? I suspect that our presence in this room
 today is an indication that there was more to do. And there is
 more to do.
I’ve spent a lot of time in the last few weeks talking to people about what should
 be next, what can be next. Ten years after SGML became an international standard, one way to
 tell the story is that a small group of people ended up trying to solve what seemed to them the
 single most pressing problem of SGML, which was the complexity of the specification, which
 prevented easy software development, which prevented wide-spread common tools, which prevented
 widespread adoption of markup languages.
So, if we imagine a similar situation now, what is the small group of people gathering in
 some city far away — because they won’t be us — what are they working
 on, or what should they be working on? Or what should we be working on if we are going to take
 the future into our own hands? Interesting question; there are a lot of different answers. I
 don’t have time to go through all of them. I don’t have time to go very well
 through many of them at all. So I’ll focus on the biggest one. The biggest problem
 — I hate to say this because in my retrospective mood of the last few weeks I’ve
 also been thinking about the first time I ever gave a closing talk at a markup industry
 conference. It was 1992 at SGML ’92, and I gave a talk in which I was asked to predict
 the future, and I identified the biggest problem that faced us and what we should do to make
 progress on it, and the biggest problem then is still the biggest problem today. And that is the
 problem of semantics [Sperberg-McQueen 1992]. And it’s humbling to read a talk that you
 wrote 15-16 years ago and see the five or six things that you proposed as the right things to
 work on next and note that absolutely nothing has happened on any of those fronts, with one
 exception, which is an interesting exception. I suggested that one way to get a better grip on
 the semantics of markup would be to make it possible to identify that all X’s are
 Y’s, to identify class relations among markup constructs. Now, on that there has been
 progress. One of the major features of XML Schema 1.0 is precisely a system of type inheritance
 that is intended to and does in fact allow you to say precisely that kind of thing.
Lots of people talk about XSD 1.0 and 1.1 type inheritance. I notice that no one talks about
 it as semantics. This would be troubling to me except that we have an excellent analogy that
 helps us explain that situation. Some of you will have noticed that whenever the workers in the
 field of artificial intelligence finally solve a problem, that problem ceases to be part of the
 field of artificial intelligence. It’s now just engineering. Artificial intelligence is
 effectively the name of all the interesting things that we would have to do to replicate human
 intelligence in artificial form that we don’t currently know how to do. If we know how
 to do them, they’re no longer AI. They’re just engineering in the same way that
 the difference between a normal computer and a supercomputer is not ever measured in cycles per
 second or floating point operations per second or logical inferences per second; it is measured
 in dollars unadjusted for inflation and as the cost of computing power has fallen, the threshold
 of being a supercomputer in terms of computational power has risen. In the same way, what we
 call semantics is all those things that we don’t really know how to do very well. Allen
 Renear pointed out to me this morning that some linguists will distinguish — well,
 linguists have always distinguished, you know, phonology and morphology, syntax and then
 semantics. Some linguists now distinguish semantics from pragmatics. Why is that? Is that
 because they know how to do semantics? No, it’s because pragmatics has crystallized out
 as a field that people feel they have some kind of grip on (or at least they think they have a
 grip on how to study it), whereas semantics remains the black hole into which we throw all the
 stuff we don’t know how to do, but we’d like to do someday if we could only
 figure out how.
Semantics is a single noun, but it clearly doesn’t denote a single thing.
 It’s a cover term for our ignorance. So our goal really, if we want to have any feelings
 of success, shouldn’t be to solve the problem of semantics. It should be to isolate
 substructures within that complex or cultivate regions within that area and make them
 understood, knowing full well all the while that as we do so, they will cease to be regarded as
 covered by the term semantics. They may not be semantics, but they will still be
 useful things to be able to do.
One form in which the problem of semantics presents itself is the problem of design, the
 problem of modeling. What is the right way, a friend of mine asked me recently, to design a
 language? How do I teach the guys who work for me, the ones who actually design the markup
 languages, how to do it right? How do I tell them how to tell the difference between a good
