[image: Balisage logo]Balisage: The Markup Conference

Interactive XSLT in the browser
O'Neil Delpratt
Saxonica

<oneil@saxonica.com>

Michael Kay
Saxonica

<mike@saxonica.com>

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Copyright © 2013 by the authors. Used with permission.

How to cite this paper
Delpratt, O'Neil, and Michael Kay. "Interactive XSLT in the browser." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Delpratt01.

Abstract
Remember the dream of being able to process XML in the browser to write richly
 interactive applications? It's taken a long time coming, and a lot of people have
 given up waiting, but it is now a reality. With the open-source Saxon-CE engine, you
 can now write highly interactive applications in the browser to process XML content,
 without writing a single line of Javascript. As a bonus, you get all the benefits of
 XSLT 2.0. During this talk we will demonstrate what can be achieved. And because
 Balisage audiences are interested in the theory as well as the practice, we'll also
 touch on some of the underlying concepts: how does one use a purely functional
 language to manipulate a stateful interactive dialogue with the user?

Balisage: The Markup Conference

 Interactive XSLT in the browser

 Table of Contents

 	Title Page

 	Introduction

 	Interaction with XSLT 2.0
 	HTML DOM Tree

 	Saxon-CE implementation

 	Saxon-CE applications

 	Conclusion

 	About the Authors

 Interactive XSLT in the browser

Introduction
The original aims of the web browser application was to retrieve, present and navigate
 information resources on the World wide Web (WWW). It started with static HTML
 documents, which can be seen as a text-based format standard for browsers required when
 rendering web pages. But it wasn't long before dynamic HTML and CSS came along,
 providing a richer interactive experience. Web browsers have come a long way in bundling
 complementary tools to provide interaction to the rendered HTML web pages, with CSS,
 JavaScript, JSON, AJAX, JQuery and more. Remarkably, the performance of these (largely
 interpreted) languages is highly satisfactory for most applications.
However, as successful as HTML as been to the browser, there exists an underlying problem, in
 that HTML is not best suited to representing document data. Such data we would expect to
 be stored on web servers or close to the browser on the client machine. XML was created
 to solve this problem, as a multi-purpose and platform-neutral text-base meta language,
 which could be used for storage, transmission and manipulation of data. It was a great
 way to represent data, but the question was what could we do with it on the browser?
 Given the introduction of XHTML as an application of XML with HTML, direct rendering of
 XML was not possible as browsers were designed for use with HTML. The need of program
 application to convert these special data documents written in XML to HTML became
 paramount.
The answer to this was XSLT. It was designed as a functional programming language for XML. It
 was now possible to convert XML documents into HTML documents which in turn could be
 rendered in the browsers. This was great for the 'Web 1.0' architecture, where we have
 static documents on the web, which needed to be rendered in the browser.
XSLT 1.0 was published in 1999 XSLT20. On the server it presented a
 way to convert XML data into HTML before it reached the browser. But the challenge was
 to get XSLT closer to the browser. Before the specification was finished Microsoft
 implemented XSLT 1.0 as an add-on to Internet Explorer (IE) 4, which became an integral
 part of IE5. (Microsoft made a false start by implementing a draft of the W3C
 specification that proved significantly different from the final Recommendation, which
 didn't help.) It then took a long time before XSLT processors with a sufficient level of
 conformance and performance were available across all common browsers. In the first
 couple of years the problem was old browsers that didn't have XSLT support; then the
 problem became new browsers that didn't have XSLT support. In the heady days while
 Firefox market share was growing exponentially, its XSLT support was very weak. More
 recently, some mobile browsers have appeared on the scene with similar problems. So
 there has never been a time when good XSLT 1.0 support was universal
