[image: Balisage logo]Balisage: The Markup Conference

In pursuit of streamable stylesheet functions in XSLT 3.0
Abel Braaksma
Owner/creator
Exselt, a streaming XSLT 3.0 processor

Abrasoft Consulting

Blog: Undermyhat.org

<abel[-at-]exselt.net>

Balisage: The Markup Conference 2014
August 5 - 8, 2014

Copyright © 2014 by the author. Used with permission.

How to cite this paper
Braaksma, Abel. "In pursuit of streamable stylesheet functions in XSLT 3.0." Presented at: Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup Conference 2014.
 Balisage Series on Markup Technologies vol. 13 (2014). https://doi.org/10.4242/BalisageVol13.Braaksma01.

Abstract
With the XSLT Working Draft being in Last Call since December 2013 and the XSL
 Working Group working hard to get the latest bugs fixed, it is only a matter of time
 that the XSLT 3.0 Draft becomes a Candidate Recommendation, locked for changes and
 suitable for implementors to adopt.
One of the bugs the Working Group received was about the inability to create
 stylesheet functions that take streamable nodes as an argument. The group considered
 the omission and decided to ask me to write up a proposal. We discussed several
 iterations of the proposal until recently it was adopted and added to the internal
 Working Draft.
This paper investigates the ways in which stylesheet functions can be made
 streamable and why it is such a complex to task to make them so. It summarizes the
 rules that have been adopted so far according to the public bug entry and shows the
 possibilities it gives for stylesheet and package authors. While the impact on the
 specification is minimal, the impact for authors of packages and stylesheet authors
 in general is potentially big and opens up a whole world of new possibilities in
 streaming.

Balisage: The Markup Conference

 In pursuit of streamable stylesheet functions in XSLT 3.0

 Table of Contents

 	Title Page

 	Notes

 	Disclaimer

 	Introduction

 	Streaming terminology

 	A case for streamable functions

 	Stylesheet functions in streaming scenarios before they were allowed to be
 streamable

 	The challenge of streamable stylesheet functions
 	Approach 1: analyzing stylesheet functions statically on their own

 	Approach 2: analyzing stylesheet functions from the function call

 	Approach 3: analyzing stylesheet functions based on static posture assessments

 	In pursuit of flexible rules for guaranteed streamable stylesheet functions

 	Multiple arguments that can take nodes

 	Recursive streamable functions
 	Direct recursion

 	Indirect recursion

 	Indeterminate recursion

 	Dynamic recursion

 	Analyzable and non-analyzable functions

 	Non-final streamable functions in packages

 	An improvement: type-determined posture

 	Miscelleneous
 	Inline functions and streamability

 	Partial function application and streamability

 	Named function references and streamability

 	Dynamic function calls and streamability

 	Streamability of stylesheet functions according to the specification
 	The streamable attribute on xsl:function

 	Status of current processors with respect to streamable stylesheet functions

 	Conclusion

 	About the Author

 In pursuit of streamable stylesheet functions in XSLT 3.0

Notes
Updates
This paper discusses very recent changes to the XSLT 3.0 specification that are
 still under discussion in the related BugZilla bug entries. When the specification
 is updated, rules laid out in this paper need updating as well. I will publish those
 updates at http://exselt.net/papers
 in DocBook and PDF formats.

Prerequisites
To read and understand this paper, a basic understanding of XSLT 3.0 and streaming
 is desirable. For an introduction on streaming, you can refer to two earlier papers
 in this series, Braaksma 2014a, about the Ten
 rules of thumb of streaming and Braaksma 2014b, about
 Streaming XSLT design patterns.

Disclaimer
This paper relies on information that can be found in the public XSLT Last Call WD at the time of this writing, and in some of the public XSLT
 3.0 BugZilla bugs (see W3C BugZilla). While I am an invited expert for the XSL Working Group, I do not speak at
 there behalf, and any thoughts I lay out in this paper are my own and are not
 necessarily the thoughts of the XSL Working Group.
Changes to the Last Call Working Draft will be discussed through the same BugZilla and
 will ultimately result in the publication of a new version of the specification in XSLT Latest Version. Where this paper refers to XPath, XPath functions and
 operators or the XDM, it uses XPath 3.0, XPath and XQuery F&O 3.0
 and XQuery and XPath Data Model 3.0.
Since the XSLT 3.0 specification is not final yet, it is possible that syntax or
 semantics of constructs used in this paper change in the future or are dropped in their
 entirety. Large parts of this paper rely on discussions and conclusions of functionality
 reported in the public section of BugZilla. Where the text of this paper deviates from
 the public Working Draft and where these changes are publicly available through
 BugZilla, I will state so by using footnotes.

Introduction
Streamability analysis is a complex subject, yet the basics are, as is often the case,
 relatively trivial: just write your stylesheet in such a way that it only uses the child
 axis, plus an occasional escape to node properties such as attributes on the ancestor or
 self axes, and you have essentially written a streamable stylesheet.
But in practice, it is not so trivial. Rules in the specification are complex and even
 hard-core spec-readers have trouble following them. They are meant for implementors and
 not necessarily for programmers or users, which is why these rules have to take care of
 every possible corner case and yet make sure that for general use, the rules work with
 the least possible surprises.
This paper tries to fill in the gap between spec-prose and tutorial. While there
 currently are no tutorials on the subject of streamable stylesheet functions, this paper
 aims to explain the basics and several rather advanced concepts such as recursive
 streamable functions, in a way that it becomes understandable for a larger
 public.
A streamable stylesheet function is a function that can take a streamed node from a
 streaming input document, while still passing the tests for being guaranteed streamable.
 Being able to write streamable stylesheet functions is import for package designers, so
 that they can create functions that work alike for streaming and non-streaming
 scenarios.
This paper first introduces you to part of the terminology used in the specification
 and at several sections in this paper, see section “Streaming terminology”. It then
 explains typical use-cases for streamable functions in section “A case for streamable functions”, after which it explains the challenges we face when
 dealing with streamability analysis and streamable functions in section “The challenge of streamable stylesheet functions”.
Streamability of standard, non-recursive functions is explained in section “In pursuit of flexible rules for guaranteed streamable stylesheet functions” and section “Multiple arguments that can take nodes”; and the rather
 complex subject of streamability for recursive functions is dealt with in depth in section “Recursive streamable functions” and its sub-sections. Futher sections deal with packages and
 function inheritance with respect to streamability (see section “Non-final streamable functions in packages”) and
 a proposal for a general improvement to the analysis of the posture in section “Streaming terminology”. And in section “Miscelleneous” several related
 subjects are covered on inline functions, partial function application, named function
 refverences and dynamic function calls.
The current state of the specification is discussed in section “Streamability of stylesheet functions according to the specification” and the current state of processors with regard to
 streamability analysis of stylesheet functions in section “Status of current processors with respect to streamable stylesheet functions”.

Streaming terminology
 This section will briefly discussed terminology used throughout this paper. This
 overview does not try to be complete.

 	Guaranteed streamable: determines
 whether a particular construct, instruction or declaration is streamable
 according to the streamability rules in section 19 of the XSLT 3.0
 specification. If it is, any processor that is conformant with the
 streamability feature will be able to process your input using streaming,
 that is, by reading the input in forward-only mode without keeping the whole
 document in memory.

	Posture: the posture of a construct
 determines the state of a streamed node in the output of that construct.
 Often, this will be the same as the input posture. It is used in
 streamability analysis to determine whether a construct returns streamed
 nodes and in what way. Many constructs are capable of returning streamed
 nodes, but if all rules are followed, the usages of these constructs are
 limited in such a way that they can only return a subset that is compatible
 with streaming. The different postures are:	Grounded: the construct
 does not return a reference to a streamed node. An expression or
 instruction operating on a grounded posture is allowed to be
 free-ranging. Examples: fn:currentDateTime,
 fn:copy-of, xsl:copy-of, a
 variable reference.

	Climbing: the construct can
 return nodes that refer climb the tree through the ancestor or
 attribute axis. Examples: parent::foo,
 author/@name, ...

	Striding: the construct can
 return non-overlapping nodes, typically only on the child axis.
 Examples: any child-select expression, any match pattern,
 fn:zero-or-one,
 fn:outermost.

	Crawling: the construct can
 return overlapping nodes on a downward axis. Examples:
 foo/descendant-or-self::bar,
 ./b//c.

	Roaming: the construct can
 return nodes that can be anywhere in the input tree. Examples:
 following::node(),
 ancestor::foo/bar,
 preceding-sibling::price.

	Sweep: the sweep of a construct
 determines how the current read position of the input stream is changed as a
 result of executing the construct. The different sweeps are:	Motionless: the read
 position does not change. This is true for expressions that only
 operate on grounded nodes or data, and for expressions that
 request a property of a node or the ancestor axis[1]. Examples: fn:has-children(.),
 @name, if(./name()) then ...,
 ancestor-or-self::para/@xml:lang, any constant
 and any expression not operating on a streamed node.

	Consuming: the read
 position changes in a forward-only direction. Any expression
 that requires read-ahead is considered a consuming expression,
 unless the current node is a childless node, such as text- and
 comment nodes. Consuming constructs form the heart of
 streamability analysis. Any construct may have at most one
 consuming construct. Examples: fn:count(foo),
 x/y, <xsl:value-of select="name"
 />.

	Free-ranging: the construct
 cannot be evaluated by using forward-only movement of the read
 pointer of the input stream, for instance when evaluation of a
 filter expression requires look-ahead. Typically, a free-ranging
 construct is also roaming. Examples: foo[bar],
 parent::author/book, any xsl:sort
 on streamed nodes, @* | foo, if(a) then b
 else c, fn:reverse(index).

	Usage: the usage determines what an
 operand of a construct does when it receives a streamed node as argument.
 The following usages are defined:	Inspection: if the argument
 is a streamed node, it will inspect the node, but not consume
 the node, resulting in a motionless sweep (assuming no other
 part of the expression or construct consumes the input). An
 inspection operand is the only operand that can take a climbing,
 motionless expression as its argument.