 markup design and a bad one? When I ask the question that way, I am very pessimistic because I
 think the short story is that good design involves hard thinking. And that means it’s
 just hard.
Also, things seem to be getting worse. In 1992, at least according to the record of my talk,
 we thought we were nearing consensus on what counted as good design for markup languages. But
 the community has grown — the number of people involved in design has grown —
 and there is a lot of suboptimal XML out there. That was one of the main themes of the W3Quebec
 nocturne the other night here. Just how bad is the XML that you have seen in the wild? And the
 answer is: on the whole, pretty bad, some of it. There were some really outstanding examples of
 ugly vocabularies out there.
I became aware, while thinking about this, that although we may not be able to solve the
 core problem, we may be able to make progress on it if we give ourselves better tools. Thinking
 is hard, and we don’t have the capability to automate it, at least not now, not until
 our friends in the AI department have finished eliminating the field of AI and actually created
 artificial intelligence. Until they do that, we may not be able to directly support hard
 thinking. But any design involves both hard thinking and a lot of bookkeeping, and if we can
 make better tools for the bookkeeping and for visualizing the results of designs, we may be able
 to make it easier for bears of middling brain to do good design.
In that context, it seems to be a shame that although a number of people have mentioned the
 importance of prose documentation over the course of this conference, text and documentation
 tools and styles and procedures don’t seem to get much play. In a way, that is a shame.
 Another prospect that is frequently mentioned in this connection is compact syntaxes.
 I’m of two minds about compact syntaxes, partly because when I committed to SGML and
 XML, I committed hard, and syntax without angle brackets makes me nervous, you know. The road to
 hell is paved with compact syntax. But a lot of people like them a lot, and certainly the
 one-to-one mappability between the XML representation of RELAX NG schemas and the compact syntax
 does seem to have prevented the worst from happening there. And compact syntaxes do have the
 advantage that they allow you to get more information within the visual field of the person
 doing the hard thinking than is otherwise feasible with a verbose notation, and if there is one
 thing we have learned from reading Edward Tufte, it is that getting more information into the
 visual field in a tractable form is a good thing to do.
I think that our difficulties with semantics are related to the interoperability problems
 that were identified by Jerome McDonough [McDonough 2008]. I think there may be two sets
 of forces at work in the kinds of problems he was talking about. First, there is a sort of
 social pendulum. As he noted, the rhetoric used to sell XML at the outset was all about freedom
 and independence and autonomy. And there was the promise of interoperability, which is the seed
 of the contradiction, but a lot of emphasis on freedom and autonomy. That is, I think, not an
 uncommon phenomenon. If you are asking me to adopt a new technology with which I’m not
 currently familiar, I have two concerns. I’d like to make sure I’m going to get
 some advantage from it (and stopping you harping at me may be enough of an advantage) but I also
 want to make sure that my costs are limited and that it does not impede the freedom I currently
 have to make up my own mind about certain things. So, I at least tend to be very wary of the
 kinds of ontological commitments a new technology may impose upon me.
In the Text Encoding Initiative, we had this problem in spades. We were quite up front about
 the fact that markup of documents is a hermeneutic activity. But hermeneutics is part of the
 core activity of everyone in our target usage audience. The last thing a professor of English
 literature wants to hear is: You should adopt this new technology, and it will force you
 into a particular style of interpretation. No, no — that way lies complete
 non-adoption. Now, it’s true that if you are very upfront about that, you will not have
 the kind of interoperability problems that Jerry McDonough talked about [McDonough 2008], but not because you have interoperability. The problem simply won’t arise because
 no one will have adopted the technology in the first place.
So, I think the rhetoric of freedom is likely to be the emphasis in a lot of new
 technologies, and concern about interoperability will come a little later. Now, I think
 it’s rhetorically important, but I also don’t think it’s exactly
 deceptive to say at the outset that XML does help with interoperability. Because having markup that you understand and that you control is the first prerequisite
 to solving your interoperability problems. As long as my data is controlled by