By the time XSLT 1.0 conformance across browsers was substiantially achieved (say
 around 2009, if we exclude old browsers and newer mobile devices), other technologies
 had changed the goals for browser vendors. The emergence of XSLT 2.0
 XSLT20, which made big strides over XSLT 1.0 in terms of developer
 productivity, never attracted any enthusiasm from the browser vendors — and the browser
 platforms were sufficiently closed that there appeared to be little scope for
 third-party implementations.
The 'Web 2.0' architecture within the browser sphere demonstrated the way forward for
 the user experience on the web. The web was no longer about producing pretty renditions
 of static documents, but was about interactions and event handling within web
 applications. These all came about with the introduction of CSS (a styling language for
 HTML/ XHTML web pages which can also do basic interactions), AJAX (acronym for
 asynchronous JavaScript and XML, which has been somewhat superseded now by less
 cumbersome tools), JavaScript (client-side scripting language, which has evolved into a
 powerful VM for the web browser platform). The introduction of JSON has made data
 interchange between client and server much more convenient, because of its good match to
 the JavaScript data model, but it doesn't help those whose applications are
 document-based, or whose data happens to be in XML.
A few years ago it seemed likely that XML would go no further for web applications,
 limited for ever to what could be achieved by server-side conversion to HTML. The
 browser vendors had no interest in developing it further, and the browser platform was
 so tightly closed that it wasn't feasible for a third party to develop the necessary
 tools. Plug-ins and applets as extension technologies were largely discredited, for good
 reasons. But paradoxically, the browser vendors' investment in Javascript provided the
 platform that could change this. Javascript was never designed as a system programming
 language, or as a target language for compilers to translate into, but that is what it
 has become, and it does the job surprisingly well. Above all else, it is astoundingly
 fast.
Google were one of the first to realise this,
 and responded by developing Google Web Toolkit (GWT) GWT as a
 Java-to-Javascript bridge technology. GWT allows web applications to be developed in
 Java (a language which in many ways is much better suited for the task than Javascript)
 and then cross-compiled to Javascript for execution on the browser. It provides most of
 the APIs familiar to Java programmers in other environments, and supplements these with
 APIs offering access to the more specific services available in the browser world, for
 example access to the HTML DOM, the Window object, and user interface events.
Because the Saxon XSLT 2.0 processor is written in Java, this gave us the opportunity
 to create a browser-based XSLT 2.0 processor by cutting down Saxon to its essentials and
 cross-compiling using GWT. An inspiration that such a project was possible was the
 development of the XProc engine for the browser vojt2010, as it was
 implemented using GWT.
We realized early on that simply offering XSLT 2.0 was not enough. Sure, there was a
 core of people using XSLT 1.0 who would benefit from the extra capability and
 productivity of the 2.0 version of the language. But it was never going to succeed using
 the old architectural model: generate an HTML page, display it, and walk away, leaving
 all the interesting interactive parts of the application to be written in Javascript. We
 would like to use XML technologies throughout, and that means replacing Javascript not
 only for content rendition (much of which can be done with CSS anyway), but more
 importantly for user interaction, including event handling. And it just so happens that
 the standard processing model for handling user interaction is event-based programming,
 and XSLT is an event-based programming language, so the opportunities are
 obvious.
The first implementation of XSLT 2.0 for the browser we call Saxon-CE SAXONCE. In this short
 paper we investigate the underlying concepts of Saxon-CE. Specifically, how does one use
 XSLT 2.0, which is a purely functional language to manipulate a stateful interactive
 dialogue with the user to develop web applications.