	Absorption: if the argument
 is a streamed node, it will consume the node, resulting in a
 consuming sweep. Examples are arguments of fn:data,
 fn:string, constructor functions,
 xsl:value-of/@select,
 xsl:apply-templates/@select and text value and
 attribute value templates.

	Transmission: if the
 argument is a streamed node, the result will also be a streamed
 node. Depending on the function or construct, this can result in
 any kind of sweep. Examples are arguments of
 fn:outermost, fn:remove,
 fn:subsequence,
 xsl:sequence/@select.

	Navigation: if the argument
 is a streamed node, there is no guarantee that calling the
 construct will be streamable. Typically, a navigational operand
 will result in free-ranging and roaming streamability analysis
 results. Examples are arguments of
 xsl:call-template (the implicit context item,
 making it impossible to use this instruction with streamed
 nodes), first argument of fn:fold-left, last
 argument of fn:key, fn:innermost, any
 untyped argument to a stylesheet function not specifically
 marked streamable.

The combination of posture, sweep and usage determines whether a certain construct is
 guaranteed streamable or not. Constructs can be nested, and constructs have operands.
 What exactly constitutes a construct and operands is outside the scope of this paper[2], except for stylesheet functions, which will be explained in the following
 sections.

A case for streamable functions
Functions are a nice machinery in XSLT 2.0 that have surplaced most of the
 xsl:call-template scenarios from XSLT 1.0. The benefit of being able to
 create a function and call it directly inside an XPath expression or in a pattern filter
 has shown its use-cases. More often than not, functions tend to operate on atomic types,
 such as strings and integers, because the natural habitat for nodes processing is done
 declaratively by template matching. This is often called The XSLT
 way of doing things, see Welker 2008, Gerstbach 2006 and Lenz 2005, and even today, this is still
 often advocated on the XSL Mailing List[3] and on discussion fora such as StackOverflow[4] and Experts-Exchange.com. However, even advocates of using templates over
 (recursive) functions, such as Dimitre Novatchev, sometimes choose a function over a
 template based scenario because it is clearer or because it is simply a better tool for
 that particular job[5], or in the words of Jeni Tennison in Tennison 2001: “If the result follows the structure of the source, then
 a push method is more natural — the source drives the process. If the result
 has a substantially different structure from the source, then a pull method
 is more natural — the result drives the process.”

It should be said: in XSLT 3.0, the natural way of doing things with nodes from an
 input tree is to use template declarations. This is no other than previous XSLT
 versions. Perhaps it is even stronger now that it is possible to apply templates on
 atomic values such as sequences of strings as well[6]. But this does not help with complex patterns, which can only be replaced by
 functions. Also, it does not help in scenarios where reusing a result in an expression
 is important, which is where functions come into play: they can be used inside
 expressions and call-template nor apply-template can do that (unless wrapped inside a
 function, that is).
The current working draft, which is in Last Call, does not have a provision for
 streamable functions. That is, it is impossible in any which way to pass a streamed node
 to a function. Dimitre Novatchev's example from the StackOverflow question would
 therefore not be possible in a streaming scenario. Now that more and more people have
 gotten used to write functions, and with the advent of (precompiled) XSLT packages
 containing lots and lots of library functions, it seems unfair that they cannot continue
 doing so in streamable scenarios, nor does it seem fair that library vendors will not
 have any means to create library packages with functions that are
 streaming-aware.
The XSL Working Group has considered this and as the solution of Bug 25679
 shows, the proposal was considered and adopted into the internal working draft. The
 following sections will explain my personal analysis on the situation and section “Streamability of stylesheet functions according to the specification” will summarize which parts of this analysis match
 the specification. Since the discussion on this bug report is not final yet, anything in
 that section is very preliminary and may change without prior notice.

Stylesheet functions in streaming scenarios before they were allowed to be
 streamable
In the current XSL Transformations 3.0 Last Call Working Draft, calls on stylesheet
 functions are analysed based on the declared type of the arguments. If an argument is
 typed as an atomizing type, such as xs:string or xs:integer,
 the usage of that argument will be absorption, in other
 words, it will absorb a streamed node, which in most cases results in a consuming sweep. The result of such function calls is defined
 as grounded. If the argument is untyped or is a type
 that can take nodes, it is disallowed to pass a streamed node to the function call,
 because there is no way of knowing statically what will happen with that node inside the
 function. I call this the safe bet: disallowing
 streamed nodes as arguments makes streamability analysis easier. Example:Code listing: calculate square
<xsl:function name="f:square">
 <xsl:param name="i" as="xs:integer" />
 <xsl:value-of select="$i * $i" />
</xsl:function>

<xsl:template match="number">
 <xsl:sequence select="f:square(.)" />
</xsl:template>

In this example, the function f:square takes an argument $i
 that is of type xs:integer. Upon calling the function, the processor will
 have to atomize the value or node. To do so, it must process all its children, which is
 why such a usage is considered consuming. In this
 case, the element number will be atomized.
This is a typical way of writing functions and it works perfectly well with streaming.
 However, if you want the argument to be a node and get some properties of a node or
 process the node's children, it gets trickier, since passing a node to a function is
 disallowed with streaming. Consider the following:

 Code listing: get attribute of ancestor
<xsl:function name="f:hasname">
 <xsl:param name="n" as="item()" />
 <xsl:sequence select="
 if($n/ancestor::node()[@name])
 then true()
 else false()" />
</xsl:function>

<xsl:template match="author[f:hasname(.)]">
 <xsl:text>Has name attribute in ancestor!</xsl:text>
</xsl:template>

In this example, the call to the function is not streamable. We pass on a node to the
 function and the rules in the current Working Draft state that it has usage navigation[7], which has the effect that the whole expression, in this case the match
 pattern author[f:hasname(.)], will be roaming and free-ranging, in other
 words, it is not guaranteed streamable.
It is possible to call the function in some situations, by using the
 fn:copy-of or fn:snapshot functions. But that means that
 users of your function must have enough knowledge to know what atomizing or grounding function to use before passing on an argument. In
 this particular case, it would make little sense to use either of these functions,
 because a match pattern must be motionless, so it is not possible to use the function in
 a match pattern predicate expression. This is essentially true for any function that
 does not consume the input tree. With the current rules in place, even if a function
 does not consume the input tree, you still need to create a copy of the tree to call
 that function. Hardly efficient and in many cases impossible with streaming, because the
 input node may simply be too big to be copied.
Were you to use it in another context, you still have to choose between
 fn:copy-of and fn:snapshot. This function would not work
 with fn:copy-of, because that function does not copy the ancestor axis. In
 other words, you must know the internals of the function to find out that you need to
 call it with a call to fn:snapshot. And even then, if the function requires
 information from the original document, such as the base-uri or other properties that are not copied with either of those
 functions, you are out of luck.
In essence, these rules disallow stylesheet authors to write a function that take
 nodes as arguments, and in the case of library package authors, they will not be able to
 write functions that take nodes that work the same way in a streaming scenario and a
 non-streaming one. They would have to educate library function users how to use their
 functions in a streaming scenario and many functions will never work in streaming
 scenarios because their usage would always be consuming even though the function body does not actually consume the
 input node. In other words, it makes writing functions for use in streamable stylesheets
 next to useless.

The challenge of streamable stylesheet functions
It is often trivial to see at a glance that a function is motionless and that it would not hurt using it on a streamed input node.
 Take, for instance, Code listing: get attribute of ancestor from the previous section. It only uses
 the ancestor axis and tests whether one exists with an attribute @name.
 Since walking the ancestor axis is motionless (the processor is required to keep a stack
 of the ancestor nodes and their properties) and the attribute axis is too, any call on
 that function would be motionless with respect to its argument.
This shows us one thing: it is possible to write functions that can be statically
 analyzed to be motionless. But this function has
 special properties: the body of the function is motionless and the result of the function is grounded. That means, it can never return any nodes, it can either
 return true() or false(). But can we always statically
 determine that that is the case? Let us write a slightly different function, this time
 we return the attribute node, instead of testing for it:

 Code listing: return attribute node
<xsl:function name="f:hasname">
 <xsl:param name="n" as="item()" />
 <xsl:sequence select="$n/ancestor::node()/@name" />
</xsl:function>

<!-- guaranteed streamable: -->
<xsl:template match="author[f:hasname(.)]">
 <xsl:text>Has name attribute in ancestor!</xsl:text>
</xsl:template>

<!-- potentially guaranteed streamable: -->
<xsl:template match="*">
 <xsl:apply-templates select="author/f:hasname(.)" />
</xsl:template>