 anonymous corporation X and your data is controlled by anonymous corporation Y, we have no hope
 of addressing the interoperability problem. Independence from the anonymous entities X and Y
 — or not anonymous, in some cases — is the first prerequisite of
 interoperability.
The adoption of XML, with all the autonomy that XML entails, did not create the
 interoperability problems. It exposed them; it allowed them to come to the surface. And what you
 will see in the TEI community is that the experience of people in the TEI noticing that they
 don’t have the level of interoperability that they wish for has led to a number of
 movements within the TEI community to make more concrete and fuller agreements. So there is a
 swing from the emphasis on the freedom to the emphasis on interoperability, and that may well
 produce a backlash later on.
The second set of forces at work here is the fact of incremental consensus. There is only so
 much agreement in the room at any given point, or as Donald Rumsfeld might have said, You
 ship the spec with the level of consensus you have, not with the level of consensus you might
 wish you had had. SQL-89 had one of the world’s most eccentric type systems.
 Why? Because they could all agree on integer, and they could all agree on a couple of other
 types, but there were a whole lot of types on which they could not agree so they just left them
 out, with the full expectation that people would extend SQL-89 in different ways. As they did.
 And that led to the well-known complications of SQL-89 interoperability. But the alternative
 would seem to be delaying the spec even further, until you have completely missed your market
 window.
Sometimes the reason you don’t have consensus on the details like, well, what should
 the date look like, is that you actually have disagreements. Sometimes it’s because some
 people in the room are not ready to reach an agreement on it because they don’t foresee
 that it will be a problem. In any working group, you’re going to have some people who
 know what is going on and predict pretty accurately what is going to happen, and they can say,
 Gee, you know, if we don’t specify which date format to use, that date field is
 going to be interoperable at this level, but not at the higher levels that we would
 like. And my experience is that quite often when those people try to explain the problem
 to the other people in the room, they get deer-in-headlights eyes, and at some point, you have
 to say, Well, they’ll learn eventually, and experience does help people
 learn. When my university examined client server software, we adopted Gopher. We
 didn’t even look at HTTP and the World Wide Web. If we had, we would have adopted Gopher
 because we could understand it; it was simple, and the additional complexity of HTML would have
 seemed utterly unmotivated. Six months experience with running and using distributed information
 systems taught us plenty, and after six months, we would have understood why HTML had the
 additional complexity it had, and why HTTP was more complicated than the Gopher Protocol, and at
 that point, we might well have adopted — and in fact did, though it was a couple of
 years later — the World Wide Web instead of Gopher. But without that experience, we were
 not in a position to understand, and that is going to be true of many people in the working
 group room as well.
Now, I feel terrible saying that since 1992 we have made no progress in semantics because
 I’m acutely aware that there are a lot of people in the room, and a lot of communities
 with people who are not in the room, who have spent a lot of time and effort over the last
 decade working on what they think of as solutions to semantics. Topic maps on the one hand, RDF
 on the other — how can I stand here and say that the RDF and Topic Map communities have
 made no progress? Well, I won’t say that. But then, what is wrong with them as a
 solution to semantics problems? The problem I have with them is that very little of the work
 that I understand in Topic Maps or RDF connects with the semantics problems that I have in mind
 when I say We the users of descriptive markup have a problem with semantics. What
 I said in 1992 was: But if data portability is good, application portability is better. If we are to make
 good on the promises we have made on behalf of SGML to our superiors, our users, and our
 colleagues, about how helpful SGML can be to them, we need application portability. And for
 application portability, alas, so far SGML and the world around it provide very little help.
Application portability is achieved if you can move an application from one platform to
 another and have it process the data in “the same way”. A crucial first step
 in this process is to define what that way is, so that the claim that Platform X and
 Platform Y do the same thing can be discussed and tested. But SGML provides no mechanism for
 defining processing semantics, so we have no vocabulary for doing so.