Interaction with XSLT 2.0
XSLT as a declarative language was influenced by the ideas of functional programming,
 and by text-based pattern matching lnaguages. In essence, we have an input document,
 ideally written in XML, which would then go into the XSLT process and then produce
 output at the other end. The output would be some result document in a desired format,
 which would be in many cases XML, HTML or some other textual representation. The
 template rule structure of the XSLT stylesheet made it posssible to match XML documents
 and their sub-trees in a recursive rule-based process while generating the
 output.
Offering XSLT 2.0 in the browser is a benefit to those coding XSLT 1.0 in the web, as
 it presents many advances, in term of extra capability and productivity. Regular
 expression support, user-written functions, and grouping are the most obvious examples,
 familiar to anyone at this conference. But offering interaction via XSLT 2.0 in the
 browser allows us to start winning over those Web 2.0 developers in supporting
 interaction and event handling.
In Saxon-CE we have a true XSLT 2.0 processor for the browser with some key
 extensions. However, what is different from our traditional approach when developing in
 XSLT is what we consider as our input and output document. The input not only can be
 some text-based document, as in XML, but we have available the HTML DOM tree from the
 browser in the current instance of the web page loaded. This is important when we think
 of accessing the HTML as we see it on the browser. Likewise the output would typically
 be to the HTML DOM. The output in fact is typically some document fragment which can be
 attached to the HTML tree, ready for the next phase of processing, as discussed later in
 this paper.
The following features are standard in XSLT 2.0, but we extend their use to support
 interaction, either through language extensions or through an imaginative interpretation
 of the flexibility that the language specification gives to implementors:
	Multiple result files: The instruction xsl:result-document in
 XSLT 2.0 allow us to create multiple result trees. In Saxon-CE we take advantage
 of this instruction in an innovative way: we allow the transformation to create
 many small sub-trees, each of which is written to a different part of the HTML
 page. This means that a transformation phase does not need to rewrite the whole
 HTML document, it only needs to write those parts that have changed as a result
 of the user interaction. This leads to a radically different programming
 approach from the way XSLT is conventionally used. The
 xsl:result-document instruction uses a URI to define the
 destination of the result tree; Saxon-CE defines a URI syntax that allows
 addressing into the HTML document, so that the result tree can be written to any
 part of the page

	The XDM data model: XDM (the data model for XSLT 2.0) is an abstract data
 model with a close relationship to the XML infoset. But the XDM specification
 gives implementations freedom how to construct an XDM instance to represent
 information that might not have originated as XML. Saxon-CE takes advantage of
 this to provide a view of the HTML page as an input document. The mappings to
 the HTML DOM are for the most part straightforward and familiar to anyone who
 has used XPath 1.0 in the browser, though there are a few surprises because of
 the way HTML5 in particular normalizes case and handles namespaces. But Saxon-CE
 also goes beyond merely mapping the HTML DOM to XDM. A peculiarity of the
 Javascript environment is that nodes in the HTML DOM correspond to Javascript
 objects, but there is often information in the Javascript objects which is not
 directly or conveniently available as DOM elements and attributes. To avoid
 users having to constantly escape into Javascript to access this information,
 Saxon-CE therefore exposes many of the properties of these Javascript objects as
 "virtual" attributes. These appear in a separate namespace to avoid conflicts
 with real attributes. There are in fact two such namespaces, one for properties
 of the Javascript object itself, and one for properties of the CSS style
 associated with each element.
Similarly, Saxon-CE also extends the XDM model to provide access to information
 beyond the scope of the HTML DOM, such as the properties of the browser window itself.

	Template rules with mode setting: XSLT 2.0 allows a transformation to be
 initiated with a given context node, in a given mode. Saxon-CE takes advantage
 of this to process user interaction events in the browser, such as the user
 clicking a button. When an on-click event occurs on a button object, a
 transformation is initiated with the HTML element representing the button as the
 initial context node, and with the initial mode ixsl:on-click
 (where ixsl is a Saxon-CE defined namespace). Each such event
 starts a new transformation, which can produce one or more result trees. To
 preserve the purely functional semantics of XSLT, these result trees are not
 written back to the HTML DOM until the transformation has finished; a
 transformation cannot see its own updates. The approach used to achieve this is
 very similar to the use of pending update lists in XQuery Update (in fact the
 code is directly lifted from Saxon's implementation of XQuery updates). A
 beneficial effect of this has been high reliability; the product is largely
 insulated from the concurrency effects that otherwise occur when many events
 occur in quick succession, each modifying the same shared data.
As well as handling user interaction events, Saxon-CE also allows a transformation
 to be triggered by a timer event, thus enabling animations.