The function still takes a node as its argument, but this time it returns a reference
 to an attribute of the ancestor axis of that node. The attribute axis has climbing posture, which is limited in that you cannot
 navigate downwards again from it. In the first usage of this function, in the predicate
 of the pattern, the input is the current node, but a predicate only has to be true
 (nodes are there) or false (no nodes). After that, there is no navigation away from the
 climbing posture, so this could be considered
 streamable.
If we take a look at the second example, we see there an
 xsl:apply-templates. By definition, assuming the rest of your
 stylesheet is guaranteed streamable, any apply-templates will be an atomizing construct:
 templates must be grounded and therefore, passing on nodes to a template will atomize
 those nodes. Just as we saw before, atomizing means that the node is consumed. In
 streamability terms this means it has usage absorption. But to consume a node, its children must be visited, which
 is a downward movement. The argument has a climbing
 posture because it ends with f:hasname(.), which we know returns attribute
 nodes, which are climbing.
There is a caveat, however: if the climbing
 expression returns childless nodes, consuming such a node will not harm the streaming
 process: there are no children to consume. The General
 Streamability Rules[8] in the specification have a special provision for this: childless nodes with
 a climbing posture are allowed in an absorption context.
So it can be made streamable, right? Wrong! For a construct to be streamable it must
 be statically determinable to be so. Here, we have a function with an unspecified return
 type. If we had written as="attribute()", the processor would be able to
 detemine that the returned nodes would always be childless and it could be used in an
 absorption context.
But this is only one example. What happens when the stylesheet function returns a
 climbing node and we pass it a crawling expression? What happens if the function returns
 crawling (overlapping) nodes and the input is
 climbing? And how about recursive functions, or
 within packages, with abstract or overriden functions?
Let us look at some possible approaches to tackle these issues.
Approach 1: analyzing stylesheet functions statically on their own
Arguably the easiest approach from both the user's point of view and for
 implementors alike is to try to find a method to analyze the streamability of
 stylesheet functions statically, without taking into account any possible context
 the stylesheet function is called in.
Suppose you have a stylesheet function my:for-each which traverses
 all nodes in a node set and returns a certain aggregate result. By its definition,
 traversing the node set, it will consume the input tree, just like
 xsl:for-each would. Writing such a function that it works equally
 well for different kinds of input postures is hard, perhaps even impossible. A
 function call like my:for-each(head//section) may have to traverse over
 overlapping nodes, the expression in the argument is a crawling expression and looping over a crawling node set is not allowed in streaming because certain
 buffering is required to cache the overlapping nodes. If the loop is not going to
 consume the individual nodes, this is alright[9], but otherwise, it is not guaranteed
 streamable.
For such a function to be statically analyzable without knowing what context it is
 used in, it is allowed to traverse the input tree, but it is not allowed to consume
 the individual nodes of the streamed input tree. A function that can potentially
 work with any input posture, albeit climbing,
 striding or crawling might look like the following:

 Code listing: streamable my:for-each working with any argument posture
<xsl:function name="my:for-each1">
 <xsl:param name="$node-set" as="node()*" />
 <xsl:for-each select="$node-set">
 <xsl:sequence select="./@name" />
 </xsl:for-each>
</xsl:function>

This example loops over all the nodes, but does not consume the individual nodes,
 it only requests a property of those nodes using the attribute axis, which is
 motionless and its result is climbing. And a
 motionless expression on either a climbing,
 striding or crawling context is always allowed[10].
Even though this example is exemplary for showing the possibility of writing a
 function that can take any posture, it limits our possibilities greatly. Suppose we
 want to write an implementation of my:for-each that does consume the individual nodes in the streamed node
 set, for instance as in the following example:

 Code listing: streamable my:for-each failing with argument postures climbing and crawling
<xsl:function name="my:for-each2">
 <xsl:param name="$node-set" as="node()*" />
 <xsl:for-each select="$node-set">
 <xsl:value-of select="child::*[self::author | self::author-name]" />
 </xsl:for-each>
</xsl:function>

Whether or not this example would use the child axis within the
 xsl:for-each or directly without the loop, for the streamability
 analysis this does not matter. The child axis, if applied on a climbing or crawling axis, is
 always roaming and has a sweep of free-ranging[11]. This means that the expression my:for-each2(child::book)
 is allowed, but the expressions my:for-each2(listing//book) and
 my:for-each(title/ancestor::book) are not, because the latter two
 have arguments with crawling and climbing postures respectively and can therefor not be
 consumed.
This leaves us with essentially two options for static analysis of streamable
 stylesheet functions, without having to take the function calls into account:	Option 1: force stylesheet authors to
 only write functions that are capable of dealing with any input posture.
 This means that the body of functions must be motionless, or if they are
 not, they must use a higher-order
 operand[12] such as the shown xsl:for-each construct in the
 example.

	Option 2: limit the allowed posture
 to only one posture, so that caller and callee are guaranteed to have
 the same input posture, always. Most likely candidate is the striding posture, because it is the most
 common posture when processing an input document. This would mean that
 the argument that can take nodes always has its context posture set to
 striding and that the only allowed
 argument posture when calling the function must also be striding.

Both options have severe drawbacks, but they have the advantage of being very
 clear-cut and easy to communicate or explain. As it turns out, the current approach
 taken by the XSL Working Group, as explained in XSL Bug
 25679, takes the approach of Option 2:
 the result posture of a function must be striding
 or grounded and the argument to a function must
 also be striding or grounded. To accomplish this, the parameter that can take nodes,
 which can at most be one parameter, will have a context posture of striding and is by itself motionless.

Approach 2: analyzing stylesheet functions from the function call
Radically different from the previous approach is to analyze the function's body
 only when we actually know what the context is of the argument that takes a streamed
 node. For this approach, we simply ignore analyzing the declaration of the function
 on itself.
If we take the example from Code listing: streamable my:for-each failing with argument postures climbing and crawling and call it with a
 striding argument, for instance
 my:for-each2(*/books/book), the processor, upon encountering such
 function call, takes the posture of the argument and sets the context posture of
 $node-set to this posture, in this case: striding. With this posture, the processor can now analyze the
 function body and return a result of that analysis, not surprisingly the same as in
 the previous section: a consuming sweep and a
 grounded result posture (because the function
 does not return any nodes, the result is grounded).
If user were to call the function with a crawling
 argument, say my:for-each2(*/books//book) (mark the extra slash), the
 parameter $node-set is set to a context posture of crawling and the resulting analysis of the whole function
 body will be roaming and free-ranging. Exactly as expected. And with a climbing argument, or even a roaming argument, the result would be the same.
Doing the same analysis for the first example, Code listing: streamable my:for-each working with any argument posture, the
 result would be different each time, showing the advantage of this approach:

 Table I: Posture and sweep of my:for-each1 function, depending on argument
	Argument posture	Function posture my:for-each1	Resulting posture for function-call	Resulting sweep for function call
	Grounded	Grounded	Grounded	Motionless
	Climbing	Climbing	Climbing	Motionless
	Striding	Climbing	Climbing	Motionless or consuming
	Crawling	Climbing	Climbing	Motionless or consuming
	Roaming	Roaming	Roaming	Free-ranging

The advantage is clear, by postponing analysis of the function body until it is
 called, the programmer has more flexibility in creating the function and the user
 will get an error if he uses the function with an invalid argument. This is also the
 disadvantage: without a clear rule how to call the function, the user may have
 trouble understanding why one argument works and the other does not. The previous
 table showed a function, my:for-each1, that works with any posture as
 argument input (except roaming, but that posture
 will always result in an unstreamable result, whether it is a user-defined function,
 a build-in function or any other construct). The following table shows the drawback
 of this approach, where only upon calling the function it becomes apparent that
 certain postures are disallowed:

 Table II: Posture and sweep of my:for-each2 function, depending on argument
	Argument posture	Function posture my:for-each2	Resulting posture for function-call	Resulting sweep for function call
	Grounded	Grounded	Grounded	Motionless
	Climbing	Roaming	Roaming	Free-ranging
	Striding	Striding	Striding	Consuming
	Crawling	Roaming	Roaming	Free-ranging
	Roaming	Roaming	Roaming	Free-ranging

As we can see, only one argument posture (bar grounded, which is always allowed), striding, is allowed with the function my:for-each2,
 and its sweep is consuming. This is similar to our
 expectations, as in the previous section, we already saw that this function only
 worked with a striding argument posture. But in the
 previous approach, for Option 2, we considered this
 the only allowed posture for function arguments to stylesheet functions, which made
 it pretty clear for end users. Here, the user does not know beforehand what the
 argument posture can be, in fact, he needs intricate knowledge of the function body
 to find out what posture is allowed.
While this approach allows more flexibility, it also introduces more room for
 error, at least at the static development stage. Of course, the documentation of a
 function could contain information of how it should be used, but who reads
 documentation anyway?
Another advantage, though, is the potential that many existing functions might
 "just work". In fact, quite some functions that can be found online are often short
 and meant for a certain given input. As it turns out, if you take, for instance, a
 look at the functions on www.xsltfunctions.com that can take nodes as their arguments, quite some
 of them are streamable right out of the box if we would allow this approach.

Approach 3: analyzing stylesheet functions based on static posture assessments
If we try to combine the previous two approaches into one, and try to achieve both
 static analysis of function bodies and clear information for the users of the
 functions, we achieve that by decorating the functions with an extra attribute that
 can take one or more postures. Let us call the attribute
 argument-posture and add it to xsl:param, with at most
 one parameter allowed to have that attribute (the challenge of multiple arguments
 that can take nodes is discussed in section “Multiple arguments that can take nodes”). The value
 for the attribute is set to be one or more of grounded climbing striding
 crawling roaming. The postures grounded
 and roaming are redundant, because the former is
 always allowed and results in a motionless sweep
 and the latter is never allowed, resulting in a free-ranging sweep.
If we take the previous example, my:for-each1 and rewrite it with
 this additional decorating attribute, it looks like this:

 Code listing: streamable my:for-each with decorated parameter
<xsl:function name="my:for-each1" as="attribute()*">
 <xsl:param name="$node-set"
 as="node()*"
 argument-posture="climbing striding crawling" />

 <xsl:for-each select="$node-set">
 <xsl:sequence select="./@name" />
 </xsl:for-each>
</xsl:function>

This tells the processor that the programmer declares the function to be
 streamable with each and every one of these postures. The processor can then
 statically assess the function body with each posture one by one and report back
 whether or not this assessment is correct or not. In this case, it would compile
 successfully, because all postures yield correct results.
Still, you might argue, the different input postures do not necessarily mean that
 the sweeps are all the same. True, but the sweep is something that can never be
 statically determined for a declaration, as it is dependent on the context of the
 caller. For instance, if the function is called with a motionless but striding argument,
 the resulting sweep is also motionless, because the
 xsl:for-each with a motionless
 argument and its body containing a motionless
 sequence constructor all together yield a motionless call to the function, even though it is striding. This is
 true, for instance, for the following call:

 Code listing: calling function with motionless striding argument
<xsl:template match="books/book[my:for-each1(.) = 'Swift')]">
 <h1>Books from Swift!</h1>
 <xsl:apply-templates />
</xsl:template>

This example shows the power of the current rules in the XSL Working Draft. The
 existing rules allow a function call inside a predicate in a pattern. Because the
 context item expression, (.) is motionless and takes the context posture as its result posture,
 which in this case is striding, the result of
 calling the function with this argument is also motionless and has a result posture of climbing (which follows from our table above). Finally, the result
 must be atomized to be able to compare it to a string. For a climbing expression that returns an attribute, atomization is
 allowed and motionless.
As we can see, this third approach gives us more flexibility, but the drawback is
 that it requires programmers to understand what a posture is. One of the design
 goals of the streamability rules is that they can be applied without knowing all the
 internals, and bringing one of those internals, the posture of a construct, to the
 surface, may not be desirable.
In the next sections we dive deeper in the analysis of stylesheet functions and
 try to come up with a set of rules that works for different inputs, not only
 striding, and that works also with recursion or
 non-final packaged functions, subjects that have not yet been touched in this
 section.