Now, of course, there are lots of good reasons that SGML doesn’t provide a
 vocabulary of processing primitives, and it’s exactly right. But it simply means that in
 order to solve the problem of application portability, we need to choose and develop —
 choose, establish, develop, provide — some way of getting at those semantics. Do RDF and
 Topic Maps help here? How? Not, alas, in my experience. They offer a lot of functionality. They
 offer many semantically-rich bits. They work very well with data that is extremely regular, like
 triples or associations. They work a little less well with text. But that is where I came in;
 that is what I’m looking for help with.
Text is not a corner case. If we focus only on the tractable, regular cases because those
 are the ones that are tractable in our attempts to solve semantics, we’re a little bit
 like the drunk who is looking for his keys under the street light instead of where he lost them
 because the light is better there. Intelligence, as Tim Bray used to say, is a textual
 application. There is a reason that the budget of the United States is printed as a book with
 notes, footnotes, and preface and commentary; it’s because the simple array of numbers
 is not the whole story. You get the kind of regularity you get in relational tables, or for that
 matter in triples and associations, by banishing nuance and details to the footnotes. But the
 footnotes will need to be text.
It’s interesting, of course — we are acutely aware as we write prose
 definitions of the meaning of our markup that even when we write it really, really well, there
 will be readers who are ingenious enough to find ambiguities and uncertainties and vagueness and
 even, God forbid, contradictions in what we have written. Sometimes they’re illusions,
 but quite often, they’re there; we just didn’t see them. Murata Makoto found
 more ambiguities in the XML 1.0 spec than I would have ever imagined, by the simple procedure of
 translating it into Japanese and saying, Well, how do I translate this sentence? There
 are two different ways. Which does it mean? Ask me to tell you about the meaning of
 may not sometime.
So, it is natural that people who have been working with prose have always wanted to move to
 some sort of formalism. Allen Renear once gave a talk at Extreme
 Markup Languages in which he talked about the ability to have statements in modal logic
 completely replace the prose description because they would be unambiguous, they would be clear,
 they would be precise, they would be compact [Renear 2003]. Before we go there,
 however, we should note that there are no notations that are so precisely defined and so
 widespread and so widely used as, say, programming languages.
Recently, the Communications of the ACM published an
 interview with Donald Knuth, who is widely and justifiably regarded as perhaps the greatest
 programmer in the world [Knuth, Feigenbaum, and Shustek 2008]. Remember what Knuth did? One of Knuth’s
 major contributions to programming technology is the introduction of prose into the
 documentation of programs — the invention of literate programming, in which, as he says,
 you say everything twice.[3] It’s as if programmers have to be Yossarian in Catch-22; you will remember that Yossarian was in the hospital because he saw
 everything twice [Heller 1961]. Seeing everything twice is a nice metaphor for the play
 of memory and expectation that is at the heart of the novel Catch-22, but I won’t go there.
You have to say everything twice. This is also the mechanism adopted in formal specification
 languages like Z. Every Z textbook I have ever read has some passage where they say You
 will at some point say, ‘Ah, I have got it’, and you will go home, and you
 will write ten pages of Z formalism, and you will go back to your colleagues, and you will
 say, ‘I have solved it. Here is the design’. You do not have the design. You
 do not have a Z document. If it is only the formalism, it’s not a
 specification. You must say everything twice. The two ways of saying it reinforce each other,
 clarify each other, disambiguate each other.[4]
So, I sometimes think that what we really need for practical purposes is not just the pure
 formalism that I associate with RDF and, so a slightly lesser extent, with Topic Maps —
 modulo the determined resistance to going the final step to full formalism that Murray Altheim
 was exhibiting the other day [Altheim 2008]. And what we really need is not prose by
 itself. What we really need is both. We need a way to embed the formal syntax into prose, as a
 sort of paraphrase. The work Sam Hunting reported on the other day illustrates this very
 precisely [Hunting 2008]. So does the RDFa specification published recently by the
 World Wide Web Consortium. Both of them turn the document author into a kind of Yossarian: they
 enable us to say everything twice, once in the formalism so it’s tractable for machines,
 and once in prose, where the nuances and the hesitations and the limitations can come across to
 the reader.
I think we also need to have explicit tools for talking about translation from our markup
 into other formalisms. So, the kinds of things that Dichev, Dicheva, and Ditcheva were talking
 about this morning are relevant here [Dichev et al. 2008]. Now, there’s a lot to say
 about translation, translation mechanisms, and tools to support it. I won’t talk about
 them now because they are too important, there’s too much to say, I’ll get
 excited, and you’ll be here for another hour and a half. If we solve these problems or
 even if we just make some progress on them, we will, I think, fairly soon decide that
 they’re not really part of semantics because we know how to deal with them, but we will
 be in a much more comfortable world than we are now.
We’re almost done here, almost done with this talk, almost done with this
 conference.
But wait. There is more.
There is more work for each of us to do. There is more for each of us to learn. There is
 more for each of us to teach the others. But there is more to all of that than I can tell you
 about here now. So really, it’s up to you. Go home now, this barn raising is over. When
 you get home, you’ll have plenty to do, but come back next year and tell the rest of us
 all about it.
Thank you. Have a safe journey home.

