[image: Balisage logo]Balisage: The Markup Conference

My document object model can do more than yours
Extending the DOM for data manipulation
Alain Couthures
<alain.couthures@agencexml.com>

Balisage: The Markup Conference 2013
August 6 - 9, 2013

This work is made available under a Creative Commons Attribution 3.0 License (http://creativecommons.org/licenses/by/3.0/).

How to cite this paper
Couthures, Alain. "My document object model can do more than yours." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Couthures01.

Abstract
Document object models, specifically the browser DOM, were
 designed to represent HTML and XML documents. Languages such as XPath
 were designed to access and traverse the DOM of HTML and XML documents.
 But suppose we wanted to bring the power and convenience of XML
 technologies like XPath to new data types. Could we extend the DOM to
 support CSV files? JSON? ZIP files? Yes we can! This paper explores a
 number of ways in which the DOM can be made to do more. We can loosen
 restrictions, describe new sequence types, and even define new XPath
 axes to make the DOM better and more useful.

Balisage: The Markup Conference

 My document object model can do more than yours

 Extending the DOM for data manipulation

 Table of Contents

 	Title Page

 	Introduction

 	Node names

 	Multiple document type nodes and multiple document elements

 	Sequence Node Type

 	Typed-value Node Type

 	Named axes

 	Parsing and serializing

 	Conclusion

 	About the Author

 My document object model can do more than yours
Extending the DOM for data manipulation

Introduction
XML is well-known for two major uses: documents and data exchange.
 Actually, any XML "document" can also be considered as a small consistent
 database. As an example, an invoice requires many tables to be described
 while one XML document is enough for this.
For small amount of data, an XML "document" is usually parsed in
 memory and the DOM API is a common library to manipulate its contents
 within browsers or in Microsoft environments (MSXML, .Net) or in PHP. DOM
 Level 1 was quite limited and was designed for HTML. DOM became
 namespace-aware with DOM2. The latest version of DOM is Level 3 and it has
 be published in 2004. There is a quite recent working draft for DOM4 (6
 December 2012).
There are many critics about the DOM API, probably because it is
 clearly a low-level interface and because complexifying it for full XML
 support was out of interest for HTML-only fans. The DOM structure is also
 not fully appropriate for building an XPath engine (presence of CDATA and
 entities nodes and lack of namespaces nodes) as defined in XDM.
As a matter of fact, DOM3 has not been fully implemented in browsers
 and DOM4 might loose vital functionnalities for building an XPath engine
 with it, such as attributes not been nodes anymore.
XForms 1.0, and later XForms 1.1, has been designed for editing XML
 instances with a browser when embedded in an HTML page. XForms is based on
 XPath and any XForms implementation requires extra features about nodes
 such as properties ("validity", "relevant", "read-only", ...) which cannot
 be found in native DOM implementations in browsers. There are also extra
 XPath functions, such as "instance()", "index()", "event()", defined in
 XForms specifications while XPath engines in browser cannot be extended.
 That is why XSLTForms, a client-side XForms implementation, has its own
 XPath engine written in Javascript and that is why its ancestor project,
 AJAXForms, had even also its own DOM implementation. It was chosen to use
 native XML storage in XSLTForms for performance and for eprouved
 compliance when serializing XML instances with multiple namespaces. Today,
 this has to be reconsidered.
XForms 2.0 is not limited to XML editing. At least, CSV and JSON are
 also supported. The question for an XForms implementer is how to integrate
 these notations at low level for keeping XPath use at authors'
 level.
CSV format might seem to be an old format but it is still used in
 many import/export functions of applications. For relational databases, a
 CSV file is a natural table content.
Mapping JSON in XML and preserving XPath expressions readability is
 not easy. Many attempts have already been done but there is not yet an
 agreement about one in particular for each different situation.
This paper is describing that, with few extensions, CSV and JSON can
 be loaded in an extended DOM structure so an XPath engine can manipulate
 them immediately.
There are yet more challenging notations or file formats which can
 be of interest for authors. Typically, applications with a light server
 side or offline applications want to manipulate files, not just data in
 exchange notation. Many of them are binary formats and they can now be
 manipulated within browsers with Javascript. The most common ones are
 text-processing documents or spreadsheets in a ZIP package.
Possibilities are numerous. For XQuery implementors and developers,
 XQuery instructions might also be parsed into a DOM structure as if there
 was an XQueryX source. Programming languages are defined according to a
 grammar and a grammar is similar to an XML Schema for text sources. For
 Apache administrators, httpd.conf file and log files have a format which
 can be loaded into a DOM structure. There are also emerging notations
 which are simpler or richer than XML and they can surely be parsed and
 stored in an extended DOM structure.
A bigger challenge is to use a DOM structure not only for a tree or
 a forest of trees (such as a document with multiple document elements) but
 for graphs. A navigational approach can be obtained with named axes: the
 data designer can specify different sets of children for a node, each one
 being assigned a name.
A non-planar structure is even possible within a DOM structure, the
 difficulties being about internal ids to be used when parsing and
 serializing. But this is already done by developers with workarounds and a
 way to standardize this would be appreciated.