In pursuit of flexible rules for guaranteed streamable stylesheet functions
The previous section introduced three possible approaches. In the following sections
 we will research these approaches further. In fact, the focus will be on Approach 2 above.
In the specification, under the rules on path expressions[13] and axis steps[14], a table shows what happens if the output posture of one part of the path
 expression is the input posture of the other part of it. Stylesheet functions are not
 much difference. If we take the lessons learned in that section and we reproduce that
 table here and adjust it slightly for stylesheet functions, we can deduct that the
 following rules apply:

 Table III: Posture and sweep of stylesheet functions
	Argument posture	Function posture	Resulting posture	Allowed sweepa
	
 a)
 This is the highest allowed resulting sweep of the
 function body resulting in the given result posture,
 if the sweep is higher then the sweep of the
 function body is effectively free-ranging.

 b)
 The term "direct-transitional" is not a posture, it
 applies to constructs such as "$n/self::foo" or
 "$n", where $n is the streamed
 parameter. Such expressions are motionless and take the
 posture of their input as their output posture.

 c)
 The current rules on streamability do not allow a
 striding or crawling posture after a climbing or crawling
 posture, the result of such analysis is always roaming and
 free-ranging.

	Grounded	Any	Grounded	Motionless
	Any	Grounded	Grounded	Sweep of function body
	Any	Direct-transitionalb	argument posture	Motionless
	Climbing	Climbing	Climbing	Motionless
	Climbing	Stridingc	Roaming	Free-ranging
	Climbing	Crawlingc	Roaming	Free-ranging
	Striding	Climbing	Climbing	Motionless
	Striding	Striding	Striding	Consuming
	Striding	Crawling	Crawling	Consuming
	Crawling	Climbing	Climbing	Motionless
	Crawling	Stridingc	Roaming	Free-ranging
	Crawling	Crawlingc	Roaming	Free-ranging
	Roaming	any	Roaming	Free-ranging

To determine the posture of a function body, it is easiest to consider the argument
 that can take nodes similar to the context item expression ".". This
 expression is motionless on itself, but if used with usage absorption it may become consuming
 depending on the input posture of the expression or instruction it appears in, called the context posture. For functions that means, it takes the
 posture of the argument to that function, in other words, the context posture of the parameter that can take streamed nodes is the
 posture of the argument to the function. Example:

 Code listing: striding streamable function that can take streamed nodes
<xsl:function name="f:thirdchild" as="element()">
 <xsl:param name="n" as="node()" />
 <xsl:sequence select="$n/child::*[3]" />
</xsl:function>

<!-- guaranteed streamable: -->
<xsl:template match="author">
 <xsl:apply-templates select="f:thirdchild(.)" />
</xsl:template>

<!-- not guaranteed streamable: -->
<xsl:template match="author">
 <xsl:apply-templates select="f:thirdchild(.//book)" />
</xsl:template>

The body of the function f:thirdchild has a posture striding because of the child axis step. The usage of the
 function is transitional, which means it can return
 nodes. Using the table above, we can lookup the result posture and sweep of any call to
 the function. The first use in this example is in xsl:apply-templates,
 which we have seen before takes a usage of absorption, meaning that overlapping nodes are not allowed[15]. The operand here is a call to our function with the current node as
 argument. Inside any template, by definition the context posture, and thus the posture
 of the context item expression, is striding. The
 table then gives us for argument is striding,
 function body is striding, then result posture is
 also striding and the sweep is consuming.
Looking at the second use of the function we see another
 xsl:apply-templates, this time with a crawling path expression (the descendant axis is returns a crawling
 posture, it can have overlapping nodes) as argument to the function. From the table this
 gives us for argument is crawling, function body
 striding the result posture of roaming and a sweep of free-ranging. Even without the table we can see from the argument that
 it returns overlapping nodes and that a processor will have to potentially look back and
 forward to find the third child of each overlapping node. If there is no overlap, this
 problem would not arise, but statically we do not know that, and the processor has to
 assume the worst.

Multiple arguments that can take nodes
With streaming, it is not possible to have one construct take multiple downward select
 expressions, or more generally, multiple consuming expressions. Suppose we were to allow
 a function call to take multiple arguments that are streamed nodes, this rule would
 backfire. An function call such as f:equals(foo, bar) has two downward
 select expressions, foo and bar. Because there is no way the
 processor can know in what order these appear in the input document, it is possible that
 foo appears before bar, or the other way around, which
 means that the processor may have to look back to find the other child. This is the
 general reason why multiple downward selects are not allowed in any single
 construct.
We could argue that one argument can be a grounded
 node and another a streamed node. But that does not help us much further, because it
 hits the same problems as with the non-streamable functions we showed earlier: how can
 we tell the user of the function to choose between fn:snapshot and
 fn:copy-of and how can he determine what argument can take a streamed
 node and what argument cannot?
Another argument to allow multiple arguments that can take nodes is that one argument
 can be motionless in the function body and the other is not. Together they would be
 consuming, or if both are motionless, together they would be motionless. But this still
 does not deal with the fact that to get a node into the function, that node first needs
 to be consumed, unless it is the context node or an ancestor of the context node. These
 restrictions would be very limiting and also very hard to define in spec
 language.
The resolution is to keep things simple. Instead of allowing multiple arguments that
 take nodes, streamable functions can have a maximum of one parameter that can take
 nodes. The other arguments must either be non-node types, or absent.

Recursive streamable functions
In Table III: Posture and sweep of stylesheet functions
 in section “In pursuit of flexible rules for guaranteed streamable stylesheet functions” we have seen that it is
 possible to write functions with any kind of result posture. The result posture is then
 dependent on the argument passed to the function. This works for the trivial case where
 the function body is simple and can be analyzed. But what happens if we try to apply
 those rules with a function body that is recursive?
For this section I consider four kinds of recursion[16]:	Direct recursion: function calls itself
 inside the body of the function.

	Indirect recursion: function calls
 itself indirectly through another function it calls.

	Indeterminate recursion: function
 applies templates and a template at some level calls the function.

	Dynamic recursion: a dynamic function
 call resolves, or can resolve to a function which is currently
 executed.

Direct recursion
To understand the challenges when dealing with recursive functions it is enough to
 look at a most trivial example, which is clearly streamable and uses infinite direct
 recursion:

 Code listing: trivial direct recursion
<xsl:function name="f:recur">
 <xsl:param name="n" />
 <xsl:sequence select="f:recur($n)" />
</xsl:function>

<xsl:template match="x">
 <xsl:apply-templates select="f:recur(y)" />
</xsl:template>

This function does not have an exit-clause for the recursion and will run
 indefinitely, likely causing a stackoverflow error. But it is legal XSLT and it is
 streamable in the sense that it no movement occurs on the streamed argument.
If we analyze this function using Table III: Posture and sweep of stylesheet functions, we run into a problem:	First we need to determine the posture of the argument to the
 function, here it is striding.

	This sets the posture of $n to striding as well. The next step is to determine the
 posture and sweep of the function body.

	To determine that, we need to determine the posture and sweep of the
 contained sequence constructor, which is a single
 xsl:sequence with here one operand, the
 select-expression.

	The posture and sweep of xsl:sequence is equal to the
 posture and sweep of its select expression[17], here f:recur($n).

	We know the posture of $n, but to determine the posture
 of the function call f:recur we need to analyze the
 function body again, which we already did, but without having a
 conclusive sweep or posture yet. We've reached an eternal analysis loop,
 the function is non-analyzable.

It is not trivial to resolve this dead end situation. One way forward could be to
 split the function body artificially into two operands and analyze each
 individually: one for the part without the recursion point[18], setting the recursive function to the empty sequence (),
 and one for the argument to the recursion point. This will help somewhat, but feels
 wrong and is hard to proof right. What would happen if a function returns streamed
 nodes and gets a climbing input and the output is
 of a different posture?
Looking back at Table III: Posture and sweep of stylesheet functions we can deduct that
 any function call with a climbing or crawling argument must yield a climbing or crawling result. The
 only argument that is allowed to return a different result posture is an input with
 a striding posture. This makes sense, because the
 natural process for streaming is to go through the input document depth-first, which
 is the striding posture and once you change
 direction upwards, you cannot go down again: it would make a construct roaming. To
 summarize, we can consider that:	A climbing input argument must
 remain climbing to be streamable, so if the input is climbing, the
 recursive argument must also be climbing and the body cannot contain an
 expression in another direction.

	A striding input argument can
 change to climbing but not to
 crawling in recursion, because
 that would validate the next point. If it changes to climbing the whole function body must be
 motionless, because you cannot both climb and consume, and if it stays
 striding the whole function body
 must be striding and can be either
 motionless or consuming.

	A crawling input argument can only
 take motionless expressions, it cannot turn magically back into
 striding[19] nor is it allowed to have a crawling expression operate on another crawling expression.

	Anything roaming will always stay
 roaming.