	Use of XSLT functions: XSLT 2.0 allows and encourages the development of
 function libraries by vendors and third parties, rather than requiring
 everything to be in the core language. Saxon-CE fully takes advantage of this
 flexibility and extensibility. Built in to the product is a small library of
 essential functions needed by anyone developing browser-based applications.
 These fall into two groups. The first group contains functions which access
 parts of the browser environment (ixsl:page gets the HTML document,
 ixsl:source gets the XML source document,
 ixsl:window gets the browser window, ixsl:event
 gets the current event). The second group provides interoperability between XSLT
 and Javascript code (ixsl:call calls a Javascript function,
 ixsl:get gets a property of a Javascript object,
 ixsl:eval evaluates a Javascript expression supplied as a
 string.)
These extensions enable the development of higher-level function libraries,
 which can provide access to the many rich Javascript libraries available to
 web developers. Developers choosing to take advantage of XSLT for writing their
 web applications do not need to forgo the joys of using these cool libraries
 available in the Javascript world.

HTML DOM Tree
In Figure 1 we illustrate that with Saxon-CE we can
 manipulate the HTML DOM tree and handle events with the use of
 xsl:result-document and xsl:template, respectively.
 The code snippet below gives further detail of the use of the
 xsl:result-document instruction. The hef attribute
 contains a '#' symbol followed by the id value referencing the element
 in the HTML DOM tree. This is where we would like to make modifications in the DOM
 tree, for example we use the id attribute of the div
 element. The method attribute has the value 'append-content' which
 causes the result tree to be written as the last child of the div
 element. Using the alternative 'replace-content' causes all its child nodes to be
 replaced.
<xsl:result-document href="#x" method="append-content">
 <p>text1</p>
</xsl:result-document>

As discussed before, in Saxon-CE we take advantage of modes in template instructions
 to handle events which match the rule in the match attribute. This we show in the
 code snippet below. Here we use the function matches with an regular
 expression when matching a div element. We also show how we can set the
 values of the JavaScript object properties from within he XSLT stylehsheet.
<xsl:template match="div[matches(@id, '\w\d')]" mode="ixsl:onclick">
 <xsl:variable name="initial-square" select="@id"/>
 <ixsl:set-property name="value" object="ixsl:page()//input[@id='inputBx']"
 select="concat($initial-square, '-')"/>
</xsl:template>

Figure 1: HTML DOM Tree
[image:]Saxon-CE interaction presented in the HTML DOM tree