Node names
Most data engines (such as relational databases, CSV, JSON,...)
 don't have restrictions for names: any character is possible and an
 enclosing delimiter is used in the corresponding query languages to ensure
 there will be no mismatch. For example, MySQL uses the back-quote
 character, MS-Access uses square brackets. Names without restrictions are
 clearly more user-friendly. XML 1.1 extended possibilities for names but
 was not implemented much...
For the DOM, a name is stored within a string: there is no
 restriction for names due to the DOM structure.
Quote, apostrophe, brackets, angular brackets, parenthesis are
 already used in XML and XPath. So, the back-quote character is a good
 candidate for this purpose:
`+` is now a valid node name in XPath
Encoding within a name is still required in XML and XPath for
 special characters (new line, quotes,...). Those characters can easily be
 escaped as entities.
`&` stands for an ampersand character
`
` stands for a newline character

Multiple document type nodes and multiple document elements
Multiple document type nodes can be very useful within a ZIP package
 because each ZIP component might have its own document properties (media
 type, encoding, ...).
Multiple document elements is a pertinent feature for many formats
 for which serializers don't guarantee that the end of the contents has be
 reached. This is even an advantage to allow data to be added at the end
 without breaking a well-formed rule. Is it still interesting to always
 double check that all data has been received?
Those two extensions do not require the DOM structure to be
 modified. They impact the parser and the serializer. Methods of the DOM
 API, such as appendChild and so on, have to accept them.
For JSON:
{a: "Hello", b: "World"}

 becomes

document(
 element("a",
 text("Hello")
),
 element("b",
 text("World")
)
)

Sequence Node Type
Manipulation of an ordered set of data is possible in many formats.
 For example, JSON allows "arrays" which can be embedded.
There is a known trick when converting a named JSON array into XML:
 just iterate as many elements with the array name. Luckily, even the
 bracket notation is similar in XPath because of the shortcut for
 "[position() = n]". But there are also anonymous arrays in JSON, empty
 arrays and arrays with a unique item. So, this trick is not enough and
 extra meta data becomes mandatory.
Support of a new node type is enough to deal with ordered sets. This
 could be named "Sequence Node Type" because of sequences defined in XPath,
 even if XPath does not allow embedded sequences.
A sequence node can be seen as an element without a name and without
 attributes. Instead of defining such a new node type, it could also be
 considered to allow elements without a name but this would interfere
 within XPath expressions with a selector such as '*'.
It could also be compared to a document fragment being stored with
 the structure instead of just being a temporary embedding node. It would
 then be necessary to add a parameter to each method accepting a document
 fragment to specify whether the document fragment node should be dropped
 or not.
Since a sequence node type is corresponding to a specific need, it
 is better to define a new node type.
["a", "b"] becomes
document(sequence(text("a"), text("b")))
It is more problematic to choose a notation in XPath for such
 nodes:
	"sequence()" such as in "text()"?