The following table shows what this means for different argument postures of calls
 to a function, what the recursive argument (the one at the recursion point) can be
 and the result posture of the recursive call is and what the posture of the function
 body must be (it must be the same) and what the sweep is of the recursive call. The
 last column stresses the maximum sweep of the function body with the given
 arguments. Note that all these analyses are in the context
 of the initial function call, not the recursive call, which makes it
 possible to allow one function body to take different postures as input:

 Table IV: Posture and sweep of recursive stylesheet function calls
	Argument posture	Recursive argument posture	Recursive function body & call posturea	Recursive function call sweep	Maximum function body sweep
	
 a)
 The function body must match the recursive call
 posture or be grounded, otherwise the posture is
 roaming.

 b)
 In fact, if the argument is grounded, the recursive
 argument will also be grounded.

 c)
 Because on a next iteration, the argument will be
 crawling, not striding anymore, it would be a crawling
 expr. on a crawling expr. which is not guaranteed
 streamable.

	Grounded	Any (grounded)b	Groundedb	Motionless	Motionless
	any	Direct-transitional	Posture of argument	Motionless	Consuming
	Climbing	Climbing	Climbing	Motionless	Motionless
	Climbing	Non-climbing	Roaming	Free-ranging	n/a
	Striding	Climbing	Climbing	Motionless	Motionless
	Striding	Striding	Striding	Consuming	Consuming
	Striding	Crawling	Roamingc	Free-rangingc	n/a
	Crawling	Climbing	Climbing	Motionless	Motionless
	Crawling	Non-climbing	Roaming	Free-ranging	n/a
	Roaming	any	Roaming	Free-ranging	n/a

For this table to work in practice, we can allow at most one recursion point, or
 each recursion point must have the same posture and at most one can be consuming. Once you have found the posture
 and sweeps of the recursive function call, you can continue the analysis of the
 function body and then apply the previous Table III: Posture and sweep of stylesheet functions.
The rules in this table are laid out in such a way that it is not possible to have
 a climbing expression as the argument to a
 recursive function at a recursion point and somewhere else in the same function body
 a consuming construct or a non-climbing result. This is necessary, because if we
 would allow the combination of a climbing
 recursion point and a striding function body,
 then on either the initial call (with a climbing
 argument) or the recursive call (if the initial call would have been striding for instance) would call the function with an
 incompatible climbing posture, which would then
 be consumed. And a climbing posture can never be
 consumed. More specifically, it prevents a function like the following to be
 considered streamable:

 Code listing: non-streamable climbing and consuming
<xsl:function name="f:climbstri">
 <xsl:param name="n" />
 <xsl:choose>
 <xsl:when test="f:climbstri($n/ancestor::foo)/contains(., 'bar')">
 <xsl:text>Found it</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$n" />
 </xsl:otherwise>
 </xsl:choose>
</xsl:function>

Glancing over the example might already give a hint as to why it cannot possibly
 be streamable: the xsl:value-of can consume a streamed node and that
 streamed node is likely to be at a climbing axis because of the climbing posture of
 the recursive argument. If we take the item in the table into account and consider
 calling this function with a striding argument, as with f:climbstr(a/b)
 then we find in the entry for striding and
 climbing that the body of the function must
 at most be motionless. It is consuming, because of the xsl:value-of so
 the analysis fails and the function is roaming
 and free-ranging.
If we go back to our original example (see Code listing: trivial direct recursion) and apply
 the rules of this table, we have one recursion point, f:recur($n), the
 argument is direct-transitional, that is, it is
 motionless and takes the posture of its caller, in this case the caller of the
 function. According to the table above, we can use any posture as input, which will
 then become the result posture, and the sweep of the function body follows as
 motionless and grounded. In our case, the call has a child-select expression in
 f:recur(y), which has posture striding and sweep consuming. The
 result posture and sweep of the whole template is then grounded and consuming.

Indirect recursion
With indirect recursion there are extra layers of calls before the recursion takes
 place, as in A calls B calls C calls A again. The question that rises is whether the
 rules in section “Direct recursion” also hold if a function calls itself
 indirectly. Indirect recursion is a type of recursion that can also be determined
 statically. Let us look at an example:

 Code listing: indirect recursion
<xsl:function name="f:filterattr">
 <xsl:param name="n" />
 <xsl:param name="filter" />
 <xsl:sequence select="$n/@*[name() = $filter]" />
 <!-- indirect recursion -->
 <xsl:sequence select="f:take-ancestor($n, $filter)" />
</xsl:function>

<xsl:function name="f:take-ancestor">
 <xsl:param name="n" />
 <xsl:param name="filter" />
 <xsl:sequence select="
 if($n)
 (: indirect recursion :)
 then f:filterattr($n/ancestor::element()[1], $filter)
 else ()" />
</xsl:function>

The example is a very verbose and clumsy way of getting all attributes of all
 ancestor-or-self nodes that have a certain name. For instance, with the
 following input and stylesheet, the output will be 3.14 1.64:

 Code listing: input document
<foo version="1.64" name="john">
 <zed>
 <bar version="3.14" id="1234">
 </zed>
</foo>

 Code listing: indirect recursive function call example
<xsl:mode on-no-match="shallow-skip" />

<xsl:template match="bar">
 <xsl:value-of select="f:filterattr(., 'version')" />
</xsl:template>

But whether it is clumsy or not is not the matter. It serves as a basic example of
 indirect recursion and the function is clearly streamable because it only traverses
 the ancestor and attribute axes, which are motionless. However, the question is, of
 course, whether this example is streamable by following the rules from
 Table IV: Posture and sweep of recursive stylesheet function calls.
If we try that a first time, we quickly find that it is not immediately obvious
 how to apply it, because the functions above are not directly recursive. Recall that
 we said in section “Direct recursion” we wrote we can allow at most
 one recursion point, or each recursion point must have the same posture and at
 most one can be consuming . There are two recursion points here, the one
 inside f:filterattr that calls f:take-ancestor and the one
 inside f:take-ancestor that calls f:filterattr. The
 posture of the first one takes the input posture of the argument, it is Direct-transitional, the second one traverses the
 ancestor axis, which gives it a climbing posture.
 Finally, the argument inside the template example in Code listing: indirect recursive function call example
 has itself a posture of striding, because the
 context item expression takes the context posture
 which in the case of xsl:template is striding.
In short, if we start at the template, we start with posture striding, then striding again
 (because it is direct-transitional), then climbing and on the next recursive iteration this
 repeats, but now from climbing as input to
 f:filter-attr, then climbing again
 (because direct-transitional takes over the posture
 of the argument) and so it continues climbing until all recursive iterations have
 finished.
This breaks the rule we set to ourselves: the posture changed from striding to climbing.
 Yet, we also established that the example functions were streamable. The conflict
 arises from the argument $n being direct-transitional, which works like a cameleon and changes the
 posture along the way. One resolution to this specific situation is to allow
 direct-transitional, provided the rest of the
 body of the function is motionless, in which case it does no harm. Another, perhaps
 easier solution is to force the same posture in, same posture
 out rule and rewrite the argument to this function as follows:

 Code listing: fixed indirect recursive function call
<xsl:mode on-no-match="shallow-skip" />

<xsl:template match="bar">
 <xsl:value-of select="f:filterattr(./ancestor-or-self::*[1], 'version')" />
</xsl:template>

The change to using the ancestor-or-self axis also changes the initial posture to
 climbing, which in turn changes the posture of
 $n to be climbing as well, making
 all postures in all recursion points climbing.
While this relatively trivial example seemed to show an edge-case because it used
 a recursive argument posture of direct-transitional, it taught us two things: one, even a trivial
 example can quickly appear hard once we try to apply streamability rules on them and
 two, to keep things simple, it is best to stick a set of ground rules, even though
 that potentially means that we slightly limit certain use-cases.
In practice, indirect recursion is found pretty rarely in XSLT programming, even
 though XSLT is itself a functional language, it is much more common to use direct
 recursion. But if a scenario requires indirect recursion, it is possible, even with
 streaming.

Indeterminate recursion
Another challenge comes from indeterminate recursion as in the following
 example:

 Code listing: trivial indeterminate recursion
<xsl:function name="f:indeter">
 <xsl:param name="n" />
 <xsl:apply-templates select="$n" mode="streamable" />
</xsl:function>

<xsl:template match="*" mode="streamable">
 <xsl:sequence select="f:indeter(.)" />
</xsl:template>

In this situation, the analysis of the function declaration and the template
 declaration can be done independently, without ever finding the recursion point.
 However, when this code is run, the recursion kicks in (assuming the argument is an
 element). There is, however, one big advantage to this type of recursion: the rules on
 templates define that the result of a template declaration must be grounded[20]. Therefore, by definition, the result of any
 xsl:apply-templates is also grounded, which gives the function body above a grounded posture as well. In turn, the call to f:indeter
 results in a grounded posture, which concludes the
 circle. In addition, any select-expression in xsl:apply-templates must be
 atomizable, which in streamability terms means that it cannot be climbing or crawling[21]. This leads us to a temporary conclusion: if the arguments to a function are
 striding they can be used in indeterminate
 recursive functions. If the arguments are not striding, the analysis fails and makes the call on the function
 roaming and free-ranging.
Following Table III: Posture and sweep of stylesheet functions and taking the same
 approach that the body of the function should be analyzed during the call to the
 function, we can conclude that it is impossible for a function body to apply
 templates on something else then a striding
 posture. The one exception that is allowed in the General Streamability Rules[22]is for a climbing posture of childless
 nodes, which only applies to the attribute axis. This means that we can consider the
 following example streamable as well, even though we pass a climbing, or even a crawling
 expression to the function:

 Code listing: climbing result accepting crawling posture
<xsl:function name="f:apply-attribs">
 <xsl:param name="n" />
 <xsl:apply-templates select="$n/@*" />
</xsl:function>

Whether or not that function will be called indeterminate-recursively or not is
 irrelevant, because on the second iteration, the selection will be empty, because
 attribute nodes do not have children.
In short: indeterminate recursion does not have influence on the streamability
 analysis, nor does it break it. The existing rules suffice.

