[image: Balisage logo]Balisage: The Markup Conference

How to survive the coming namespace winter
R. Alexander Miłowski
University of Edinburgh, School of Informatics

<alex@milowski.com>

Norman Walsh
MarkLogic Corporation

<norman.walsh@marklogic.com>

Balisage: The Markup Conference 2014
August 5 - 8, 2014

Copyright © 2014 R. Alexander Miłowski and Norman Walsh

How to cite this paper
Miłowski, R. Alexander, and Norman Walsh. "How to survive the coming namespace winter." Presented at: Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup Conference 2014.
 Balisage Series on Markup Technologies vol. 13 (2014). https://doi.org/10.4242/BalisageVol13.Milowski01.

Abstract
Is XML condemned to be an orphaned syntax with a dimly lit future within the Web
 browser? What can information providers with rich sources of XML do, other than
 down-translate to HTML? The evolving Web Components environment may provide a solution!
 With some simple translations, stylesheets and scripts, it will be possible to wrap
 custom XML in a minimum amount of HTML and serve it over the Web. The browsers will
 never know they’re being tricked into delivering XML.

Balisage: The Markup Conference

 How to survive the coming namespace winter

 Table of Contents

 	Title Page

 	Forward from Failure

 	Hyphens to the Rescue

 	Pandora's Box?

 	The DocBook Web Component

 	The Evolving Web

 	About the Authors

 How to survive the coming namespace winter

It was a late night, again, at XML Prague, and Norm Walsh,
 John Snelson, Charles Greer, and I were walking along attempting
 to find dinner. We had been discussing the Web Components
 session that had occurred earlier in the day. We expressed our
 dismay and depression that we couldn't just have XML. Then it
 occurred to us, like a light being turned on (or being
 whacked on the back of the head with a ruler), Web Components
 are just markup and pretty close to XML. All we needed to do was
 use a hypen rather than a colon, and all was well. It is a
 compromise and likely the best we will get anytime soon. We get
 to put our own pointy brackets into the browser and give it
 semantics—accept it and move on.
— Alex Miłowski recounting XML Prague 2014

Forward from Failure
A publisher that has a large amount of information in XML documents has little
 recourse in today's world but to transform this information into HTML for delivery on the
 Web or within EPUB ebooks. The ability for the common Web browser to load and process XML
 information, with similar processing semantics to HTML, isn't available; links will not be
 identified, styles and local transformations are fraught with problems, media will not be
 loaded or rendered, and scripts will not execute to provide extensible behaviors.
At the 2009 Balisage Conference, in XML in the Browser: the Next
 Decade
 balisage-2009, Miłowski enumerated the issues with delivering XML to
 the browser and many, if not all, of those issues remain unsolved in 2014. The various
 browser vendors have since all but abandoned processing XML except as a legacy format. In
 many ways, it only remains as a serialization format for HTML5 html5
 and as a mechanism for receiving data within a Web application.
It was argued that there are intrinsic and non-intrinsic formats for the Web. In terms
 of markup languages, HTML, SVG, and MathML were identified as the triad of intrinsic markup
 languages. This assessment is somewhat validated by the integration of SVG and MathML into
 the HTML5 specification.
This leaves generic XML as an orphaned syntax with dimly lit future within the Web
 browser. If the writings on the walls of various mailing lists are any indication, there is
 a strong desire for less or complete removal of the native XML processing that remains
 within the browser. While current applications and backlash have prevented such removal,
 the days of XML in the browser feel numbered.
Meanwhile, XML has served a purpose for many information publishers. Tag sets, both
 custom and standardized, have been developed to encode enormous amounts of data. Within
 enterprises, processing pipelines that produce, validate, manipulate, and otherwise consume
 this data have had their benefits. It has become very normal to
 transform these documents into the appropriate HTML markup for delivery to whatever
 consumer is on the other end of that HTTP connection.
Yet, as Web developers and browser vendors seem to be moving away from custom markup,
 they seem to realize they are missing something. Making the Open Web
 Platform extensible means that behaviors that need to accompany information
 need to packaged as reusable components. That is, information needs to have markup that
 identifies it as a specific kind of information whose scripts, templates, and styling are
 identifiable and loadable over the Web.