References
[Altheim 2008] Altheim, Murray. 2008. Informal
 onotology design: A wiki-based assertion framework. Proceedings of Balisage 2008,
 Montréal. On the Web at http://www.balisage.net/Proceedings/vol1/html/Altheim01/BalisageVol1-Altheim01.html

[Brown 2008] Brown, Peter. 2008. This paper has no
 version: Versioning as a social construct. Proceedings of International Symposium on
 Versioning XML Vocabularies and Systems, Montréal. On the Web at http://www.balisage.net/Proceedings/vol2/html/Brown02/BalisageVol2-Brown02.html

[Dichev et al. 2008] Dichev, Christo, Darina Dicheva,
 Boriana Ditcheva, and Mike Moran. 2008. Translation between RDF and Topic Maps: Divide
 and translate. Proceedings of Balisage 2008, Montréal. On the Web at http://www.balisage.net/Proceedings/vol1/html/Dichev01/BalisageVol1-Dichev01.html

[Flanagan 2008] Flanagan, David. 1998. JavaScript: The definitive guide. Third edition. Sebastopol, CA:
 O’Reilly.
[Gutentag 2008] Gutentag, Eduardo. 2008. XML: It was
 not televised after all Proceedings of Balisage 2008, Montréal. On the
 Web at http://www.balisage.net/Proceedings/vol1/html/Gutentag01/BalisageVol1-Gutentag01.html

[Hawke 2008] Hawke, Sandro. 2008. Forward
 compatibility using XML Transform As Needed (XTAN). Proceedings of International
 Symposium on Versioning XML Vocabularies and Systems, Montréal. On the Web at http://www.balisage.net/Proceedings/vol2/html/Hawke01/BalisageVol2-Hawke01.html

[Heller 1961] Heller, Joseph. 1961. Catch-22. New York: Simon and Schuster.
[Hunting 2008] Hunting, Sam. 2008. Topic maps in
 near-real time. Proceedings of Balisage 2008, Montréal. On the Web at http://www.balisage.net/Proceedings/vol1/html/Hunting01/BalisageVol1-Hunting01.html

[Knuth, Feigenbaum, and Shustek 2008] Knuth, Donald, Edward
 Feigenbaum, and Len Shustek. 2008. Interview. Donald Knuth: A life’s work
 interrupted. CACM 51.8: 31-35. Available on the Web
 at http://mags.acm.org/communications/200808/

[McDonough 2008] McDonough, Jerome. 2008.
 Structural metadata and the social limitation of interoperability: A sociotechnical
 view of XML and digital library standards development. Proceedings of Balisage 2008,
 Montréal. On the Web at http://www.balisage.net/Proceedings/vol1/html/McDonough01/BalisageVol1-McDonough01.html

[McMorran and Powell 1993] McMorran, Mike, and Steve
 Powell. 1993. Z guide for beginners. Oxford: Blackwell.
[Negrino and Smith 2008] Negrino, Tom, and Dori Smith.
 1999. JavaScript for the World Wide Web. Third edition.
 Berkeley: Peachpit Press.
[Orchard 2008] Orchard, David. 2008. Versioning
 fundamentals. Proceedings of International Symposium on Versioning XML Vocabularies
 and Systems, Montréal. On the Web at http://www.balisage.net/Proceedings/vol2/html/Orchard01/BalisageVol2-Orchard01.html

[Renear 2003] Renear, Allen. 2003. First thoughts on
 modal logic for document processing. Talk at Extreme Markup Languages 2003,
 Montréal.
[Rubinsky and Maloney 1997] Rubinsky, Yuri, and Murray
 Maloney. 1997. SGML on the WEB: Small steps beyond H.T.M.L..
 Upper Saddle River, NJ: Prentice Hall PTR, 1997.
[Sperberg-McQueen 1992] Sperberg-McQueen, C. M. 1992.
 Back to the Frontiers and Edges. Closing Remarks at SGML ’92: the
 quiet revolution, sponsored by the Graphic Communications Association. Danvers, Massachusetts,
 29 October 1992. Available on the Web at http://www.w3.org/People/cmsmcq/1992/edw31.html

[1] I am indebted to Tonya Gaylord of Mulberry Technologies for transcribing the tape of
 this talk. I have mostly left the wording alone, but I’ve supplied missing words and
 recast a few sentences whose structure got away from me when the talk was being given, or
 whose structure would not be as clear in print as it was in oral presentation.
[2] I seem to have exaggeraged slightly. In [Flanagan 2008], the discussion takes
 two pages (pp. 353f), and in [Negrino and Smith 2008], the core of explanation takes only
 one page (p. 13), not three.
[3] Knuth says, As I’m writing The Art of Computer
 Programming, I realized the key to good exposition is to say everything
 twice: informally and formally. The reader gets to lodge it in his brain in two different
 ways, and they reinforce each other. In writing a computer program, it’s also
 natural to say everything in the program twice. You say it in English, what the goals of
 this part of the program are, but then you say it in your computer language. You alternate
 between the informal and the formal. Literate programming enforces this
 idea.
[4] One good example is the discussion on page 8 of [McMorran and Powell 1993] of the mutual
 reinforcement of formal and informal expression in a specification, and the discussion on
 page 9 of the mathematical syndrome.

Balisage: The Markup Conference

But wait, there’s more!
C. M. Sperberg-McQueen
Member of the technical staff
World Wide Web Consortium / MIT

C. M. Sperberg-McQueen is a member of the technical staff of the World Wide Web
 Consortium. He has served as co-editor of the XML 1.0 specification, the Guidelines of the
 Text Encoding Initiative, and the XML Schema Definition Language (XSDL) 1.1 specification.
 He holds a doctorate in comparative literature.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