Dynamic recursion
Dynamic recursion looks a bit like indeterminate recursion in the sense that
 whether or not recursion takes place cannot be determined statically. In XPath 3.0,
 it is possible to bind a variable to a function[23], this is commonly referred to as higher order functions. The concept is
 not new, already in 2001, Dimitre Novatchev showed in his paper
 Novatchev 2001 that writing higher order functions is possible
 in XSLT 1.0 by means of what he calls template
 references[24], a concept also applied to the functional coding patterns in
 Mangano 2005, which was further popularized as the Novatchev technique in Kay 2008.
 It took until XSLT and XPath 3.0 that function items became first-class citizens,
 see my own paper Braaksma 2013 for an extended coverage of that subject
 for XSLT and Grust 2013 for a coverage for XQuery and
 databases.
For the rest of this section, we will assume you have a basic understanding of
 higher order functions in XSLT and XPath. The closure of higher order functions
 cannot contain the context item, so for our analysis we should only worry about
 arguments that can be streamed nodes, just like with regular functions.
The nature of a dynamic function call is that the function it refers to is only
 known at runtime, when the variable is bound to a function item. As a result, there
 is not much we can say of the posture and sweep of the function it refers to until
 it is actually invoked. Following the rules on streamability, the result of binding
 a variable to a function item is always grounded. This makes sense, because at the
 moment of binding, a function item is assigned to a variable and no streamed nodes
 are possibly involved in the result.
Once a function item is evaluated, its arguments are known. Provided that the
 arguments themselves are not roaming and
 free-ranging, the analysis will thenceforth
 look at the bound function. If this function is streamable, we can do the analysis
 from the previous sections as if it was a direct function call. The biggest
 difference lies in the fact that the analysis is done during execution. This means
 that an error for whether a call is not streamable will be a dynamic error.
This is no different for dynamic recursion. If dynamic evaluation leads to a
 recursive call, the posture of the argument, the recursive call and the function
 body must be matched to Table IV: Posture and sweep of recursive stylesheet function calls. If the result is
 roaming and free-ranging, the recursive call is not guaranteed
 streamable.
While it is theoretically possible to allow such dynamic streamability rules, the
 rules in the specification are meant to guarantee
 streamability statically. As a result, any potential dynamic streamability is prohibited. Processors may allow dynamic
 streamability as a vendor extension, but the specification will consider passing a
 node to a dynamic function call not guaranteed
 streamable, dynamic recursion, as suggested in this section, is
 therefor not possible with the current set of rules on static
 guaranteed streamability.

Analyzable and non-analyzable functions
Analyzable stylesheet functions are functions that can be analyzed by themselves,
 as we saw in . Non-analyzable stylesheet functions are
 those that can only be analyzed from the function call, because the body of the
 function on itself cannot be analyzed without knowing what the argument is. Most of
 the previous sections was about non-analyzable function calls.
Spec-wise, the term non-analyzable refers to the
 set of functions that cannot be analyzed statically and are given very conservative
 assumptions on streamability. This is true for recursive stylesheet functions and
 non-final streamable functions (see section “Non-final streamable functions in packages”). The term non-analyzable does not necessarily mean that the
 function is not analyzable, however, the general rule is that it requires a call, or
 knowledge of the context of a call to the function to find out whether or not the
 function is streamable. We have seen in the previous sections that it is possible to
 allow quite a variety of postures, even for non-analyzable functions, but in the
 specification such functions are limited to a posture of striding and are always considered consuming even if in fact they are not.

Non-final streamable functions in packages
In XSLT 3.0, a new feature, packages allows
 programmers to create a collection of modes, functions, named and matching templates,
 accumulators etc and pack them in a, potentially pre-compilable, package, which can then be included in other packages or stylesheets
 with xsl:use-package[25]. Components in that package can have a visibility attribute that can be set to public, private, final or abstract. If the visibility is
 set to private it can only be used in the local
 package, and if it is set to final the declaration
 cannot be overridden, but can be used also in other packages. Visibility abstract means there is no implementation yet, and it must be
 implemented by a using package (one that includes the package). And public, the default, means that a declaration can be
 overridden by using xsl:override, which will then take precedence over the
 original implementation. This can be considered similar to virtual
 methods in object-oriented languages like C++ and C#.
The result for determining whether a function can be guaranteed
 streamable or not cannot be determined statically at the moment that a
 package is compiled, because it is possible that it will later be overridden and any
 calls to that function can be impacted if the implementation, and the streamability,
 changes.
As briefly explained in the previous section, if a function is defined with visibility
 abstract or public, in other words, if they are non-final and non-private, then they are
 considered non-analyzable by the specification. This
 means that the processor cannot, and does not have to, try to analyze function calls too
 deeply: it only expects a striding posture and it will
 not try to determine whether or not the function is consuming or motionless when you
 call the function: it assumes the worst and will consider the call consuming.
A proposal from me in the bug entry [26]awaits reaction from the working group. It shows a way that processors can
 use to statically detemine the posture of non-final streamable functions. However, if
 that proposal were excepted, it will pose limitations on overriding non-final streamable
 stylesheet functions. I think, however, that not being able to override a function, and
 not being able to write non-final functions, is too severe a limitation. Even if a
 function is non-final, if you override it to make it final, you will have to rewrite the
 whole function body, you cannot use xsl:original(), because that would call
 into the non-final function again, which takes too much of conservative approach.
An alternative approach is the approach taken for the recursive functions in the
 previous sections. For all analysis there, we always considered the function call itself
 to get the whole picture. For functions that are non-final, such an approach can also
 work. Because the processor only knows what function to call when it encounters the
 function call itself, it should include the body of that function at that moment into
 the analysis. This can be done statically, there is no need to first run the
 stylesheet.
A potential problem, however, still arises if someone writes a package function that
 works correctly with a climbing result posture, but
 cannot be used if that is changed into a function override with a striding result posture. Even more, a motionless function could be changed into a consuming function, which will greatly impede existing calls to that
 function. One way to remedy that is to disallow overriding functions with a different
 result posture or with a different sweep. That means that any given call will need to be
 analyzed against the new function and the xsl:original() function call, as
 if it still existed in scope, otherwise it will not be possible for the processor to
 determine whether there is a change in posture or sweep.
Whether or not this turns out to be a feasible option in practice remains to be seen.
 After all, there is always a trade-off between usability of a feature and the complexity
 of the rules or the complexity for implementations. If the rules become too complex for
 anybody to understand, then there is littly chance it will be used in practice, and
 there will be little incentive for existing implementors to implement such feature, let
 alone write specification-tests for it.

An improvement: type-determined posture
In the past few sections we have seen that analyzing a function that can return nodes
 can be quite hard and intricate. However, if you know what type your function will
 return, you can use the as-attribute on the xsl:function
 declaration. This will tell the processor that the result must be converted into the
 type defined in that attribute.
In cases where the type is not a node, the processor can go much further with static
 analysis than in situations where the type is not known, because if the type is not
 known, the processor must assume the worst. Suppose you declare the function with
 as="xs:integer", there is no way your function can return nodes. For
 recursion this is a big help, because the processor now knows the result of the
 recursion will not contain nodes. Whether or not there is overlap in the argument
 expression is now less relevant and the posture of any function call, even the recursive
 ones, will always be grounded. This makes the
 requirement to match the argument with the result posture go away and simplifies both
 writing and analysis.
Let us look at an example, adopted from an example by Michael Sperberg-McQueen:

 Code listing: type determined posture
<!-- mimicking what can also be written as
 string-join(('', reverse(ancestor-or-self::*)/name()), '/') -->
<xsl:function name="f:fqgi" as="xs:string">
 <xsl:param name="n" as="node()"/>
 <xsl:choose>
 <xsl:when test="count($n/ancestor::*) = 0">
 <xsl:value-of select="'/' || name($n)"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="concat(
 name($n),
 '/',
 f:fqgi($n/parent::*))"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:function>

The example takes a node, processes its parents recursively and returns the names in
 reverse order (deepest first) separated by slashes. Because the function is declared to
 return a grounded result, namely
 xs:string, there is no need to assume the function can return nodes,
 because it cannot. Through Table IV: Posture and sweep of recursive stylesheet function calls we find
 that if the argument posture is striding and the
 recursive argument posture is climbing, as is the
 case here, the recursive function call is considered climbing as well and the function body must then result in either a
 climbing or grounded posture.
In this case, the function call itself does not have to be set to be climbing, because we know from the xs:string
 result type that the result will always be grounded.
 This simplifies the analysis in that we can now consider the function argument to be of
 either absorption or inspection usage. If the function body as a whole consumes the node
 referenced by $n it will be absorption and
 the analysis fails, because a climbing expression with absorption usage is not allowed. Because the only other operands on the
 streamed argument are fn:count and fn:name, both having
 inspection operand usage and both being motionless, the result of the analysis as a
 whole is that the function is guaranteed streamable, does not consume the streamed
 argument which we can summarize as having usage inspection, and while it is direct-recursive we know it can be called
 with any argument, albeit climbing, striding or crawling.
We could expand the type-determined analysis further by including whether or not the
 streamable argument has a cardinality of zero-or-one or has a cardinality of
 zero-or-more. In the case of zero-or-one there is no way that overlapping nodes can be
 passed on to the function, which can simplify analysis of a function call with a
 crawling argument, because it will fail dynamically
 if the crawling argument returns more than one node.
 This special-case scenario has meanwhile been tackled and been generalized for any
 situation and cardinality[27], which can also by applied to stylesheet function call arguments.

Miscelleneous
Inline functions and streamability
Inline functions are a new XPath 3.0 capability[28] that allows you to write an anonymous function inside an XPath
 expression. The definition of inline function expressions prohibits referencing the
 context item, which makes it not directly possible to refer to the context. However,
 the closure of an inline function contains all local variable bindings, which makes
 it possible to refer to a variable outside of the inline function, which itself
 could be bound to a streamed node. The streamability rules for
 xsl:variable and xsl:param prohibit referencing a
 streamed node, but one exception is inside a streamable stylesheet function, where
 it is possible to have a parameter bound to a streamed node.
There are two solutions possible. One is to come up with complex rules for inline
 functions referencing the streamed parameter, the other is to simply prohibit using
 a streamed parameter inside an inline function body. This in itself would not be
 consistent with the definition in XPath, which states that all local variable
 bindings are available in the dynamic context of the inline function, which leads us
 to a third option: simply disallow inline function expressions within the body of a
 streamable stylesheet function.
This third option would be in line with the current streamability rules for inline
 function declarations[29], which states that they are, by definition, grounded and motionless, simply
 because it is not possible to pass a streamed node into the closure of the inline
 function body.