Hyphens to the Rescue
Once the desire for extensible markup, outside of the direct control of either the W3C
 or browser vendors, was recognized, the concept of custom elements was introduced and
 eventually formalized custom-elements. For HTML parsing purposes, the
 essential distinction is that a custom element's name contains a hyphen—not a colon. This
 allows custom element names to be distinguished from those within HTML itself and the only
 notable exceptions are the handful of element names in SVG and MathML that contain a
 hyphen.
In common usage, custom elements of the same origin share a common
 prefix followed by a hyphen (see Figure 1). That
 prefix currently has no registration or association with any URI. As such, it is unlike XML
 namespace prefixes which must be declared before being used.
Figure 1: Custom Element Example
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>...</head>
 <body>
 <db-article version="5.0">
 <db-title>Foreshadowing</db-title>
 <db-section>
 <db-title>Wondering</db-title>
 <db-para>I wonder where is this paper is going?</db-para>
 </db-section>
 </db-article>
 </body>
</html>

The use of custom elements goes beyond just syntax as it also provides an API for
 registering behaviors with the browser for the markup. During parsing, the DOM construction
 process assigns certain classes to recognized markup (e.g.
 HTMLParagraphElement is used for the p element). When an
 unrecognized element is encountered (i.e. a custom element), it is initially constructed as
 HTMLUnknownElement.
A script can register with the document a prototype that defines a new behavior or
 assigns an existing HTML behavior to a custom element. For example, the
 db-para could simply be registered as an HTML paragraph as shown in Figure 2. The DOM object for the element is subsequently replaced with a
 new instance of the appropriate type and the behaviors of that element are now
 accessible.
Figure 2: Registering a Custom Element
document.register("db-para",{ prototype: HTMLParagraphElement.prototype });
document.register("db-title",{ prototype: HTMLHeadingElement.prototype });
document.register("db-programlisting",{ prototype: HTMLPreElement.prototype });

In simple cases, an element registered as a custom element with one of the available
 HTML prototypes inherits some of the custom behaviors. In testing, it is unlikely that
 default styling will automatically be applied (e.g. using
 HTMLPreElement.prototype doesn't guarantee pre element
 styling). Yet, in some cases, styling does occur and so the behavior is inconsistent and
 seems to be implementation defined. One can imagine that a consistent, reliable behavior
 is the goal and this will sort itself with time.
Moreover, registration can go far beyond such simple associations of name to pre-defined
 prototypes. A script can register a custom prototype to provide specific behaviors. The
 prototype provided must contain a function via a createdCallback property that
 will perform any additional initialization of the element. Other similar mechanism are
 available for maintaining the element throughout its life cycle.
For example, in Figure 3, the callback applies a JavaScript-based
 syntax highlighter (highlight.js
 highlightjs) to the contents of the element. Once the element is
 re-created within the DOM with this prototype, the callback function executes with the
 value of this assigned to the element. In this particular example, this means
 the db-programlisting element is constructed with the prototype and the
 callback adds the syntax highlighting.
Figure 3: Auto-highlighting Code
document.registerElement(
 "db-programlisting",
 { prototype:
 Object.create(HTMLPreElement.prototype, {
 createdCallback: {
 value: function() {
 hljs.highlightBlock(this);
 }
 }
 })
 }
);

Often, the structured information of an element doesn't directly match the desired
 rendering. The use of HTML Templates (part of the HTML5 specification) provides the
 ability to package and use structured layouts for the display of custom elements. A
 template is a portion of markup that is wrapped by a template element that can
 be used to construct new content programmatically. One main use for templating is to avoid
 manual construction of elements by either parsing or direct DOM method calls.
For example, in Figure 4, the template for a figure is listed.
 The content element specifies where contained content should be placed. In
 this example, the select attribute is used to specify which child elements
 should be used. The result of this example is reordering the children of
 db-figure so that the title is last.
Figure 4: Reordering via Templates
<template id="db-figure">
 <content select="db-mediaobject"></content>
 <content select="db-title"></content>
</template>

The registered prototype must use the template and the Shadow DOM
 shadowdom to affect the rendering of the element. The Shadow DOM
 provides the ability to create a rendering based on elements not shown to the user. When
 the user inspects the displayed element (or its source), they will only see the custom
 element. Inside the browser, a "shadow element" is used to structure and render the same
 information where the shadow element is only accessible via scripting or styling embedded
 within the template.
An example of using a template for the db-figure element is shown in Figure 5. The callback constructs a Shadow DOM for the current
 element and appends content. The content is structured via the template shown in Figure 4. The consequence is the current sub-tree for
 db-figure is rendered using the newly constructed Shadow DOM.
Figure 5: Using Templates
var componentDocument = document.currentScript.ownerDocument;
document.registerElement(
 "db-figure",
 { prototype:
 Object.create(HTMLDivElement.prototype, {
 createdCallback: {
 value: function() {
 var t = componentDocument.getElementById("db-figure");
 var clone = document.importNode(t.content, true);
 this.createShadowRoot().appendChild(clone);
 }
 }
 })
 }
);