Saxon-CE implementation
As already mentioned, Saxon-CE is implemented using the Google Web Toolkit, which cross-compiles
 Java to Javascript for execution in the browser, and provides access to many aspects of the browser
 environment including the HTML DOM.
GWT does not offer the full range of class libraries available on the standard Java-SE platform,
 but it provides 90% of the interfaces that Saxon needs. Filling the gaps was not difficult. Some of the
 gaps are a little surprising, for example there is no java.net.URI class; but there
 are plenty of open-source alternatives that provide the functionality Saxon uses.
In a few cases Saxon supplements the services GWT provides with native code written in Javascript,
 but the total amount is very small. For example, GWT's DOM interface provides no way of enumerating the
 attributes of an element, which is clearly needed to implement XPath; Saxon therefore handles this itself,
 using code that varies from one browser to another (in one case, it has to resort to re-parsing the source
 HTML).
Javascript notoriously provides only floating-point arithmetic, and GWT therefore maps Java's integer
 and long types to double-precision floating point. In view of this, we decided in Saxon to implement the
 XDM xs:integer and xs:decimal data types using the Java BigDecimal class, which is available
 in GWT and appears to perform quite adequately.
One of the few areas we chose to compromise on XSLT and XPath conformance was in the code for converting
 floating-point numbers to strings. The mainstream Saxon product implements this logic itself, because the XPath
 rules are not aligned with the Java rules. But in the interests of code size and speed, we decided on the
 Saxon-CE platform to use GWT's toString() method for this, which maps directly to the Javascript implementation,
 and produces results that are perfectly acceptable to users, but not 100% conformant with the XPath specification.
By contrast, for regular expression handling we chose to use Saxon's regular expression engine (a fork
 of the open-source Jakarta engine from Apache) rather than the GWT regular expression library, which is a wrapper
 over the Javascript routines. The main reason is for Unicode support, which is very weak in the Javascript
 libraries.
The Saxon-EE product is over 250,000 lines of code. Key to Saxon-CE performance is the size of the code
 that needs to be downloaded, and so an early imperative was to cut this down. There was no shortage of opportunities:
 the schema processor and the query processor were obvious candidates. Less obvious was the decision to drop the
 highly-efficient TinyTree implementation of the XDM model, and rely on the much slower DOM. The final
 code size is around 80K lines of Java, which compiles to around 900Kb of Javascript: this results in a visible
 delay when starting a Saxon-CE application, typically a couple of seconds — not a long enough delay to deter most users.
 And of course the code is cached, so this happens only on first access. There is scope to reduce the code size
 more than this — aggressive pruning could probably bring it down to half this, but there is a law of diminishing
 returns. Some of the bulkier parts of the code are already paged in on demand (for example the data tables needed
 to support Unicode normalization) and this technique could be extended.
Key to the practical utility of the product is the availability of developer tools. Hopefully in time
 third-party vendors will see the benefits of adding to the tooling available, but the product already comes
 with a very useful starter set of capabilities for tracing and debugging, fully integrated with the browser's developer
 console.

Saxon-CE applications
Some of the Saxon-CE applications that have been developed by users are showcased on
 Saxonica's web site SAXONDEMO. Inevitably, many of them were written to explore the capability of
 the technology rather than to meet a real business need. Games and puzzles feature
 strongly: and one can see why — creating a simple game in XSLT 2.0 is so much easier
 than writing it in Javascript. Another class of applications can be categorized as "data
 visualization": the idea of taking some complex data and generating a dynamic SVG
 animation is very appealing. Similarly, reports allowing arbitrary drilling-down into
 detail can involve creation of thousands of pages of static HTML if published in the
 conventional way on the server, but can deliver a better user experience while also
 saving on network bandwidth if delivered to the browser as raw XML.
The application we will demonstrate at the conference is perhaps one area where the benefits of XSLT in the browser
 are easiest to appreciate. It is also a live production application SAXONDOC. Both the "mainstream" Saxon and the Saxon-CE
 documentation are now delivered using this application, which provides an interactive browser/reader for the
 technical documentation.
We chose to maintain the documentation on the server in HTML5, rather than using a richer vocabulary such as
 DocBook or DITA. However, it's HTML5 containing logical structure only, with no presentation information; if displayed
 directly on the browser it would be readable, but very plain. Excluding the Javadoc API specifications, it's delivered
 as about 20 files totalling around 8Mb of text. The application is written entirely as a single XSLT stylesheet,
 plus a tiny amount of Javascript mainly to handle highlighting of search terms.
There's a catalog file on the server containing a top-level table of contents, which enables the contents menu
 to be displayed without downloading all 20 files; the rest of the content is downloaded on demand. It's a single
 page application, which presents a page-oriented hyperlinked view of the documentation in which each page has its own
 "hash-bang" URI which can be written down, bookmarked, and exchanged by email: all navigation functions within the
 application update this URI in the browser window, so the back button works as expected and generally, the experience
 of regular web browsing is faithfully reproduced, but with much better responsiveness.
The most obvious added-value that the application brings to the content over regular static HTML browsing is the
 ability to search the whole 8Mb of text for keywords, without returning to the server. But there are many other navigation
 aids such as table of contents, hyperlinks, breadcrumbs, and forward and backward navigation, all implemented directly
 in the XSLT 2.0 code. All of this could of course have been written in Javascript, but it would have required far more
 code and almost certainly, far more debugging.
The benefits of the approach are particularly noticeable for the Javadoc API browser. Saxon is a big product and the
 static Javadoc was becoming extremely unwieldy, as well as delivering a very old-fashioned image. The sheer bulk of the
 HTML files (each containing reams of identical presentation information, as well as highly redundant content) made
 it difficult to manage, discouraging incremental updates and corrections, or maintenance of multiple versions. For the
 new approach, we found and adapted a Javadoc plug-in (or "doclet") to generate XML instead of HTML, and then do a modest
 amount of server-side XSLT processing on this XML prior to publication; the rest of the job is done by the XSLT 2.0 stylesheet
 on the browser. The result for the user is much slicker navigation around the information; for the publisher (ourselves) it's
 a much lighter-weight publication workflow.