Partial function application and streamability
Partial function application is also a new XPath 3.0 capability by writing down a
 question mark as a placeholder for an argument[30], and apply the other arguments already. The result is a function item
 with less arguments than the original and some arguments already filled in. An
 example is the expression index-of(?, ?, "http://my-collation"), which
 returns a function item that presets the collation argument to
 http://my-collation, resulting in a two-argument function that
 always uses the same collation.
The current rules are under the rules on function calls[31] state that, unless the function is focus-dependent, that the general streamability rules apply, which means that it is
 treated as a normal function call, but the placeholder arguments are ignored.
If we take into consideration that binding a streamed node to a variable and
 passing it around is prohibited, a similar rule should be applied to partial
 function application: if the function is a streamable stylesheet function, the
 argument that can take a streamed node, must be the placeholder, or a grounded node
 must be supplied, otherwise it would become a roaming and free-ranging
 expression.
In other words, partial function application works with user-defined streamable
 stylesheet functions, as long as you do not try to bind a streaming node from the
 current context to it. You should do that at a later stage, when you actually call
 the function.

Named function references and streamability
Named function references are another XPath 3.0 feature[32]: you can create a function item of an existing function by using the
 syntax FunctionName#ArgCount, where ArgCount is a literal
 giving the arity of the function. For instance, count#0 will give a
 reference to the zero-argument function of count and
 my:filter#3 will give a reference to a three-argument function
 my:filter.
The function item returned by such an expression can be called as a normal
 function by applying parentheses and arguments, which in turn will call the function
 you referred to to begin with. In practice, this syntax is useful for binding
 variables to existing named functions.
Creating a named function reference is an atomic action and does not involve
 references to nodes. As a result, a named function reference itself is always
 grounded. There is one exception, if you try to create a reference to a function
 that is focus-dependent. In such cases, just like in previous rules, the result is
 roaming and free-ranging. This is in fact the current rule for streamability of
 named function references in the specification[33].
Since stylesheet functions by definition cannot be focus-dependent, this exception
 does not apply to named function references that refer to a (streamable) stylesheet
 function.

Dynamic function calls and streamability
A dynamic function call, also a new XPath 3.0 feature[34], is a call to a function item that is bound to a variable. Suppose you
 have <xsl:variable name="fref" select=" 'name#1' " />, which binds
 the one-argument version of the name-function to $fref, then you can
 call that function by adding parentheses and arguments, the same way you would have
 done if the variable were the actual function:
 $fref(child::*[1]).
Since it is not possible to know at runtime what function the variable is bound
 to, analysis can only take place once the function is actually called. The current rules[35] state that all arguments have operand usage navigation, which means that you can only call a dynamic function
 when you actually create a grounded copy of a
 streamed node. In case you wanted to apply it to a streamed node you are out of
 luck.
The rules make an exception in case the signature of the function item is known,
 in which case type-determined usage, as in part
 explained in section “An improvement: type-determined posture”, can be used. That means that, if an
 argument is declared as a non-node type, the usage typically becomes absorption.

Streamability of stylesheet functions according to the specification
The current approach taken by the rules in Bug 25679 is a
 pessimistic one. For stylesheet functions to return nodes, they must be striding and are allowed to be either motionless or consuming. As a further
 limitation, which actually follows from forcing the striding posture on function bodies, is that the argument to the
 function must itself also be striding. In fact, it is
 not possible, by the current definition, to have a streamed node with crawling or climbing posture
 act as an argument to a streamable stylesheet function.
By limiting the result posture of the stylesheet function to one allowed posture, it
 is easier to write rules for both analyzable and non-analyzable stylesheet functions,
 see section “Analyzable and non-analyzable functions”. However, because the bug entry is quite fresh and the
 discussion is still ongoing, there is little conclusive I can tell about the rules that
 will eventually make it into the next public version of the specification[36]. For instance, in Comment#1
 of the same public bug entry I have proposed some of the rules from Table III: Posture and sweep of stylesheet functions. Whether or not any or all of these suggestions will
 make it into the specification will remain to be seen.
Even if the specification will only allow relatively pessimistic stylesheet functions,
 vendors are still allowed to use wider rules on streamability. In the case of functions,
 Exselt will allow any function that is streamable, as explained
 in the previous section, by using an optimistic operational mode at user option.
The streamable attribute on xsl:function
In none of the previous sections in this paper have I mentioned the
 streamable attribute on an xsl:function declaration.
 Since most of the paper discussed streamability of a stylesheet function in the
 context of the function call, whether or not a function is streamable then depends
 on its implementation and there is no need for the processor to know beforehand what
 functions to analyze and what not.
The streamability rules in the specification are made such that the processor must
 statically determine whether or not a function declaration is streamable or not.
 Since it is likely that any given stylesheet will have both streamable and
 non-streamable stylesheet functions, it is necessary to tell the processor which are
 and which are not streamable. For that, the xsl:function declaration
 gets a new attribute, similar to the attribute of xsl:accumulator and
 xsl:mode, which determines whether or not a function should be
 analyzed for streamability.
The attribute takes a value of yes or no. If the value
 is yes, then the function must be guaranteed
 streamable and the function can be called with a streamable node as
 an argument.
I think that such an attribute is not necessary if we take the approach in this
 paper and analyze the entire function only upon the actual function call. If that
 function call is inside a streamable context and a streamable node is passed as an
 argument, the body of the function is analyzed with the context posture of the
 streamable argument set as the posture of the streamable parameter reference.

Status of current processors with respect to streamable stylesheet functions
Since streamable stylesheet functions are a relative recent addition to the
 specification and lots of it is not yet publicly available, there are currently no
 processors available that fully support streamable stylesheet functions.
At the time of this writing, of the two streaming processors that I know of, Exselt and Saxon, the former currently has a full streamability analysis for all
 constructs but a limited ability to analyze stylesheet functions for streamability.
 However, the available set of tests is still growing and the rules on streamability may
 change between now and the actual presentation of this paper, or even afterwards, since
 the specification is not final yet and work on streamable stylesheet functions may
 change the current rules. Apart from analyzing a function for streamability, Exselt
 chooses an optimistic streaming approach: if you write your stylesheet in a correct way
 with forward expressions only, your stylesheet will process streaming input in a
 streamable way.
For Saxon, I do not know the actual current status on streamable stylesheet functions,
 but I do know that they plan to do it in the not-so-far future.
If you are interested in streaming, or more specifically in streamable stylesheet
 functions, keep an eye out on the website of Exselt and Saxon as it is likely that in
 the near future, both processors will support this feature.

Conclusion
The previous sections have shown that writing streamable stylesheet functions is not
 that hard, as long as you do not require recursion, or want to write overridable
 non-final functions. But if you do require recursion, the simplest rule to remember is
 same posture in, same posture out. As long as you
 stick to that rule, and forget about the exceptional cases, you are in safe streaming
 waters.
We have also seen that the current resolution in the specification taken to allow
 streamable stylesheet functions is far more limiting, allowing only a posture of
 striding for the input arguments and in the case of
 recursive functions or non-final functions, always concludes that a call to such a
 function is consuming, even if it is not. This
 conservative approach has a valid reason, though: it tries to keep things simple and the
 rules understandable and implementable. But even with this limitations in mind, it gives
 stylesheet authors quite a wide range of possibilities to write streamable stylesheet
 functions.
This paper has shown how a relative small change to the specification opens up the way
 for stylesheet and library package writers to write streamable stylesheet functions,
 which can be used in both streamable and non-streamable scenarios alike[37]. This change was an important and vital one and has brought us very close to
 making the streamability rules as mature as they can be and ready for widespread use in
 stylesheets and packages. Hopefully this paper has given potential library writers a
 strong hint that they should take the extra step to write their library packages with
 streamability in mind to be useful for both the streaming and non-streaming
 markets.

Bibliography
[Braaksma 2013]
 Braaksma, Abel. Efficient XML processing with XSLT 3.0 and higher order functions: pp 23-40.
 Presented at XML Prague 2013, a conference on markup languages and data on the web, Prague, Czechia, Feb 8-10, 2013.
 In XML Prague Proceedings 2013.
 http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf.
 Web.

[Braaksma 2014a]
 Braaksma, Abel.
 Streaming for the masses, an introduction to streaming with XSLT: pp 29-80.
 Presented at XML Prague 2014, a conference on markup languages and data on the web, Prague, Czechia, Feb 14-16, 2014.
 In XML Prague Proceedings 2014.
 http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf.
 Web.

[Braaksma 2014b]
 Braaksma, Abel.
 Streaming Design Patterns or: How I Learned to Stop Worrying and Love the
 Stream: pp 24-53.
 Presented at XML London 2014, UK XML Conference, London, United Kingdom, June 7-8, 2014.
 In XML London Proceedings 2014.
 http://xmllondon.com/2014/xmllondon-2014-proceedings.pdf. Web.
 doi:https://doi.org/10.14337/xmllondon14.braaksma01

[Grust 2013]
 Grust, Torsten and Ulrich, Alexander.
 First-Class Functions for First-Order Database Engines
 Presented at International Symposium on Database Programming Languages.
 In Proceedings of the 14th International Symposium on Database Programming Languages (DBPL 2013), Trento, Italy.
 arXiv:1308.0158:
 http://arxiv.org/pdf/1308.0158v1.

[XPath and XQuery F&O 3.0]
 Kay, Michael.
 XPath and XQuery Functions and Operators 3.0 Recommendation
 8 April 2014. W3 Consortium. W3C Recommendation.
 http://www.w3.org/TR/xpath-functions-30/.
 Web.