Finally, we can package our script, templates, and any styling via HTML
 Imports
 html-imports. The imported document is simply another HTML document
 whose scripts, styles, and templates become available to the current document. The import
 is invoked by a simple link element with rel attribute value of
 import in the importing document (see Figure 6).
The imported document packages the Web Component by linking to the necessary scripts and
 stylesheets while containing any templates that are used by those scripts. The example in
 Figure 7 shows the structure used to package the previous examples.
 The scripts and stylesheets for the highlighter are included using the same mechanism
 already known to Web developers.
As a nuance, the script registering the custom elements and the templates are in
 collusion within this imported document. At the very start of the example in Figure 5, the expression
 document.currentScript.ownerDocument is used to obtain the correct document
 for retrieving the templates. If the component is packaged differently, retrieving the
 template might be more difficult or impossible.
Figure 6: Importing a Document
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <link rel="import" href="db-component.xhtml"/>
 </head>
 <body>
 ...
 </body>
</html>

Figure 7: Packaged Component
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>DocBook Component</title>
 <link rel="stylesheet" type="text/css" href="db-component.css"/>
 <link rel="stylesheet" href="http://yandex.st/highlightjs/8.0/styles/default.min.css"/>
 <script type="text/javascript"
 src="http://yandex.st/highlightjs/8.0/highlight.min.js"></script>
 </head>
 <body>
 <template id="db-article">
 ...
 </template>
 ...
 </body>
</html>

In summary, Web Components relies on four essential features:
	Custom Elements — a specification that is in Last
 Call and may enter CR in 2014.

	HTML Templates — part of HTML5 (see §4.12.3 The template element) that is in CR as of February 04,
 2014.

	Shadow DOM — a specification that is a working
 draft.

	HTML Imports — a specification that is a working draft and
 volatile.

Pandora's Box?
As the features of Web Components coalesce and become part of the commonly deployed
 browser, there is little anyone can do to prevent their use. An author can simply import a
 Web Component of their choice, custom or shared, and the browser can do little more than
 execute the associated semantics within the bounds of the Open Web Platform. That allows
 anyone to develop custom markup to encapsulate their information in much the same way was
 hoped for with XML.
There are two notable differences between now (2014) and 1998:
	The browser, as a component of the Open Web Platform, is much more stable,
 technologically advanced, and well understood.

	Web Components utilize the Open Web Platform to package semantics in a much more
 extensive way that is compatible with how browsers actually
 work.

An unscientific look at the current opinions of the use of Web Components indicates it
 may become hugely popular. While only time will actually determine the outcome, the Shadow
 DOM and HTML Templates are very useful. Accessing them within Custom Elements provides
 needed encapsulation to Web applications and so their intended use in that context makes a
 lot of sense.
Yet, we don't have to use Web Components to package semantics for custom markup that is
 limited to specialized uses. That is, with relative ease, we can transliterate whole XML
 documents into custom elements, wrap them with a few lines of HTML markup, and the browser
 will load and process the custom elements as specified. Is this abuse, a practice that
 isn't recommended, or should a thousand custom elements bloom?
Let's open Pandora's box and see whether what is inside is truly evil. We will take
 DocBook, a known vocabulary for documents (books, articles, etc.), and turn the markup into
 a set of Web Components. We will demonstrate how easy the transliteration is to perform and
 show a few interesting results.

The DocBook Web Component
Turning any arbitrary XML document into an HTML document as a Web Component requires on
 three essential steps:
	Prefix every element with a constant prefix and hyphen that can be associated with
 the element's namespace.

	Develop stylesheets, templates, and scripts that encapsulate the desired
 behavior.

	Wrap the document in the minimum amount of HTML bootstrapping necessary to deliver
 the Web Component to the browser.

Figure 8: Transformation Pipeline
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:h="http://www.w3.org/1999/xhtml"
 version="1.0"
 name="top">

 <p:input port="source"/>
 <p:output port="result"/>

 <!-- directly process the wrapper and replace the content
 element with the translated DocBook elements -->
 <p:viewport match="h:content">
 <p:viewport-source>
 <p:document href="wrapper.xhtml"/>
 </p:viewport-source>

 <!-- transliterate the DocBook elements -->
 <p:xslt>
 <p:input port="source">
 <p:pipe port="source" step="top"/>
 </p:input>
 <p:input port="parameters"><p:empty/></p:input>
 <p:input port="stylesheet">
 <p:document href="db-content.xsl"/>
 </p:input>
 </p:xslt>

 </p:viewport>

</p:declare-step>

For example, in the specific case of DocBook, we would do the follow:
	Transform the document by changing every DocBook element name to a name with
 db- prefix with no namespace. Also, copy any MathML
 or SVG to the output and pay specific attention to the serialization (HTML without a
 namespace or XHTML with a namespace).