	"#" or "(-)" as a shortcut?

"#/text()[1]" returns "a" for ["a", "b"]

Typed-value Node Type
In DOM3, just elements and attributes can have a data type as
 property and nodes with effective values are only text nodes.
This is not enough for JSON because stand-alone values are possible.
 The following JSON expressions are valid:
[1, true]

null

2.154E-7

["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]
Every value in JSON has a data type and JSON allows numbers,
 strings, booleans and null. From the Javascript point of view, because
 JSON data is directly evaluated, JSON can even contain expressions: for
 example,date object creations are possible.
In CSV, no type is specified and, commonly, a spreadsheet processor
 will try to associate the most fitting type for each value. Import tools
 help users to manually force a type for a column.
But, because the number of header lines is not limited to just one
 line, it is also a possible trick to associate a type to each CSV column
 within the header (when column names are unknown, an empty line can be
 used). For example:

xs:anyURI,xs:gYear,xs:positiveInteger
http://en.wikipedia.org/wiki/Afghanistan,1960,9616353
http://en.wikipedia.org/wiki/Afghanistan,1961,9799379
http://en.wikipedia.org/wiki/Afghanistan,1962,9989846
http://en.wikipedia.org/wiki/Afghanistan,1963,10188299
As a consequence, for a DOM structure to be used to store JSON or
 CSV data, the text node type is not enough and a new node type has to be
 defined for a typed value.
42 becomes
value("xsd:decimal", 42)
{ a: 42, b: "Hello"} becomes
document(element("a", value("xsd:decimal", 42)), element("b", value("xsd:string", "Hello")))
This has not to be limited to XSD types and really binary types (not
 xsd:hexBinary nor xsd:base64Binary) are required in different situations
 such as ZIP packages with embedded images like in, for example, OpenXML
 files (.xlsx, .docx,...).

Named axes
Attributes can be considered as low-level elements but there are
 advantages at using them because they are clearly separated from children
 nodes. As a consequence, whether they are present or not, they do not
 interfere when calling XPath nodeset functions upon children. For XPath,
 attributes are accessed with a dedicated axis ("attribute::", with "@" as
 the well-known shorcut). So, in a sense, there are possibly two distinct
 sub-trees under an element.
<person firstname="Paul" lastname="Verdier" >
 <address>17 rue de Rivoli</address>
 <address>75001 Paris</address>
 <address>France</address>
</person>

could also be serialized as

<person>
 <attribute::firstname>Paul</attribute::firstname>
 <attribute::lastname>Verdier</attribute::lastname>
 <address>17 rue de Rivoli</address>
 <address>75001 Paris</address>
 <address>France</address>
</person>
Allowing developers to define named axes means that an element can
 have multiple children in a specific context which might also be seen as a
 relationship. The name for the axis is the name of the relationship. The
 resulting structure can be compared to the navigational CODASYL database
 model.
This point is not at all difficult to implement (a map of arrays for
 children instead of a unique array) and a corresponding syntax for XPath
 can easily be defined ("child(axis-name)::" for example).
For XML-like serialization, the list of axes could precede the name
 of an element child:
<product>
 <designer::person>Peter</designer::person>
 <user::person>Jack</user::person>
 <user::person>Emily</user::person>
</product>
When multiple parents are allowed, the structure looks like in the
 network CODASYL database model.
A use case for XML developers is embedding in the same document data
 and specific data types declarations (in the same approach, fonts can be
 embedded within a PDF file). This is possible with the data document
 element and the schema document element being at the top level.
Serialization is more clumsy with a network data model: a child
 element cannot be serialized under each parent element. A specific
 notation can be used to list links such as in multipart messages. This
 will be less human-friendly but XML documents are not often generated
 manually and serialization might be seen as just a way to exchange a
 database.
For example:
<person>
 <attribute::email>
 <attribute::xsi:type xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#email_type"/>
 paul.verdier@rivoli.fr
 </attribute::email>
</person>
<xs:simpleType xmlns:xs="http://www.w3.org/2001/XMLSchema" id="email_type">
 <xs:restriction base="xsd:string">
 <xs:pattern value="(\w[-._\w]*\w@\w[-._\w]*\w\.\w{2,3})"/>
 </xs:restriction>
</xs:simpleType>