[Gerstbach 2006]
 Gerstbach, Peter.
 Generating Structured Documents to Create Reports by Integrating Data from CMS/DMS and EAI Systems: pp 27-28.
 Master thesis. At: Softwaretechnik und Interaktive Systeme der Technischen Universit¨at Wien. May 2006.
 http://www.gerstbach.at/2006/thesis/. Web.

[Kay 2008]
 Kay, Michael.
 XSLT 2.0 and XPath 2.0 Programmer's Reference
 2nd edition, 5 May 2008: pp 251+. Published by O'Reilly Media. ISBN: 0470192747. Print.

[Lenz 2005]
 Lenz, Evan.
 XSLT 1.0 Pocket Reference (Pocket Reference).
 1st edition, 19 August 2005: pp 23-40. Published by O'Reilly Media. ISBN: 0596100086.
 Chapter 3 (pages 23-40) is available online: http://lenzconsulting.com/how-xslt-works/.
 Print.

[Mangano 2005]
 Mangano, San.
 XSLT Cookbook, 2nd Edition, Solutions and Examples for XML and XSLT Developers
 2nd edition, 21 December 2005: pp 686-732. Published by O'Reilly Media. ISBN: 0596009747.
 Print.

[Novatchev 2001]
 Novatchev, Dimitre.
 The Functional Programming Language XSLT — A proof through examples
 November 2001.
 Seen at: Sommer Semester 2010 course material University of Magdeburg 2010
 http://edu.cs.uni-magdeburg.de/EC/lehre/sommersemester-2010/funktionale-programmierung/uebungen/gruppe-2/aufgabenblatt-12/XSLTasFP.pdf.
 Online reference:
 http://fxsl.sourceforge.net/articles/FuncProg/Functional%20Programming.html. Print.

[Tennison 2001]
 Tennison, Jeni.
 Rescuing XSLT from Niche Status..
 17 February 2001.
 MulberryTech XSL Mailing List Archive.
 http://www.biglist.com/lists/xsl-list/archives/200102/msg01143.html. Web.

[W3C BugZilla]
 Various contributors.
 Bugzilla - Public W3C Bug / Issue tracking system
 1997 - 2014. W3 Consortium.
 https://www.w3.org/Bugs/Public/.
 Web.

[Welker 2008]
 Welker, Eddie.
 Advantages of push-style XSLT over pull-style
 25 November 2008.
 http://www.eddiewelker.com/2008/11/25/push-style-xslt-vs-pull-style/.
 Web.

[XQuery and XPath Data Model 3.0]
 Walsh, Norman; Berglund, Anders; Snelson, John.
 XQuery and XPath Data Model 3.0 Recommendation
 8 April 2014. W3 Consortium. W3C Recommendation.
 http://www.w3.org/TR/xpath-datamodel-30/.
 Web.

[XPath 3.0]
 Robie, Jonathan; Chamberlin, Don; Dyck, Michael; Snelson, John.
 XML Path Language (XPath) 3.0 Recommendation
 8 April 2014. W3 Consortium. W3C Recommendation.
 http://www.w3.org/TR/xpath-30/.
 Web.

[XProc]
 Walsh, Norman; Milowski, Alex; Thompson, Henry S.
 XProc: An XML Pipeline Language
 11 May 2010. W3 Consortium. W3C Recommendation.
 http://www.w3.org/TR/xproc/.
 Web.

[XSLT Latest Version]
 Kay, Michael.
 XSL Transformations (XSLT) Version 3.0, Latest Version
 Undated. W3 Consortium. W3C Working Draft / Last Call Working Draft / Candidate Recommendation / Proposed Recommendation / Recommendation.
 http://www.w3.org/TR/xslt-30/.
 Web.

[XSLT Last Call WD]
 Kay, Michael.
 XSL Transformations (XSLT) Version 3.0 W3C Last Call Working Draft
 12 December 2013. W3 Consortium. Last Call Working Draft.
 http://www.w3.org/TR/2013/WD-xslt-30-20130201/.
 Web.

[1] The ancestor-or-self axis is available during
 streaming and requesting properties on nodes on that
 axis is allowed. However, it is not possible to navigate
 away from that axis, doing so would result in a
 free-ranging and roaming expression.
[2] See section 19 of the XSL 3.0 specification.
[3] See XSL Mailing List
 at Mulberry Tech's.
[4] See, for instance, StackOverflow question 2835567 on templates and recursion.
[5] See, for instance, his answer in question 16631213 at StackOverflow, which uses recursion on element
 nodes, it's an example where functions are arguably a better choice than
 template matching.
[6] See section 5.6
 Patterns, specifically the part on predicate
 patterns in the XSLT 3.0 Working Draft.
[7] Before user-defined stylesheet functions were allowed to be streamable and
 take on streamed nodes, the rules were as in the current Working Draft:
 For a call to a stylesheet function, the general streamability rules
 apply. There is one operand role for each argument in the function
 signature, and its operand usage is the type-determined usage based on the
 declared type of that argument., see section 19.8.7.12 Streamability of Function Calls in XSLT 3.0 Working Draft.
 Please note that this and other references to the WD will change when the next
 version of the specification comes out.
[8] See section 19.8.1. in XSL Transformations 3.0.
[9] See section 19.8.4.17 Streamability of xsl:for-each in the XSLT
 3.0 Working Draft, specifically the rule The posture of the
 instruction is the posture of the contained sequence constructor,
 assessed with the context posture and context item type set to the
 posture and type of the select expression..
[10] That the attribute axis in any context results in a posture of climbing and a sweep of motionless follows from the rules in section 19.8.1 General Rules for Streamability, rule 2.e and the rules
 on the axis steps itself, which can be found in 19.8.7.7 Streamability of Axis Steps.
[11] The rule that a child axis is not guaranteed
 streamable if applied on an axis other than an axis with
 striding posture follows from 19.8.7.7 Streamability of Axis Steps in the XSLT Working Draft,
 in the table under item 6 in the list.
[12] A higher-order operand is an
 operand that can change focus, such as xsl:for-each
 or xsl:for-each-group, see the definition of higher-order
 operand in the XSLT 3.0 Working
 Draft.
[13] See 19.8.7.6 Streamability of Axis Steps in XSL Transformations 3.0.
[14] See 19.8.7.7 Streamability of Axis Steps in XSL Transformations 3.0.
[15] A public bug entry Bug
 25185 tries to resolve this by allowing limited buffering of crawling
 postures in a absorption contexts such as these, if that bug is accepted and
 resolved, overlapping nodes as with crawling posture is allowed with usage
 absorption, at least in the general case.
[16] The XSL Transformations 3.0 Working Draft does not use this terminology, but
 it helps differentiate different situations for this discussion.
[17] See 19.8.4.33 Streamability of xsl:sequence in XSL
 Transformations 3.0.
[18] I use the term recursion point for the
 place in the code where the recursion is invoked, but this is not a term
 that is used in the specification.
[19] See the table under 19.8.7..7 Streamability of Axis Steps in XSL
 Transformations 3.0.
[20] See section 6.6.3, Streamable Templates in XSL Transformations 3.0, second
 bullet-point: The sequence constructor contained in the body of the
 xsl:template element is grounded.
[21] One exception is allowed for selections that only select childless nodes, such
 as attribute nodes. These are climbing but do
 not contain children and are henceforth allowed.
[22] See Section 19.8.1 General Streamability Rules in XSL Transformations
 3.0, item 1.b.iii.A.I.
[23] See section 3.1.5.1
 Evaluating Static and Dynamic Function Calls in the XPath 3.0
 Recommendation.
[24] See page 4 of his paper Novatchev 2001.
[25] See section 3.6.1 Dependencies between Packages in XSLT 3.0 Working
 Draft.
[26] See Bug
 25679 in W3C's BugZilla, which discusses the implications of allowing
 streamable stylesheet functions.
[27] See the resolution to Public XSLT
 Bug 25185 on how crawling posture is now allowed in atomizing
 contexts.
[28] See section 3.1.7 Inline Function Expressions in the XPath 3.0
 Recommendation.
[29] See section 19.8.7.14 Streamability of Inline Function Declarations in the
 XSLT 3.0 Working Draft.
[30] See section 3.1.5 Static Function Calls, definition for Partial Function
 Application in the XPath 3.0 Recommendation.
[31] See section 19.8.7.12 Streamability of Function Calls in the XSLT 3.0
 Working Draft.
[32] See section 3.1.6
 Named Function References in the XPath 3.0 Recommendation.
[33] See section 19.8.7.13 Streamability of Named Function References in the XSLT
 3.0 Working Draft.
[34] See section 3.2.2 Dynamic Function Call in the XPath 3.0
 Recommendation.
[35] See section 19.8.7.9 Streamability of Dynamic Function Calls in the XSLT 3.0
 Working Draft.
[36] The next version will probably be a Candidate
 Recommendation, considering that the current status is Last Call Working Draft, meaning that the
 specification is ready for implementors and only bugs found that come from
 implementation issues will be fixed. No new features will be added.
[37] Any streamable construct will work exactly the same in a non-streaming
 scenario. Functions or modes written with streaming in mind can be used with
 both streaming and non-streaming input without alterations.

Balisage: The Markup Conference

In pursuit of streamable stylesheet functions in XSLT 3.0
Abel Braaksma
Owner/creator
Exselt, a streaming XSLT 3.0 processor

Abrasoft Consulting

Blog: Undermyhat.org

<abel[-at-]exselt.net>
Abel Braaksma is an invited expert of the XSL and XQuery Working Group and is
 creator and owner of Exselt, a
 streaming XSLT 3.0 processor. Next to his XSL work for the Working Group he runs
 a consultancy and outsourcing firm Abrasoft, specializing in data aggregation and XML in .NET
 environments. He has over 15 years experience in XML and related technologies.
 You can contact him about Exselt or XML, XSLT and C# / F# related inquiries. His
 personal thoughts on technological challenges and XSLT in particular are
 collected on his blog http://undermyhat.org.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