	Implement Web Components for common constructions like xref,
 mediaobject/imageobject/imagedata, link, etc. and develop CSS stylesheets for the
 rest. Package this component as a single document (see Figure 7).

	Wrap the document in the minimum markup (see Figure 6).

In addition, we'd like to retain some aspect of identity of the namespace from the
 original XML. To do so, we will add an RDFa rdfa
 typeof attribute on the root element whose value is the namespace URI. This
 will allow a consuming application to identify the custom element by type rather than a
 fixed prefix. Hence, on the root custom element for DocBook (e.g. db-article),
 a typeof attribute will contain the value
 http://docbook.org/ns/docbook.
This process was implemented using the simple XProc xproc pipeline
 shown in Figure 8 where the transformed document is inserted in
 the wrapper (see Figure 9) as a replacement for the content
 element. The transformation is simply a set of renaming rules with the main two rules shown
 in Figure 10.
Figure 9: Wrapper Document
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <link rel="import" href="db-component.xhtml"/>
 </head>
 <body>
 <content/>
 </body>
</html>

Figure 10: Main XSLT Rules
<xsl:template match="/db:*">
 <xsl:element name="db-{local-name()}" namespace="http://www.w3.org/1999/xhtml">
 <xsl:attribute name="typeof"><xsl:value-of select="namespace-uri()"/></xsl:attribute>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:element>
</xsl:template>

<xsl:template match="db:*">
 <xsl:element name="db-{local-name()}" namespace="http://www.w3.org/1999/xhtml">
 <xsl:apply-templates select="@*|node()"/>
 </xsl:element>
</xsl:template>

In terms of what these custom elements might provide to a user, some behaviors for
 DocBook that require scripting are:
	Links (e.g. link or xref).

	Auto-numbering of sections, figures, etc.

	Display of media objects (e.g. imageobject/imagedata).

	Generated text for cross references (e.g. turn xref into "Figure 2.1 ...").

	Auto-generation of a table of contents and other navigation.

	Syntax highlighting in programlistings and other code.

These features were implemented[1] and tested in Chrome (the only browser currently implementing Web
 Components[2]). In total, the implementation was 235 lines of JavaScript, 76 lines of CSS,
 and a 67 line HTML document with none of these resources having been compressed or
 otherwise optimized. The implementation also includes highlight.js via the
 HTML import and programmatically adds MathJax mathjax for rendering
 MathML.
At present, there are some notable issues implementing a set of Web Components and using
 HTML Imports:
	MathJax was not able to be included via the import. The method it uses to
 determine the base URI cannot find the script reference in the imported document.
 MathJax isn't HTML import aware at this point in time. As such,
 MathJax added scripts and stylesheets aren't hidden in the imported document but,
 instead, are programmatically added to the importing document.

	Implementing links was harder than expected. Just associating the prototype
 HTMLAnchorElement with the element does not induce some minimal
 linking behavior. Further, using a template that wraps the content with an HTML
 anchor in the Shadow DOM is more complicate as there is no way to automatically copy
 attributes (e.g. the URI in the href attribute) and some default
 behaviors (e.g. a mouse pointer) aren't automatic. Further, clicking had no effect
 and a custom event handler had to be added.

	The division between the stylesheet within each template and the overall
 stylesheet is a bit tricky.

	There is a lot more to be done to handle the full life cycle of the elements. That
 is, if other scripts manipulate the custom elements in
 situ, the components (e.g. the auto-generated navigation) may need
 to update themselves.

Web components can also be used within other browsers by using the Polymer Platform
 polyfill
 platform. This JavaScript library provides implementations of various
 Web Components specifications for the Firefox, Safari, and IE browsers. Unfortunately, at
 this time (July 2014), this library fails to work with the DocBook example:
	Firefox crashes almost immediately. This seems to have something to do with the
 generation of the table of contents navigation.

	Safari fails with an JavaScript error.