Conclusion
In this paper we have presented a number of innovative ideas of Saxon-CE and a
 plethora of possible use case applications. We have not only demonstrated how one can
 bring XSLT 2.0 into the web browser, with the help of Google's GWT technology, but that
 it is possible to extend XSLT 2.0 into a feature rich Web '2.0' architecture tool. We
 can now develop interactive client-side applications in XSLT 2.0, which has the HTML DOM
 tree and XML documents as its core data model. It is also possible for Saxon-CE to
 interoperate with JavaScript or even be used as its replacement.

References
[XSLT10]
 Clark, James. XSL Transformations (XSLT) Version 1.0, 16 November 1999. W3C Recommendation.
 http://www.w3.org/TR/xslt

[XSLT20]
 Kay, Michael. XSL Transformations (XSLT) Version 2.0, 23 January 2007. W3C Recommendation.
 http://www.w3.org/TR/xslt20

[vojt2010]
 Vojtěch, Toman. XML Pipeline Processing in the Browser.
 Presented at Balisage: The Markup Conference 2010, Montréal, Canada,
 August 3 - 6, 2010. In Proceedings of Balisage: The Markup Conference 2010. Balisage Series on Markup Technologies, vol. 5 (2010).
 doi:https://doi.org/10.4242/BalisageVol5.Toman01.

[GWT]
 Google Web Toolkit (GWT). Google. http://code.google.com/webtoolkit/

[SAXONCE]
 Saxon-CE. Saxonica. https://github.com/Saxonica/Saxon-CE

[SAXONDOC]
 Saxon Documentation driven by Saxon-CE. Saxonica. http://www.saxonica.com/documentation/index.html

[SAXONDEMO]
 Saxon-CE Demonstrations. Saxonica. http://www.saxonica.com/ce/user-doc/1.1/index.html#!demonstrations

Balisage: The Markup Conference

Interactive XSLT in the browser
O'Neil Delpratt
Saxonica

<oneil@saxonica.com>
O'Neil Delpratt is a software developer at Saxonica since 2010. Currently
 involved in the W3C XQuery working group. Before joining Saxonica, he completed
 his post-graduate studies at the University of Leicester. His thesis title was
 'In-memory Representations of XML documents', which coincided with a C++
 software development of a memory efficient DOM implementation, called Succinct
 DOM.

Michael Kay
Saxonica

<mike@saxonica.com>
Michael Kay has been developing the Saxon product since 1998, initially as a
 spare-time activity at ICL and then Software AG, but since 2004 within the
 Saxonica company which he founded. He holds a Ph.D from the University of
 Cambridge where he studied under the late Maurice Wilkes, and spent 24 years
 with ICL, mainly on development of database software. He is the editor of the
 W3C XSLT specification.

Balisage: The Markup Conference

content/images/Delpratt01-001.png
onclick event

Multiple resiiit-document:
* Append
* Replace-content

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