Parsing and serializing
Currently, with the Javascript DOMParser class, only XML and,
 eventually HTML and SVG documents can be parsed in a browser and the
 corresponding mediatype is to be provided as a parameter for the
 parseFromString() method.
Extending support for other media types such as "text/csv" and
 "application/json" allows CSV and JSON being loaded in a DOM structure.
 XSLTForms now supports CSV/XML and JSON/XML conversions written in
 Javascript.
For other formats, a third parameter can be the grammar to be used
 to generate the corresponding tree.
Because data cannot always be stored as a string (binary data, for
 example), another method has also to be defined, such as
 parseFromUint32Array. This allows media types such as "application/zip"
 for ZIP packages to be supported. This has already been prototyped in
 XSLTForms with the zip_inflate and zip_deflate Javascript functions
 written by Masanao Izumo (http://www.onicos.com/staff/iz/amuse/javascript/expert/)
 and there is no performance issue with standard MS-Excel or MS-Word
 files.
When serializing, some links could be internal links. It could be
 possible to add id attributes when required but another mechanism should
 be provided, a sort of internal ids such as keys in XSLT, with its
 specific notation such as internal:key.
Of course, exceptions will be fired because not all DOM structures
 can be serialized in any format. There might be different workarounds to
 serialize a DOM structure in a different media type without data
 loss.

Conclusion
Trees are everywhere and they can even store links to represent
 graphs. XML notation is a convenient way to serialize not-so-limited trees
 but people can consider that it is too verbeous. The real point is the
 power in data description and data manipulation.
The DOM structure is already used by browsers as an XML Data Model.
 Extending the DOM for non-XML data manipulation is not really difficult
 and XPath is not heavily affected. The resulting structure can support
 plenty of existing data formats. Because it is a low level component,
 upper layers can immediately benefit of it without significant
 modifications.
XSLTForms is directly concerned by an extended DOM implementation
 written in Javascript. It is a good opportunity to easily prototype and
 test new features. This implementation is currently in development and it
 already has its own name: "Fleur".

Bibliography
[DOM Level 3 Core] W3C. DOM Level 3 Core W3C Recommendation 4 April 2004
 [online]. http://www.w3.org/TR/DOM-Level-3-Core/core.html
[Linked CSV] Jeni Tennison,
 Open Data Institute. Linked CSV Unofficial Draft 08
 March 2013 [online]. http://jenit.github.io/linked-csv/
[superset] Eric van der
 Vlist. Toward χίμαιραλ/superset 8 August
 2012 [online]. http://eric.van-der-vlist.com/blog/2012/08/08/toward-%CF%87%CE%AF%CE%BC%CE%B1%CE%B9%CF%81%CE%B1%CE%BBsuperset/
[Embracing JSON] Eric van der
 Vlist. Embracing JSON? Of course, but how? 10
 February 2013 [online]. http://archive.xmlprague.cz/2013/presentations/Embracing_JSON/presentation.html#/start
[Document Object Model - Attr] Mozilla Developer Network Document
 Object Model - Attr [online]. https://developer.mozilla.org/en/docs/DOM/Attr
[DOM4] W3C. DOM4 W3C Working Draft 6 December 2012 [online].
 http://www.w3.org/TR/dom/
[CODASYL] Nick Scherbakov.
 Network (CODASYL) Data Model [online].
 http://coronet.iicm.edu/is/scripts/lesson03.pdf

Balisage: The Markup Conference

My document object model can do more than yours
Extending the DOM for data manipulation
Alain Couthures
<alain.couthures@agencexml.com>
Alain Couthures is the project leader for XSLTForms which is a
 client-side XForms implementation based on XSLT and Javascript. He is
 an Invited Expert in the W3C Forms Working Group.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