The Evolving Web
Web Components is a promising technology for delivering packaged semantics for general
 markup. It succeeds in many places where previous attempts with XML in the browser have
 failed. That it is somewhat of a reality today is ever more exciting.
Yet, the mechanisms for which a browser or resource consumer can recognize the use of a
 particular set of custom elements is fraught with problems. The inability to identify the
 prefix used in constructing the element names, associate that prefix with some URI, or to
 protect content from collisions with other custom elements is going to be an immediately
 painful experience. Authors and publishers will want to mix content from different sources
 outside of their control and custom elements will make that increasingly harder.
XML has a partial solution for identifying and uniquely naming elements to avoid
 collisions. Yet, that solution allows arbitrary complexity without sufficient gains in
 functionality and was rejected by many in the various Web developer communities. Yet, one
 can't help but feel like a colon was swapped for a hyphen and we lost something in the
 exchange.
In the end, Web Components lets us deliver XML documents, transliterated, and packaged
 with their semantics. The mechanisms of the Shadow DOM and scripting allow the markup used
 for rendering to have a interactive and integrated mechanism for live manipulation within
 the browser. HTML imports and templates enabling packaging of these semantics into a single
 resource.
Even though Web Components, HTML5, and scripting isn't necessarily how we all may have
 imagined XML on the Web in 1998, their combination is sufficient to accomplish real work
 with markup within the Open Web Platform. The Web has evolved and XML may be evolving along
 with it. It is a reality that we affectionately call the Prague
 Compromise.
He put on his skis, straightened himself up, and remained standing there for some
 time; as he pulled on his mittens he took one glance homeward. He could just make out
 the house in the dim distance. Then the whiteness all around it thickened—rose up in a
 cloud—seemed to be piling in. ... Perhaps it wasn't so dangerous, after all. The wind
 had been steady all day, had held in the same quarter, and would probably keep on ...
 Oh, well—here goes!
...
On one of the hillsides stood an old haystack which a settler had left there when he
 found out that the coarse bottom hay wasn't much good for fodder. One day during the
 spring after Hans Olsa had died, a troop of young boys were ranging the prairies, in
 search of some yearling cattle that had gone astray. They came upon the haystack, and
 stood transfixed. On the west side of the stack sat a man, with his back to the
 mouldering hay. This was in the middle of a warm day in May, yet the man had two pairs
 of skis along with him; one pair lay beside him on the ground, the other was tied to his
 back. He had a heavy stocking cap pulled well down over his forehead, and large mittens
 on his hands; in each hand he clutched a staff ... To the boys, it looked as though the
 man were sitting there resting while he waited for better skiing ... His face was ashen
 and drawn. His eyes were set toward the west.
— Giants in the Earth: A Saga of the Prairie, O. E. Rölvaag (1924)

Bibliography
[balisage-2009]
 XML in the Browser: the Next Decade, R. Alexander Milowski, Balisage: The Markup Conference 2009, 2009-08; see also http://www.balisage.net/Proceedings/vol3/html/Milowski01/BalisageVol3-Milowski01.html. doi:https://doi.org/10.4242/BalisageVol3.Milowski01

[html5]
 HTML5, W3C, 2013-09-06, Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara, Edward O'Connor, Silvia Pfeiffer, and Ian Hickson; see also http://www.w3.org/TR/html/

[custom-elements]
 Custom Elements, W3C, 2014-04-28, Dimitri Glazkov; see also http://www.w3.org/TR/custom-elements/

[highlightjs]
 highlight.js, Ivan Sagalaev, Jeremy Hull, Oleg Efimov; see also http://highlightjs.org

[shadowdom]
 Shadow DOM, W3C, 2014-04-25, Dimitri Glazkov; see also http://www.w3.org/TR/shadow-dom/

[html-imports]
 HTML Imports, W3C, 2014-03-11, Dimitri Glazkov and Hajime Morrita; see also http://www.w3.org/TR/html-imports/

[rdfa]
 RDFa Core 1.1, W3C, 2012-06-07, Ben Adida, Mark Birbeck, Shane McCarron, and Ivan Herman; see also http://www.w3.org/TR/rdfa-core/

[xproc]
 XProc: An XML Pipeline Language, W3C, 2010-05-11, Norman Walsh, Alex Miłowski, and Henry S. Thompson; see also http://www.w3.org/TR/xproc/

[mathjax]
 MathJax, Davide Cervone, Christian Perfect, and Peter Krautzberger; see also http://www.mathjax.org/

[platform]
 Polymer Project; see also https://github.com/polymer

[1] The implementation is available at github / alexmilowski /
 db-component.
[2] It is necessary to turn on experimental features in Chrome to use Web Components.
 The flags that need to be enabled are: 	Enable experimental Web Platform
 features - required for Custom Elements and the Shadow
 DOM.

	Enable HTML Imports - required to use
 imports for importing the component definitions and various code or
 stylesheets.

Balisage: The Markup Conference

How to survive the coming namespace winter
R. Alexander Miłowski
University of Edinburgh, School of Informatics

<alex@milowski.com>

Norman Walsh
MarkLogic Corporation

<norman.walsh@marklogic.com>

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

